用户名: 密码: 验证码:
基于芳香羧酸构筑的金属—有机框架及其杂化材料的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了基于芳香羧酸构筑的金属-有机框架(MOFs)及其杂化材料的合成、结构与性能:
     1.利用水热和溶剂热反应合成了16个基于芳香多羧酸构筑的MOFs,研究了这些化合物的合成、结构与性能。通过筛选,化合物[Cd (2,2',4,4'-bptcH2)](F-3)可做为高效的有机磷酸酯农药(OPs)的固相萃取吸附剂,结合溶出伏安法检测痕量的OPs。实验中以甲基对硫磷(MP)为模型化合物,当MP的浓度范围在0.01到0.5μg·mL-1时,特定的峰位电流与MP的浓度成正比,其检测限可以达到0.006mg·mL-1,10次重复率偏差为5.2%。检测对应的硝基苯和含氧无机阴离子(PO43-, SO42-, NO3-)没有明显的干扰现象,该实验是第一例使用MOFs作为固相萃取剂修饰电极结合溶出伏安法检测OPs化合物的成功尝试。合成了基于镧系离子为基础的MOFs,发现这类具有荧光功能的MOFs可以在硝基苯及其衍生物等有毒害分子检测方面得到应用;硝基苯及其衍生物对化合物[Eu3(TCSi)2(NO3)(DMF)3(H2O)-Solvents]n(F-12)不[Tb3(TCSi)2(NO3)(DMF)3H2O)·Solvents]n(F-14)的荧光有明显的淬灭作用,淬灭效率都超过92%;结果表明,化合物F-12和F-14可用作硝基苯及其衍生物的传感。
     2.成功合成了一种新的多功能无机-有机杂化材料SWNT-Zn。该材料的合成方法是利用苯甲酸共价功能化的单壁碳纳米管(SWNTs)作为有机连接体,以Zn2+离子为节点,通过溶剂热的方式合成的类似多孔金属-有机框架的新材料。新材料具有两个明显的优点,一是它的多孔性,可用于气体的储存与分离,还有利于吸附其它介质;二是它内在的电子传导性,可在电化学方面得到应用。SWNT-Zn的比表面积为1210m2g-1比原始SWNTs的比表面积儿乎增大一倍。SWNT-Zn的高压氢气质量吸附在12bar时达到最大3.1wt%,比SWNTs的高压(12bar)氢气质量吸附量1.2wt%要高近3倍。合成该类材料的方式可以推广用于基于碳纳米管/MOFs复合新材料合成。
     3.采用环境友好的方式,通过在水/乙醇相中利用共沉淀法合成了镧系离子与均三苯甲酸构筑的系列纳米晶态金属-有机框架(NMOFs),并通过物理和化学方法表征证实了NMOFs的组成结构为Ln(BTC)(H2O)6。改变不同反应方式可以改变产物的形貌,通过改变反应时间、温度、反应物浓度、溶剂等方式获得不同环境下合成的NMOFs,考察了不同环境下生长的NMOFs在荧光性能上的变化,并证实了该类NMOFs的配位导向自组装的形成机理。选取Eu3+和Tb3+离子与均三苯甲酸合成的NMOFs可用于硝基苯及其衍生物的荧光检测,其中分析试剂4-硝基甲苯对该两类NMOFs的荧光淬灭效率分别高达94.26%和82.28%。同样采用共沉淀的方法,利用2-氨基对苯二甲酸的甲胺盐与Eu3+和Tb3+离子在水相中反应,获得相应的NMOFs,其中分析试剂4-硝基苯对含Eu3+离子产物的荧光淬灭效率也高达92.41%,而对含Tb3+离子产物的荧光淬灭效率只有57.75%。将镧系离子的反应延伸到其它过渡金属,选用Zn2+和Cd2+分别与2-氨基对苯二甲酸的甲胺盐在水相中反应,获得相应的NMOFs,分析试剂2-硝基苯对该两种NMOFs的荧光淬灭效率也分别达到89%和81.31%。比较硝基苯及其衍生物对合成NMOFs的荧光淬灭效率可以更好寻求对该类物质优异的传感器。发展的水相共沉淀法形成NMOFs的方法可以广泛地应用在由芳香羧酸与常见金属离子构筑的NMOFs合成中,该方式还可以放大合成,为发展NMOFs的工业应用奠定了基础。
The syntheses, structures and properties of metal-organic frameworks (MOFs) and their hybrid materials based on aromatic carboxylic acids ligands were studied in this dissertation.
     1. Sixteen metal-organic frameworks were synthesized by hydrothermal and solvothermal reactions, and the syntheses, structures and properties of these compounds were studied. In these compounds,[Cd (2,2',4,4'-bptcH2)](F-3), behaving strong adsorption ability, could be used as sorbents for solid-phase extraction (SPE) of organophosphate compunds(OPs) and their detection. Methyl parathion (MP) was selected as a model to demonstrate the effectiveness of F-3for detecting of electroactive OPs compounds. Therefore, the stripping voltammetric performances of MP absorbed on the surface of F-3were evaluated by square-wave voltammetric (SWV) analysis. Well-defined peaks, proportional to the concentration of the corresponding MP, were observed in the range from0.01to0.5μg·mL-1. A detection limit of0.006mg-mL-1was obtained and the relative standard deviation was5.2%for10replicate determinations. Furthermore, no obvious interferences were observed from the electroactive derivatives such as nitrobenzene, and other oxygen-containing inorganic ions (PO43-, SO42-, NO3-) with the peak currents of MP varied slightly. To the best of our knowledge, this is the first successful attempt on the determination of OPs by using MOFs as SPE based on SWV method. Several lanthanides-based metal-organic frameworks were also synthsized. We found that nitroaromatics copounds act as flourescence quenchers for compounds [Eu3(TCSi)2(NO3)(DMF)3(H20)-Solvents]n (F-12) and [Tb3(TCSi)2(NO3)(DMF)3(H2O)·Solvents]n (F-14). The results showed that all the quenching efficiency is more than92%, and compounds F-12and F-14can selectively detect nitroaromatics compounds. It is to be expected that this work will stimulate extensive research on the detection of some pollutants by MOFs with fluorescence.
     2. Single-walled carbon nanotubes (SWNTs) covalently functionalized with benzoic acid (SWNT-PhCOOH) can be integrated with transition metals ions (Zn2+) to form three-dimensional porous inorganic-organic hybrid frameworks (SWNT-Zn). Compared to metal-organic frameworks (MOFs), SWNT-PhCOOH and Zn2+can be regarded as organic linker and node, respectively, resulting in high dimensional MOFs-like porous materials. The resulted inorganic-organic hybrid material is expected to exhibit enhanced specific surface area with a mass of open metal sites to give a better gas adsorption capacity. The BET surface area of SWNT-Zn is1210m2g-1, which is about2time to SWNTs. SWNT-Zn also reveals that the excess H2uptake maximum reaches about3.1wt%(12bar), which shows almost three times compared to the original SWNTs(1.2wt%at12bar). The present synthetic strategy can be extended to the preparation of other new hybrid materials based on SWNTs/MOFs for applications in a wide range of areas.
     3. The treatment of lanthanide ions with1,3,5-benzenetricarboxylic acid (H3BTC) in a water-ethanol solution facilely yields nanocrystal lanthanide-based metal-organic frameworks (NMOFs). The structures and the molecular formula Ln(BTC)(H2O)6of the as-synthesized samples were confirmed by various physical and chemical means. Influence of different synthesis parameters on the morphologies, such as the concentration and molar ration of the reactants, reaction temperature, reaction time and solvents, and photoluminescence of the as-synthesized samples at different condition were investigated. A coordination-induced assembly growth mechanism was confirmed to the samples. We found that4-nitrotoluene act as fluorescence quenchers for the Eu-and Tb-containing samples, and the quenching efficiency is94.26%and82.28%, respectively. The coprecipitation reactions between the Eu3+/Tb3+ions and the methyl ammonium salts of2-aminoterephthalic acid in a water phase yield NMOFs samples. The fluorescence of samples are quenched by4-nitrotoluene and the quenching efficiency is92.4%and57.75%, respectively. In additional, the coprecipitation reactions in a water phase were also carried out between Zn2+/Cd2+and the methyl ammonium salts of2-aminoterephthalic acid obtaining NMOFs. Used the fluorescence quencher analytical reagent2-nitrotoluene, the quenching efficiency for Zn-and Cd-containing samples is89%and81.3%, respectively. The contrast nitrobenzene and its derivatives on the fluorescence quenching efficiency of the as-synthesized NMOFs can be better to seek more excellent sensors. The coprecipitation synthesis method in a water phase for NMOFs can be widely used in more NMOFs constructed by aromatic carboxylic acids and metal ions, and this method can be used to the large-scale synthesis of structure-defined NMOFs for industrial purposes.
引文
[1].(a) Schubert, U.,Cluster-based inorganic-organic hybrid materials. Chem. Soc. Rev.2011,40 (2),575-582; (b) Janiak, C.;Vieth, J.K., MOFs, MILs and more:concepts, properties and applications for porous coordination networks (PCNs). New J. Chem.2010,34 (11),2366-2388; (c) Janiak, C., Engineering coordination polymers towards applications. Dalton Trans.2003,(14),2781-2804.
    [2].(a) Long, J. R.; Yaghi, O. M., The pervasive chemistry of metal-organic frameworks. Chem. Soc. Rev.2009,38(5),1213-1214;(b) Kuppler, R. J.;Timmons, D.J.; Fang, Q. R.; Li, J. R.; Makal, T. A.; Young, M. D.; Yuan, D. Q.; Zhao, D.; Zhuang, W. J.; Zhou, H. C., Potential applications of metal-organic frameworks. Coord. Chem. Rev.2009,253 (23-24),3042-3066.
    [3]. (a) Zhao, D.; Timmons, D. J.; Yuan, D. Q.; Zhou, H. C., Tuning the Topology and Functionality of Metal-Organic Frameworks by Ligand Design. Acc. Chem. Res.2011,44 (2), 123-133; (b) Cheetham, A. K.; Rao, C. N. R.; Feller, R. K., Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chem. Commun.2006, (46),4780-4795; (c) O'Keeffe, M., Design of MOFs and intellectual content in reticular chemistry:a personal view. Chem. Soc. Rev.2009,38(5),1215-1217; (d) Perry, J. J.; Perman, J. A.; Zaworotko, M. J., Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. Chem. Soc. Rev.2009,38(5),1400-1417; (e) Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M., A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004,427 (6974),523-527; (f) Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., Reticular synthesis and the design of new materials. Nature 2003,423(6941),705-714.
    [4]. (a) Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R. V.; Kobayashi, T. C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; Mita, Y, Highly controlled acetylene accommodation in a metal-organic microporous material. Nature 2005,436 (7048),238-241; (b) Deng, H. X.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang, B.; Yaghi, O. M., Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks. Science 2010, 327(5967),846-850; (c) Murray, L. J.; Dinca, M.; Long, J. R., Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev.2009,38(5),1294-1314; (d) Li, J. R.; Ma, Y. G.; McCarthy, M. C.; Sculley, J.; Yu, J. M.; Jeong, H. K.; Balbuena, P. B.; Zhou, H. C., Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev.2011,255 (15-16), 1791-1823; (e) Li, J. R.; Kuppler, R. J.; Zhou, H. C., Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev.2009,38(5),1477-1504; (f) Yazaydin, A. O. z. r.; Snurr, R. Q.; Park, T.-H.; Koh, K.; Liu, J.; LeVan, M. D.; Benin, A. I.; Jakubczak, P.; Lanuza, M.; Galloway, D. B.; Low, J. J.; Willis, R. R., Screening of Metal-Organic Frameworks for Carbon Dioxide Capture from Flue Gas Using a Combined Experimental and Modeling Approach.J. Am. Chem. Soc.2009, 131 (51),18198-18199; (g) Bae, Y. S.; Snurr, R. Q., Molecular simulations of very high pressure hydrogen storage using metal-organic frameworks. Microporous Mesoporous Mater.2010,135(1-3), 178-186; (h) Duren, T.; Bae, Y.-S.; Snurr, R. Q., Using molecular simulation to characterise metal-organic frameworks for adsorption applications. Chem. Soc. Rev.2009,38(5),1237-1247; (i) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi, O. M., Ultrahigh Porosity in Metal-Organic Frameworks. Science2010, 329(5990),424-428; (j) Duren, T.; Sarkisov, L.; Yaghi, O. M.; Snurr, R. Q., Design of New Materials for Methane Storage. Langmuir 2004,20(7),2683-2689; (k) Lee, C. Y.; Bae, Y. S.; Jeong, N.C.; Farha, O. K.; Sarjeant, A. A.; Stern, C. L.; Nickias, P.; Snurr, R. Q.; Hupp, J. T.; Nguyen, S. T., Kinetic Separation of Propene and Propane in Metal-Organic Frameworks:Controlling Diffusion Rates in Plate-Shaped Crystals via Tuning of Pore Apertures and Crystallite Aspect Ratios. J. Am. Chem. Soc. 2011,133 (14),5228-5231; (1) Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q., Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal-Organic Frameworks. Chem. Rev.2011; (m) Bae, Y. S.; Snurr, R. Q., Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal-organic frameworks. Microporous Mesoporous Mater. 2010,132(1-2),300-303; (n) Bae, Y. S.; Spokoyny, A. M.; Farha, O. K.; Snurr, R. Q.; Hupp, J. T.; Mirkin, C. A., Separation of gas mixtures using Co(Ⅱ) carborane-based porous coordination polymers. Chem. Commun.2010,46(20),3478-3480; (o) Bae, Y.-S.; Dubbeldam, D.; Nelson, A.; Walton, K. S.; Hupp, J. T.; Snurr, R. Q., Strategies for Characterization of Large-Pore Metal-Organic Frameworks by Combined Experimental and Computational Methods. Chem. Mater.2009,21 (20),4768-4777; (p) Farha, O. K.; Spokoyny, A. M.; Hauser, B. G.; Bae, Y S.; Brown, S. E.; Snurr, R. Q.; Mirkin, C. A.; Hupp, J. T., Synthesis, Properties, and Gas Separation Studies of a Robust Diimide-Based Microporous Organic Polymer. Chem. Mater.2009,21 (14),3033-3035; (q) Dubbeldam, D.; Galvin, C. J.; Walton, K. S.; Ellis, D. E.; Snurr, R. Q., Separation and Molecular-Level Segregation of Complex Alkane Mixtures in Metal-Organic Frameworks. J. Am. Chem. Soc.2008,130 (33), 10884-10885; (r) Gassensmith, J. J.; Furukawa, H.; Smaldone, R. A.; Forgan, R. S.; Botros, Y Y.; Yaghi, O. M.; Stoddart, J. F., Strong and Reversible Binding of Carbon Dioxide in a Green Metal-Organic Framework. J. Am. Chem. Soc.2011,133(39),15312-15315; (s) Li, Q. W.; Zhang, W. Y.; Miljanic, O. S.; Sue, C. H.; Zhao, Y. L.; Liu, L. H.; Knobler, C. B.; Stoddart, J. F.; Yaghi, O. M., Docking in Metal-Organic Frameworks. Science2009,325(5942),855-859; (t) Eddaoudi, M.; Li, H.; Yaghi, O. M., Highly Porous and Stable Metal-Organic Frameworks:Structure Design and Sorption Properties.J. Am. Chem. Soc.2000,122(7),1391-1397; (u) Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M., Gas adsorption sites in a large-pore metal-organic framework. Science 2005,309(5739),1350-1354; (v) Yang, W. B.; Greenaway, A.; Lin, X. A.; Matsuda, R.; Blake, A. J.; Wilson, C.; Lewis, W.; Hubberstey, P.; Kitagawa, S.; Champness, N. R.; Schroder, M., Exceptional Thermal Stability in a Supramolecular Organic Framework:Porosity and Gas Storage./. Am. Chem. Soc.2010,132 (41),14457-14469; (w) D'Alessandro, D. M; Smit, B.; Long, J. R., Carbon Dioxide Capture:Prospects for New Materials. Angew. Chem. Int. Ed.2010,49 (35), 6058-6082; (x) Zhao, X. B.; Xiao, B.; Fletcher, A. J.; Thomas, K. M.; Bradshaw, D.; Rosseinsky, M. J., Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks. Science 2004,306(5698),1012-1015; (y) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M., Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002,29.5(5554),469-472.
    [5]. Chen, B. L.; Xiang, S. C.; Qian, G. D., Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules. Acc. Chem. Res.2010,43 (8),1115-1124.
    [6]. (a) Liu, Y.; Xuan, W. M.; Cui, Y, Engineering Homochiral Metal-Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation. Adv. Mater.2010,22 (37), 4112-4135; (b) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T., Metal-organic framework materials as catalysts. Chem. Soc. Rev.2009,38(5),1450-1459; (c) Ma, L. Q.; Abney, C; Lin, W. B., Enantioselective catalysis with homochiral metal-organic frameworks. Chem. Soc. Rev.2009,38(5),1248-1256; (d) Corma, A.; Garcia, H.; Xamena, F. X. L., Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chem. Rev.2010,110(8),4606-4655; (e) Phan, A.; Czaja, A. U.; Gandara, F.; Knobler, C. B.; Yaghi, O. M., Metal-Organic Frameworks of Vanadium as Catalysts for Conversion of Methane to Acetic Acid. Inorg. Chem.2011,50 (16), 7388-7390; (f) Jeong, K. S.; Go, Y. B.; Shin, S. M.; Lee, S. J.; Kim, J.; Yaghi, O. M.; Jeong, N., Asymmetric catalytic reactions by NbO-type chiral metal-organic frameworks. Chem. Sci.2011,2(5), 877-882; (g) Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W., Doping Metal-Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. J. Am. Chem. Soc.2011, 133 (34),13445-13454; (h) Xie, Z. G; Wang, C.; deKrafft, K. E.; Lin, W. B., Highly Stable and Porous Cross-Linked Polymers for Efficient Photocatalysis.J. Am. Chem. Soc.2011,133 (7), 2056-2059; (i) Song, F. J.; Wang, C.; Lin, W. B., A chiral metal-organic framework for sequential asymmetric catalysis. Chem. Commun.2011,47(29),8256-8258; (j) Falkowski, J. M.; Wang, C.; Liu, S.; Lin, W. B., Actuation of Asymmetric Cyclopropanation Catalysts:Reversible Single-Crystal to Single-Crystal Reduction of Metal-Organic Frameworks. Angew. Chem. Int. Ed.2011,50 (37), 8674-8678; (k) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K., A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature2000,404 (6781), 982-986.
    [7]. (a) Xu, H.; Liu, F.; Cui, Y. J.; Chen, B. L.; Qian, G. D., A luminescent nanoscale metal-organic framework for sensing of nitroaromatic explosives. Chem. Commun.2011,47(11), 3153-3155; (b) Chen, B. L.; Wang, L. B.; Xiao, Y. Q.; Fronczek, F. R.; Xue, M.; Cui, Y. J.; Qian, G. D., A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions. Angew. Chem. Int. Ed.2009,48 (3),500-503; (c) Chen, B.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E. B., A Luminescent Microporous Metal-Organic Framework for the Recognition and Sensing of Anions.J. Am. Chem. Soc.2008,130(21),6718-6719; (d) Zhang, Z. J.; Xiang, S. C.; Rao, X. T.; Zheng, Q. A.; Fronczek, F. R.; Qian, G. D.; Chen, B. L., A rod packing microporous metal-organic framework with open metal sites for selective guest sorption and sensing of nitrobenzene. Chem. Commun.2010,46(38),7205-7207; (e) Harbuzaru, B. V.; Corma, A.; Rey, F.; Jorda, J. L.; Ananias, D.; Carlos, L. D.; Rocha, J., A Miniaturized Linear pH Sensor Based on a Highly Photoluminescent Self-Assembled Europium(Ⅲ) Metal-Organic Framework. Angew. Chem. Int. Ed.2009,48 (35),6476-6479.
    [8]. (a) Kurmoo, M., Magnetic metal-organic frameworks. Chem. Soc. Rev.2009,38 (5), 1353-1379; (b) Bousseksou, A.; Molnar, G.; Salmon, L.; Nicolazzi, W., Molecular spin crossover phenomenon:recent achievements and prospects. Chem. Soc. Rev.2011,40(6),3313-3335; (c) Maspoch, D.; Ruiz-Molina, D.; Wurst, K.; Domingo, N.; Cavallini, M.; Biscarini, F.; Tejada, J.; Rovira, C.; Veciana, J., A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties. Nat. Mater.2003,2(3),190-195; (d) Maspoch, D.; Ruiz-Molina, D.; Veciana, J., Magnetic nanoporous coordination polymers.J.Mater. Chem.2004,14(18),2713-2723; (e) Halder, G. J.; Kepert, C. J.; Moubaraki, B.; Murray, K. S.; Cashion, J. D., Guest-dependent spin crossover in a nanoporous molecular framework material. Science2002,298(5599),1762-1765.
    [9]. (a) Hinks, N. J.; McKinlay, A. C.; Xiao, B.; Wheatley, P. S.; Morris, R. E., Metal organic frameworks as NO delivery materials for biological applications. Microporous Mesoporous Mater. 2010,129 (3),330-334; (b) McKinlay, A. C.; Morris, R. E.; Horcajada, P.; Ferey, G.; Gref, R.; Couvreur, P.; Serre, C., BioMOFs:Metal-Organic Frameworks for Biological and Medical Applications. Angew. Chem. Int. Ed.2010,49(36),6260-6266; (c) Ma, Z. B.; Moulton, B., Recent advances of discrete coordination complexes and coordination polymers in drug delivery. Coord. Chem. Rev.2011,255(15-16),1623-1641; (d) Delia Rocca, J.; Liu, D. M.; Lin, W. B., Nanoscale Metal-Organic Frameworks for Biomedical Imaging and Drug Delivery. Acc. Chem. Res.2011,44 (10),957-968; (e) Huxford, R. C.; deKrafft, K. E.; Boyle, W. S.; Liu, D. M.; Lin, W. B., Lipid-coated nanoscale coordination polymers for targeted delivery of antifolates to cancer cells. Chem. Sci.2012, 3(1),198-204.
    [10]. Huang, Q. A.; Yu, J. C.; Gao, J. K.; Rao, X. T.; Yang, X. L.; Cui, Y. J.; Wu, C. D.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L.; Qian, G. D., Two Chiral Nonlinear Optical Coordination Networks Based on Interwoven Two-Dimensional Square Grids of Double Helices. Cryst. Growth Des.2010,10 (12),5291-5296.
    [11]. (a) Kent, C. A.; Liu, D.; Ma, L.; Papanikolas, J. M.; Meyer, T. J.; Lin, W., Light Harvesting in Microscale Metal-Organic Frameworks by Energy Migration and Interfacial Electron Transfer Quenching.J. Am. Chem. Soc.2011,133 (33),12940-12943; (b) Wang, C.; Lin, W., Diffusion-Controlled Luminescence Quenching in Metal-Organic Frameworks.J. Am. Chem. Soc. 2011,133 (12),4232-4235; (c) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T., Luminescent metal-organic frameworks. Chem. Soc. Rev.2009,38(5),1330-1352; (d) Rocha, J.; Carlos, L. D.; Paz, F. A. A.; Ananias, D., Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem. Soc. Rev.2011,40(2),926-940.
    [12]. (a) Liu, G. X.; Guo, W.; Nishihara, S.; Ren, X. M., A chiral copper(II) inverse-9-metallacrown-3 complex:Synthesis, crystal structure, ferroelectric and magnetic properties. Inorg. Chim. Acta 2011,368 (1),165-169; (b) Sengupta, O.; Mukherjee, P. S., Mixed Azide and 5-(Pyrimidyl)tetrazole Bridged Co(Ⅱ)/Mn(Ⅱ) Polymers:Synthesis, Crystal Structures, Ferroelectric and Magnetic Behavior. Inorg. Chem.2010,49(18),8583-8590; (c) Wang, Y. T.; Tang, G. M.; Wei, Y. Q.; Qin, T. X.; Li, T. D.; He, C.; Ling, J. B.; Long, X. F.; Ng, S. W., Two New Nonlinear Optical and Ferroelectric Three-Dimensional Metal-Organic Frameworks with an sqp-net. Cryst. Growth Des. 2010,10(1),25-28; (d) Hang, T.; Fu, D. W.; Ye, Q.; Ye, H. Y.; Xiong, R. G.; Huang, S. D., Tanklike Metal-Organic Framework Filled with Perchloric Acid and Its Dielectric-Ferroelectric Properties. Cryst. Growth Des.2009,9(5),2054-2056; (e) Guo, Z. G.; Cao, R.; Wang, X.; Li, H. F.; Yuan, W. B.; Wang, G. J.; Wu, H. H.; Li, J., A Multifunctional 3D Ferroelectric and NLO-Active Porous Metal-Organic Framework. J. Am. Chem. Soc.2009,131 (20),6894-6895.
    [13]. (a) Givaja, G.; Amo-Ochoa, P.; Gomez-Garcia, C. J.; Zamora, F., Electrical conductive coordination polymers. Chem. Soc. Rev.2012,41 (1),115-147; (b) Zheng, N. F.; Bu, X. H.; Feng, P. Y, Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity. Nature 2003,426(6965),428-432.
    [14]. (a) Jacobs, B. W.; Houk, R. J. T.; Anstey, M. R.; House, S. D.; Robertson, I. M.; Talin, A. A.; Allendorf, M. D., Ordered metal nanostructure self-assembly using metal-organic frameworks as templates. Chem. Sci.2011,2(3),411-416; (b) Meek, S. T.; Greathouse, J. A.; Allendorf, M. D., Metal-Organic Frameworks:A Rapidly Growing Class of Versatile Nanoporous Materials. Adv. Mater. 2011,23(2),249-267; (c) Bhakta, R. K.; Herberg, J. L.; Jacobs, B.; Highley, A.; Behrens, R.; Ockwig, N. W.; Greathouse, J. A.; Allendorf, M. D., Metal-Organic Frameworks As Templates for Nanoscale NaAlH4. J. Am. Chem. Soc.2009,131 (37),13198-13199; (d) Uemura, T.; Yanai, N.; Kitagawa, S., Polymerization reactions in porous coordination polymers. Chem. Soc. Rev.2009,38(5),1228-1236; (e) Uemura, T.; Hiramatsu, D.; Yoshida, K.; Isoda, S.; Kitagawa, S., Sol-Gel Synthesis of Low-Dimensional Silica within Coordination Nanochannels.J. Am. Chem. Soc.2008,130 (29), 9216-9217; (f) Uemura, T.; Kitaura, R.; Ohta, Y.; Nagaoka, M.; Kitagawa, S., Nanochannel-promoted polymerization of substituted acetylenes in porous coordination polymers. Angew. Chem. Int. Ed. 2006,45(25),4112-4116; (g) Yanai, N.; Uemura, T.; Ohba, M.; Kadowaki, Y.; Maesato, M.; Takenaka, M.; Nishitsuji, S.; Hasegawa, H.; Kitagawa, S., Fabrication of Two-Dimensional Polymer Arrays: Template Synthesis of Polypyrrole between Redox-Active Coordination Nanoslits. Angew. Chem. Int. Ed.2008, 47(51),9883-9886.
    [15]. Yaghi, O. M.; Li, H., Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J.Am. Chem. Soc.1995,117(41),10401-10402.
    [16]. Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O'Keeffe, M.; Yaghi, O. M., Hydrogen storage in microporous metal-organic frameworks. Science 2003,300(5622),1127-1129.
    [17]. Czaja, A. U.; Trukhan, N.; Muller, U., Industrial applications of metal-organic frameworks. Chem. Soc. Rev.2009,38(5),1284-1293.
    [18]. (a) Xu, L.; Choi, E. Y.; Kwon, Y. U., Combination effects of cation and anion of ionic liquids on the cadmium metal-organic frameworks in lonothermal systems. Inorg. Chem.2008,47(6), 1907-1909; (b) Xu, L.; Choi, E.-Y.; Kwon, Y.-U., lonothermal Syntheses of Six Three-Dimensional Zinc Metal-Organic Frameworks with 1-Alkyl-3-methylimidazolium Bromide Ionic Liquids as Solvents. Inorg. Chem.2007,46(25),10670-10680.
    [19]. Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O'Keeffe, M.; Yaghi, O. M., Secondary building units, nets and bonding in the chemistry of metal-organic frameworks. Chem. Soc. Rev.2009, 38 (5),1257-1283.
    [20]. Collins, C. S.; Sun, D. F.; Liu, W.; Zuo, J. L.; Zhou, H. C., Reaction-condition-controlled formation of secondary-building-units in three cadmium metal-organic frameworks with an orthogonal tetrakis(tetrazolate) ligand.J. Mol. Struct.2008,890(1-3),163-169.
    [21]. Ma, S. Q.; Eckert, J.; Forster, P. M.; Yoon, J. W.; Hwang, Y. K.; Chang, J. S.; Collier, C. D.; Parise, J. B.; Zhou, H. C, Further Investigation of the Effect of Framework Catenation on Hydrogen Uptake in Metal-Organic Frameworks. J.Am. Chem. Soc.2008,130(47),15896-15902.
    [22]. (a) Wang, Z.; Cohen, S. M., Postsynthetic Covalent Modification of a Neutral Metal-Organic Framework. J. Am. Chem. Soc.2007,129 (41),12368-12369; (b) Wang, Z.; Tanabe, K. K.; Cohen, S. M., Accessing Postsynthetic Modification in a Series of Metal-Organic Frameworks and the Influence of Framework Topology on Reactivity. Inorg. Chem.2008,48 (1),296-306; (c) Tanabe, K. K.; Wang, Z. Q.; Cohen, S. M., Systematic functionalization of a metal-organic framework via a postsynthetic modification approach.J. Am. Chem. Soc.2008,130(26),8508-8517; (d) Wang, Z. Q.; Cohen, S. M., Postsynthetic modification of metal-organic frameworks. Chem. Soc. Rev.2009,38 (5),1315-1329; (e) Garibay, S. J.; Wang, Z.; Tanabe, K. K.; Cohen, S. M., Postsynthetic Modification: A Versatile Approach Toward Multifunctional Metal-Organic Frameworks. Inorg. Chem.2009,48 (15),7341-7349; (f) Tanabe, K. K.; Cohen, S. M., Postsynthetic modification of metal-organic frameworks-a progress report. Chem. Soc. Rev.2011,40(2),498-519; (g) Kim, M.; Cahill, J. F.; Prather, K. A.; Cohen, S. M., Postsynthetic modification at orthogonal reactive sites on mixed, bifunctional metal-organic frameworks. Chem. Commun.2011,47(27),7629-7631; (h) Garibay, S. J.; Wang, Z.; Cohen, S. M., Evaluation of Heterogeneous Metal-Organic Framework Organocatalysts Prepared by Postsynthetic Modification. Inorg. Chem.2010,49 (17),8086-8091; (i) Nguyen, J. G.; Cohen, S. M., Moisture-Resistant and Superhydrophobic Metal-Organic Frameworks Obtained via Postsynthetic Modification.J. Am. Chem. Soc.2010,132(13),4560-4561; (j) Volkringer, C.; Cohen, S. M., Generating Reactive MILs:Isocyanate-and Isothiocyanate-Bearing MILs through Postsynthetic Modification. Angew. Chem. Int. Ed.2010,49 (27),4644-4648; (k) Garibay, S. J.; Cohen, S. M., Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chem. Commun.2010,46(41),7700-7702; (1) Wang, Z. Q.; Tanabe, K. K.; Cohen, S. M., Tuning Hydrogen Sorption Properties of Metal-Organic Frameworks by Postsynthetic Covalent Modification. Chem. Eur. J.2010,16 (1),212-217; (m) Nguyen, J. G.; Tanabe, K. K.; Cohen, S. M., Postsynthetic diazeniumdiolate formation and NO release from MOFs. CrystEngComm 2010,12(8),2335-2338; (n) Cohen, S. M., Modifying MOFs:new chemistry, new materials. Chem. Sci.2010,1(1),32-36; (o) Wang, Z.; Cohen, S. M., Modulating Metal-Organic Frameworks To Breathe:A Postsynthetic Covalent Modification Approach.J.Am. Chem. Soc.2009,131(46),16675-16677.
    [23]. Morris, W.; Doonan, C.J.; Yaghi, O. M., Postsynthetic Modification of a Metal-Organic Framework for Stabilization of a Hemiaminal and Ammonia Uptake. Inorg. Chem.2011,50 (15), 6853-6855.
    [24]. (a) Alejandra, L.-S., Influence of surface roughness on consecutively hydrogen absorption cycles in Ti-6A1-4V alloy. Int. J. Hydrogen Energy 2010, 35(19),10404-10411; (b) Muthukumar, P.; Venkata Ramana, S., Study of heat and mass transfer in MmNi4.6A10.4 during desorption of hydrogen. Int. J. Hydrogen Energy2010,35(19),10811-10818; (c) Du, J.; Kong, X.; Wang, K.; Xu, N.; Wu, Z., Hydrogen storage properties of Mg1-xCaxNi2-y defect solid solutions. Int. J. Hydrogen Energy 2010, 35 (19),10377-10380; (d) Cakmak, G.; Karoly, Z.; Mohai, I.; Oztiirk, T.; Szepvolgyi, J., The processing of Mg-Ti for hydrogen storage; mechanical milling and plasma synthesis. Int. J. Hydrogen Energy2010,35(19),10412-10418.
    [25]. (a) Adams, B. D.; Wu, G. S.; Nigrio, S.; Chen, A. C., Facile Synthesis of Pd-Cd Nanostructures with High Capacity for Hydrogen Storage. J. Am. Chem. Soc.2009,131 (20), 6930-6931; (b) Ramzan, M.; Lebegue, S.; Ahuja, R., Transition metal doped MgH2: A material to potentially combine fuel-cell and battery technologies. Int. J. Hydrogen Energy 2010,35 (19), 10373-10376; (c) Au, M.; Walters, R. T., Reversibility aspect of lithium borohydrides. Int. J. Hydrogen Energy2010,35(19),10311-10316.
    [26]. (a) Kandalam, A. K.; Kiran, B.; Jena, P., Multidecker organometallic complexes for hydrogen storage.J.Phys. Chem. C2008,112(15),6181-6185; (b) Zhao, Y. F.; Lusk, M. T.; Dillon, A. C; Heben, M. J.; Zhang, S. B., Boron-based organometallic nanostructures:Hydrogen storage properties and structure stability. NanoLett 2008,8(1),157-161.
    [27]. Y.-H. Percival, Z., Renewable carbohydrates are a potential high-density hydrogen carrier. Int. J. HydrogenEnergy2010,35(19),10334-10342.
    [28]. Struzhkin, V. V.; Militzer, B.; Mao, W. L.; Mao, H.-k.; Hemley, R. J., Hydrogen Storage in Molecular Clathrates. Chem. Rev.2007,107(10),4133-4151.
    [29]. (a) Durojaiye, T.; Ibikunle, A.; Goudy, A. J., Hydrogen storage in destabilized borohydride materials, Int J. Hydrogen Energy 2010,35(19),10329-10333;(b) Lan, J. H.; Cao, D. P.; Wang, W. C, Li-Doped and Nondoped Covalent Organic Borosilicate Framework for Hydrogen Storage. J. Phys. Chem. C2010,114(1),3108-3114; (c) Cao, D. P.; Lan, J. H.; Wang, W. C.; Smit, B., Lithium-Doped 3D Covalent Organic Frameworks:High-Capacity Hydrogen Storage Materials. Angew. Chem. Int. Ed.2009,48 (26),4730-4733; (d) Hunt, J. R.; Doonan, C. J.; LeVangie, J. D.; Cote, A. P.; Yaghi, O. M., Reticular synthesis of covalent organic borosilicate frameworks.JAm. Chem. Soc.2008,130 (36),11872-11873; (e) Han, S. S.; Furukawa, H.; Yaghi, O. M.; Goddard, W. A., Covalent organic frameworks as exceptional hydrogen storage materials.J.Am. Chem. Soc.2008,130 (35), 11580-11581; (f) Klontzas, E.; Tylianakis, E.; Froudakis, G E., Hydrogen storage in 3D covalent organic frameworks. A multiscale theoretical investigation.J.Phys. Chem. C 2008,112 (24), 9095-9098; (g) Garberoglio, G; Vallauri, R., Adsorption and diffusion of hydrogen and methane in 2D covalent organic frameworks. Microporous Mesoporous Mater.2008,116 (1-3),540-547; (h) Germain, J.; Svec, F.; Frechet, J. M. J., Preparation of Size-Selective Nanoporous Polymer Networks of Aromatic Rings:Potential Adsorbents for Hydrogen Storage. Chem. Mater.2008,20 (22), 7069-7076.
    [30]. Hirscher, M.; Panella, B.; Schmitz, B., Metal-organic frameworks for hydrogen storage. Microporous Mesoporous Mater.2010,129(3),335-339.
    [31]. (a) Panella, B.; Hirscher, M.; Roth, S., Hydrogen adsorption in different carbon nanostructures. Carbon2005,43(10),2209-2214; (b) Xia, Y. D.; Walker, G. S.; Grant, D. M.; Mokaya, R., Hydrogen Storage in High Surface Area Carbons:Experimental Demonstration of the Effects of Nitrogen Doping. J. Am. Chem. Soc.2009,131 (45),16493-16499; (c) Wang, H. L.; Gao, Q. M.; Hu, J.; Chen, Z., High performance of nanoporous carbon in cryogenic hydrogen storage and electrochemical capacitance. Carbon 2009,47(9),2259-2268; (d) Juan-Juan, J.; Marco-Lozar, J. P.; Suarez-Garcia, F.; Cazorla-Amoros, D.; Linares-Solano, A., A comparison of hydrogen storage in activated carbons and a metal-organic framework (MOF-5). Carbon 2010,48 (10),2906-2909; (e) Jorda-Beneyto, M.; Lozano-Castello, D.; Suarez-Garcia, F.; Cazorla-Amoros, D.; Linares-Solano, A., Advanced activated carbon monoliths and activated carbons for hydrogen storage. Microporous Mesoporous Mater.2008,112(1-3),235-242; (f) Xu, W. C.; Takahashi, K.; Matsuo, Y.; Hattori, Y.; Kumagai, M.; Ishiyama, S.; Kaneko, K.; Iijima, S., Investigation of hydrogen storage capacity of various carbon materials. Int. J. Hydrogen Energy 2007,32 (13),2504-2512; (g) Urita, K.; Seki, S.; Utsumi, S.; Noguchi, D.; Kanoh, H.; Tanaka, H.; Hattori, Y.; Ochiai, Y.; Aoki, N.; Yudasaka, M.; Iijima, S.; Kaneko, K., Effects of gas adsorption on the electrical conductivity of single-wall carbon nanohorns. Nano Lett.2006,6(1),1325-1328; (h) Wen, Y W.; Liu, H. J.; Pan, L.; Tan, X. J.; Lv, H. Y.; Shi, J.; Tang, X. F., A Triplet Form of (5,0) Carbon Nanotube with Higher Hydrogen Storage Capacity. J. Phys. Chem. C 2011,115(18),9227-9231; (i) Reyhani, A.; Mortazavi, S. Z.; Mirershadi, S.; Moshfegh, A. Z.; Parvin, P.; Golikand, A. N., Hydrogen Storage in Decorated Multiwalled Carbon Nanotubes by Ca, Co, Fe, Ni, and Pd Nanoparticles under Ambient Conditions. J. Phys. Chem. C 2011,115(14),6994-7001;(j) Zhang, X.; Cao, D.; Chen, J., Hydrogen Adsorption Storage on Single-Walled Carbon Nanotube Arrays by a Combination of Classical Potential and Density Functional Theory. J. Phys. Chem.B2003,107(21),4942-4950; (k) Gogotsi, Y.; Dash, R. K.; Yushin, G.; Yildirim, T.; Laudisio, G.; Fischer, J. E., Tailoring of Nanoscale Porosity in Carbide-Derived Carbons for Hydrogen Storage. J. Am. Chem. Soc.2005,127 (46),16006-16007; (1) Alam, N.; Mokaya, R., Characterisation and hydrogen storage of Pt-doped carbons templated by Pt-exchanged zeolite Y. Microporous Mesoporous Mater.2011,142(2-3),716-724.
    [32]. Farha, O. K.; Yazaydin, A. O.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T., De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem.2010,.2(11),944-948.
    [33]. Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R., Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5).J.Am. Chem. Soc.2007, 129(46),14176-14177.
    [34]. (a) Rowsell, J. L. C.; Yaghi, O. M., Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks.J.Am. Chem. Soc.2006,128(4),1304-1315; (b) Wong-Foy, A. G; Matzger, A. J.; Yaghi, O. M., Exceptional H2 Saturation Uptake in Microporous Metal-Organic Frameworks. J.Am. Chem. Soc.2006,128(11),3494-3495.
    [35]. Koh, K.; Wong-Foy, A. G.; Matzger, A. J., A Porous Coordination Copolymer with over 5000 m2/g BET Surface Area.J. Am. Chem. Soc.2009,131 (12),4184-4185.
    [36]. Chui, S. S. Y.; Lo, S. M. R; Charmant, J. P. H.; Orpen, A. G; Williams, I. D., A chemically functionalizable nanoporous material Cu3(TMA)2(H2O)3n. Science 1999,283(5405),1148-1150.
    [37]. Lin, X.; Telepeni, I.; Blake, A. J.; Dailly, A.; Brown, C. M.; Simmons, J. M.; Zoppi, M.; Walker, G S.; Thomas, K. M.; Mays, T. J.; Hubberstey, P.; Champness, N. R.; Schroder, M., High Capacity Hydrogen Adsorption in Cu(II) Tetracarboxylate Framework Materials:The Role of Pore Size, Ligand Functionalization, and Exposed Metal Sites.J. Am. Chem. Soc.2009,131 (6), 2159-2171.
    [38]. Lee, Y.-G; Moon, H. R.; Cheon, Y. E.; Suh, M. P., A Comparison of the H2 Sorption Capacities of Isostructural Metal-Organic Frameworks With and Without Accessible Metal Sites: [{Zn2(abtc)(dmf)2}3] and [{Cu2(abtc)(dmf)2}3] versus [{Cu2(abtc)}3]. Angew. Chem. Int. Ed.2008,47 (40),7741-7745.
    [39]. (a) Horike, S.; Matsuda, R.; Tanaka, D.; Matsubara, S.; Mizuno, M.; Endo, K.; Kitagawa, S., Dynamic motion of building blocks in porous coordination polymers. Angew. Chem. Int. Ed.2006,45 (43),7226-7230; (b) Chen, B.; Ma, S.; Zapata, F.; Fronczek, F. R.; Lobkovsky, E. B.; Zhou, H.-C., Rationally Designed Micropores within a Metal-Organic Framework for Selective Sorption of Gas Molecules. Inorg. Chem.2007,46(4),1233-1236; (c) Henke, S.; Fischer, R. A., Gated Channels in a Honeycomb-like Zinc-Dicarboxylate-Bipyridine Framework with Flexible Alkyl Ether Side Chains.J Am. Chem. Soc.2011,133(7),2064-2067.
    [40]. (a) Ferey, G; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I., A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005,309(5743),2040-2042; (b) Ferey, G; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surble, S.; Dutour, J.; Margiolaki, I., A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction. Angew. Chem. Int. Ed.2004,43 (46), 6296-6301.
    [41]. Latroche, M.; Surble, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P. L.; Lee, J. H.; Chang, J. S.; Jhung, S. H.; Ferey, G, Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. Angew. Chem. Int. Ed.2006,45(48),8227-8231.
    [42]. (a) Zheng, S. T.; Bu, J. T.; Li, Y. F.; Wu, T.; Zuo, F.; Feng, P. Y.; Bu, X. H., Pore Space Partition and Charge Separation in Cage-within-Cage Indium Organic Frameworks with High CO(2) Uptake.J. Am. Chem. Soc.2010,132 (48),17062-17064; (b) Yang, S. H.; Lin, X.; Blake, A. J.; Walker, G S.; Hubberstey, P.; Champness, N. R.; Schroder, M., Cation-induced kinetic trapping and enhanced hydrogen adsorption in a modulated anionic metal-organic framework. Nat. Chem.2009,1 (6),487-493; (c) Mallick, A.; Saha, S.; Pachfule, P.; Roy, S.; Banerjee, R., Selectivee CO2 and H2 adsorption in a chiral magnesium-based metal organic framework (Mg-MOF) with open metal sites.J. Mater. Chem.2010,20 (41),9073-9080; (d) Gedrich, K.; Senkovska, I.; Klein, N.; Stoeck, U.; Henschel, A.; Lohe, M. R.; Baburin, I. A.; Mueller, U.; Kaskel, S., A Highly Porous Metal-Organic Framework with Open Nickel Sites. Angew. Chem. Int. Ed.2010,49(45),8489-8492.
    [43]. Koh, K.; Wong-Foy, A. G; Matzger, A. J., A crystalline mesoporous coordination copolymer with high microporosity. Angew. Chem. Int. Ed.2008,47(4),677-680.
    [44]. Lee, E. Y.; Jang, S. Y; Suh, M. P., Multifunctionality and Crystal Dynamics of a Highly Stable, Porous Metal-Organic Framework [Zn4O(NTB)2]. J. Am. Chem. Soc.2005,127 (17), 6374-6381.
    [45]. Suh, M. P.; Cheon, Y. E.; Lee, E. Y, Reversible transformation of Zn-Ⅱ coordination geometry in a single crystal of porous metal-organic framework Zn3(ntb)2(EtOH)2 center dot 4 EtOH. Chem. Eur. J.2007,13(15),4208-4215.
    [46]. Frost, H.; Duren, T.; Snurr, R. Q., Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks.J.Phys. Chem. B 2006,110 (19), 9565-9570.
    [47]. Frost, H.; Snurr, R. Q., Design requirements for metal-organic frameworks as hydrogen storage materials.J.Phys. Chem. C2007,111(50),18794-18803.
    [48]. Zhou, W., Methane Storage in Porous Metal-Organic Frameworks:Current Records and Future Perspectives. Chemical Record2010,10 (3),200-204.
    [49]. Senkovska, I.; Kaskel, S., High pressure methane adsorption in the metal-organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3. Microporous Mesoporous Mater. 2008,112(1-3),108-115.
    [50]. Bourrelly, S.; Llewellyn, P. L.; Serre, C.; Millange, F.; Loiseau, T.; Ferey, G., Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47.J.Am. Chem. Soc.2005,127(39),13519-13521.
    [51]. Ma, S. Q.; Sun, D. F.; Simmons, J. M.; Collier, C. D.; Yuan, D. Q.; Zhou, H. C., Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc.2008,130(3),1012-1016.
    [52]. Wang, X. S.; Ma, S. Q.; Rauch, K.; Simmons, J. M.; Yuan, D. Q.; Wang, X. P.; Yildirim, T.; Cole, W. C.; Lopez, J. J.; de Meijere, A.; Zhou, H. C., Metal-organic frameworks based on double-bond-coupled di-isophthalate linkers with high hydrogen and methane uptakes. Chem. Mater. 2008,20(9),3145-3152.
    [53]. (a) Wu, H.; Zhou, W.; Yildirim, T., High-Capacity Methane Storage in Metal-Organic Frameworks M2(dhtp):The Important Role of Open Metal Sites.J. Am. Chem. Soc.2009,131 (13), 4995-5000; (b) Dietzel, P. D. C.; Besikiotis, V.; Blom, R., Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide.J Mater. Chem.2009,19(39),7362-7370.
    [54]. Wu, H.; Simmons, J. M.; Liu, Y.; Brown, C. M.; Wang, X. S.; Ma, S.; Peterson, V. K.; Southon, P. D.; Kepert, C. J.; Zhou, H. C.; Yildirim, T.; Zhou, W., Metal-Organic Frameworks with Exceptionally High Methane Uptake:Where and How is Methane Stored? Chem. Eur. J.2010,16 (17),5205-5214.
    [55]. Zhang, Y. B.; Zhang, W. X.; Feng, F. Y.; Zhang, J. P.; Chen, X. M., A Highly Connected Porous Coordination Polymer with Unusual Channel Structure and Sorption Properties. Angew. Chem. Int. Ed.2009,48(29),5287-5290.
    [56]. Millward, A. R.; Yaghi, O. M., Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature.J.Am. Chem. Soc.2005,127(51), 17998-17999.
    [57]. Walton, K. S.; Millward, A. R.; Dubbeldam, D.; Frost, H.; Low, J. J.; Yaghi, O. M.; Snurr, R. Q., Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. J.Am. Chem. Soc.2008,130(2),406-407.
    [58]. Miller, S. R.; Wright, P. A.; Devic, T.; Serre, C.; Ferey, G.; Llewellyn, P. L.; Denoyel, R.; Gaberova, L.; Filinchuk, Y, Single Crystal X-ray Diffraction Studies of Carbon Dioxide and Fuel-Related Gases Adsorbed on the Small Pore Scandium Terephthalate Metal Organic Framework, 3. Langmuir2009,25(6),3618-3626.
    [59]. Mulfort, K. L.; Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G; Hupp, J. T., An Interpenetrated Framework Material with Hysteretic CO2 Uptake. Chem. Eur. J.2010,16 (1), 276-281.
    [60]. (a) Coudert, F. X.; Mellot-Draznieks, C.; Fuchs, A. H.; Boutin, A., Prediction of Breathing and Gate-Opening Transitions Upon Binary Mixture Adsorption in Metal-Organic Frameworks.J.Am. Chem. Soc.2009,131 (32),11329-11330; (b) Tanaka, D.; Nakagawa, K.; Higuchi, M.; Horike, S.; Kubota, Y.; Kobayashi, L. C.; Takata, M.; Kitagawa, S., Kinetic gate-opening process in a flexible porous coordination polymer. Angew. Chem. Int. Ed.2008,47(21),3914-3918; (c) Seo, J.; Matsuda, R.; Sakamoto, H.; Bonneau, C.; Kitagawa, S., A Pillared-Layer Coordination Polymer with a Rotatable Pillar Acting as a Molecular Gate for Guest Molecules.J.Am. Chem. Soc.2009,131 (35), 12792-12800; (d) Maji, T. K.; Mostafa, G.; Matsuda, R.; Kitagawa, S., Guest-Induced Asymmetry in a Metal-Organic Porous Solid with Reversible Single-Crystal-to-Single-Crystal Structural Transformation. J.Am.Chem. Soc.2005,127(49),17152-17153.
    [61]. Rabone, J.; Yue, Y. F.; Chong, S. Y.; Stylianou, K. C.; Bacsa, J.; Bradshaw, D.; Darling, G R.; Berry, N. G; Khimyak, Y. Z.; Ganin, A. Y; Wiper, P.; Claridge, J. B.; Rosseinsky, M. J., An Adaptable Peptide-Based Porous Material. Science2010,329(5995),1053-1057.
    [62]. Botas, J. A.; Calleja, G; Sanchez-Sanchez, M.; Orcajo, M. G, Cobalt Doping of the MOF-5 Framework and Its Effect on Gas-Adsorption Properties. Langmuir2010,26(8),5300-5303.
    [63]. Yazaydin, A. O.; Benin, A. I; Faheem, S. A.; Jakubczak, P.; Low, J. J.; Willis, R. R.; Snurr, R. Q., Enhanced CO2 Adsorption in Metal-Organic Frameworks via Occupation of Open-Metal Sites by Coordinated Water Molecules. Chem. Mater.2009,21 (8),1425-1430.
    [64]. Llewellyn, P. L.; Bourrelly, S.; Serre, C.; Filinchuk, Y.; Ferey, G, How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. Angew. Chem. Int. Ed.2006,45(46),7751-7754.
    [65]. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C., Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev.2009,38(5),1477-1504.
    [66]. Navarro, J. A. R.; Barea, E.; Rodriguez-Dieguez, A.; Salas, J. M.; Ania, C. O.; Parra, J. B.; Masciocchi, N.; Galli, S.; Sironi, A., Guest-induced modification of a magnetically active ultramicroporous, gismondine-like, Copper(II) coordination network.J.Am. Chem. Soc.2008,130 (12),3978-3984.
    [67]. Ma, S.; Wang, X.-S.; Collier, C. D.; Manis, E. S.; Zhou, H.-C., Ultramicroporous Metal-Organic Framework Based on 9,10-Anthracenedicarboxylate for Selective Gas Adsorption. Inorg. Chem.2007,46(21),8499-8501.
    [68]. Xue, M.; Ma, S.; Jin, Z.; Schaffino, R. M.; Zhu, G.-S.; Lobkovsky, E. B.; Qiu, S.-L.; Chen, B., Robust Metal-Organic Framework Enforced by Triple-Framework Interpenetration Exhibiting High H2 Storage Density. Inorg. Chem.2008,47(15),6825-6828.
    [69]. Ma, S.; Wang, X.-S.; Yuan, D.; Zhou, H.-.C, A Coordinatively Linked Yb Metal-Organic Framework Demonstrates High Thermal Stability and Uncommon Gas-Adsorption Selectivity. Angew. Chem. Int. Ed.2008,47(22),4130-4133.
    [70]. Loiseau, T.; Lecroq, L.; Volkringer, C.; Marrot, J.; Ferey, G; Haouas, M.; Taulelle, F.; Bourrelly, S.; Llewellyn, P. L.; Latroche, M., MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and μ3-Oxo-Centered Trinuclear Units. J.Am. Chem. Soc.2006,128(31),10223-10230.
    [71]. Bae, Y.-S.; Mulfort, K. L.; Frost, H.; Ryan, P.; Punnathanam, S.; Broadbelt, L. J.; Hupp, J. T.; Snurr, R. Q., Separation of CO2 from CH4 Using Mixed-Ligand Metal-Organic Frameworks. Langmuir2008,24(16),8592-8598.
    [72]. Moon, H. R.; Kobayashi, N.; Suh, M. P., Porous metal-organic framework with coordinatively unsaturated Mn-II sites:Sorption properties for various gases. Inorg. Chem.2006,45 (21),8672-8676.
    [73]. Li, Y; Yang, R. T., Gas Adsorption and Storage in Metal-Organic Framework MOF-177. Langmuir2007,23 (26),12937-12944.
    [74]. Pan, L.; Adams, K. M.; Hernandez, H. E.; Wang, X.; Zheng, C.; Hattori, Y.; Kaneko, K., Porous Lanthanide-Organic Frameworks:Synthesis, Characterization, and Unprecedented Gas Adsorption Properties. J.Am. Chem. Soc.2003,125(10),3062-3067.
    [75]. Ma, L. Q.; Falkowski, J. M.; Abney, C.; Lin, W. B., A series of isoreticular chiral metal-organic frameworks as a tunable platform for asymmetric catalysis. Nat. Chem.2010,.2(10), 838-846.
    [76]. Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K., Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine. J.Am. Chem. Soc.1994,116(3),1151-1152.
    [77]. Sawaki, T.; Dewa, T.; Aoyama, Y, Immobilization of Soluble Metal Complexes with a Hydrogen-Bonded Organic Network as a Supporter. A Simple Route to Microporous Solid Lewis Acid Catalysts. J.Am. Chem. Soc.1998,120(33),8539-8540.
    [78]. Evans, O. R.; Ngo, H. L.; Lin, W., Chiral Porous Solids Based on Lamellar Lanthanide Phosphonates. J.Am. Chem. Soc.2001,123(42),10395-10396.
    [79]. Wu, C.-D.; Hu, A.; Zhang, L.; Lin, W., A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis. J. Am. Chem. Soc.2005,127(25), 8940-8941.
    [80]. Cho, S.-H.; Ma, B.; Nguyen, S. T.; Hupp, J. T.; Albrecht-Schmitt, T. E., A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. Chem. Commun.2006, (24),2563-2565.
    [81]. Banerjee, M.; Das, S.; Yoon, M.; Choi, H. J.; Hyun, M. H.; Park, S. M.; Seo, G.; Kim, K., Postsynthetic Modification Switches an Achiral Framework to Catalytically Active Homochiral Metal-Organic Porous Materials.J.Am. Chem. Soc.2009,131(22),7524-7525.
    [82]. Dang, D.; Wu, P.; He, C; Xie, Z.; Duan, C., Homochiral Metal-Organic Frameworks for Heterogeneous Asymmetric Catalysis. J.Am. Chem. Soc.2010, 132(41),14321-14323.
    [83]. Lun, D. J.; Waterhouse, G. I. N.; Telfer, S. G, A General Thermolabile Protecting Group Strategy for Organocatalytic Metal-Organic Frameworks.J.Am. Chem. Soc.2011,133 (15), 5806-5809.
    [84]. Tanaka, K.; Oda, S.; Shiro, M., A novel chiral porous metal-organic framework:asymmetric ring opening reaction of epoxide with amine in the chiral open space. Chem. Commun.2008, (7), 820-822.
    [85]. Furukawa, H.; Kim, J.; Ockwig, N. W.; O'Keeffe, M.; Yaghi, O. M., Control of vertex geometry, structure dimensionality, functionality, and pore metrics in the reticular synthesis of crystalline metal-organic frameworks and polyhedra.J. Am. Chem. Soc.2008,130 (35), 11650-11661.
    [86]. (a) Song, R.; Wang, C.; Falkowski, J. M.; Ma, L.; Lin, W., Isoreticular Chiral Metal-Organic Frameworks for Asymmetric Alkene Epoxidation:Tuning Catalytic Activity by Controlling Framework Catenation and Varying Open Channel Sizes.J.Am. Chem. Soc.2010,132 (43),15390-15398; (b) Duren, T.; Bae, Y. S.; Snurr, R. Q., Using molecular simulation to characterise metal-organic frameworks for adsorption applications. Chem. Soc. Rev.2009,38(5),1237-1247.
    [87]. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J.Am. Chem. Soc.2008,130(42),13850-13851.
    [88]. Fang, Q.; Zhu, G.; Xue, M.; Sun, J.; Sun, R; Qiu, S., Structure, Luminescence, and Adsorption Properties of Two Chiral Microporous Metal-Organic Frameworks. Inorg. Chem.2006, 45(9),3582-3587.
    [89]. Bauer, C. A.; Timofeeva, T. V.; Settersten, T. B.; Patterson, B. D.; Liu, V. H.; Simmons, B. A.; Allendorf, M. D., Influence of Connectivity and Porosity on Ligand-Based Luminescence in Zinc Metal-Organic Frameworks. J.Am. Chem. Soc.2007,129(22),7136-7144.
    [90]. Berezin, M. Y.; Achilefu, S., Fluorescence Lifetime Measurements and Biological Imaging. Chem. Rev.2010,110(5),2641-2684.
    [91]. Jayaramulu, K.; Kanoo, P.; George, S. J.; Maji, T. K., Tunable emission from a porous metal-organic framework by employing an excited-state intramolecular proton transfer responsive ligand. Chem. Commun.2010,46(42),7906-7908.
    [92]. Moore, E. G; Samuel, A. P. S.; Raymond, K. N., From Antenna to Assay:Lessons Learned in Lanthanide Luminescence. Acc. Chem. Res.2009,42(4),542-552.
    [93]. (a) Biinzli, J.-C. G, Lanthanide Luminescence for Biomedical Analyses and Imaging. Chem. Rev.2010,110(5),2729-2755; (b) Eliseeva, S. V.; Bunzli, J.-C. G., Rare earths:jewels for functional materials of the future. New J. Chem.2011,35(6),1165-1176; (c) Eliseeva, S. V.; Bunzli, J.-C. G, Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev.2010,39 (1), 189-227.
    [94]. Binnemans, K., Lanthanide-Based Luminescent Hybrid Materials. Chem. Rev.2009,109 (9),4283-4374.
    [95]. An, J.; Shade, C. M.; Chengelis-Czegan, D. A.; Petoud, S. p.; Rosi, N. L., Zinc-Adeninate Metal-Organic Framework for Aqueous Encapsulation and Sensitization of Near-infrared and Visible Emitting Lanthanide Cations.J.Am. Chem. Soc.2011,133(5),1220-1223.
    [96]. Fang, Q.-R.; Zhu, G.-S.; Jin, Z.; Ji, Y.-Y.; Ye, J.-W.; Xue, M.; Yang, H.; Wang, Y; Qiu, S.-L., Mesoporous Metal-Organic Framework with Rare etb Topology for Hydrogen Storage and Dye Assembly. Angew. Chem. Int. Ed.2007,46(35),6638-6642.
    [97]. Daiguebonne, C.; Kerbellec, N.; Guillou, O.; Bunzli, J.-C.; Gumy, F.; Catala, L.; Mallah, T.; Audebrand, N.; Gerault, Y; Bernot, K.; Calvez, G, Structural and Luminescent Properties of Micro-and Nanosized Particles of Lanthanide Terephthalate Coordination Polymers. Inorg. Chem.2008,47 (9),3700-3708.
    [98]. Han, Y.; Li, X.; Li, L.; Ma, C.; Shen, Z.; Song, Y; You, X., Structures and Properties of Porous Coordination Polymers Based on Lanthanide Carboxylate Building Units. Inorg. Chem.2010, 49(23),10781-10787.
    [99]. Jiang, H. L.; Liu, B.; Xu, Q., Rational Assembly of d10 Metal-Organic Frameworks with Helical Nanochannels Based on Flexible V-Shaped Ligand. Cryst. GrowthDes.2010,10(2),806-811.
    [100]. (a) Li, M. X.; Wang, H.; Liang, S. W.; Shao, M.; He, X.; Wang, Z. X.; Zhu, S. R., Solvothermal Synthesis and Diverse Coordinate Structures of a Series of Luminescent Copper(Ⅰ) Thiocyanate Coordination Polymers Based on N-Heterocyclic Ligands. Cryst. Growth Des.2009,9 (11),4626-4633; (b) Xia, J.; Zhang, Z. J.; Shi, W.; Wei, J. F.; Cheng, P., Copperr(Ⅰ) Cyanide Coordination Polymers Constructed from Bis(Pyrazole-1-yl)alkane Ligands:Observation of the Odd-Even Dependence in the Structures. Cryst. Growth Des.2010,10(5),2323-2330; (c) Wu, H.-C.; Thanasekaran, P.; Tsai, C.-H.; Wu, J.-Y.; Huang, S.-M.; Wen, Y.-S.; Lu, K.-L., Self-Assembly, Reorganization, and Photophysical Properties of Silver(Ⅰ)-Schiff-Base Molecular Rectangle and Polymeric Array Species. Inorg. Chem.2005,45(1),295-303; (d) Braga, D.; Grepioni, F.; Maini, L.; Mazzeo, P. P.; Ventura, B., Solid-state reactivity of copper(i) iodide:luminescent 2D-coordination polymers of CuI with saturated bidentate nitrogen bases. New J. Chem.2011,35(2),339-344; (e) Zhang, T.; Ji, C.; Wang, K.; Fortin, D.; Harvey, P. D., First Halogen Anion-Bridged (MMX)n-Type One-Dimensional Coordination Polymer Built upon d10-d10 Dimers. Inorg. Chem.2010,49 (23), 11069-11076.
    [101]. Bai, Y; Gao, H.; Dang, D. B.; Guo, X. Y; An, B.; Shang, W. L., A series of metal-organic frameworks based on polydentate Schiff-base ligands derived from benzil dihydrazone:synthesis, crystal structures and luminescent properties. CrystEngComm 2010,12(5),1422-1432.
    [102]. (a) Sun, Y.-Q.; Zhang, J.; Yang, G-Y, A series of luminescent lanthanide-cadmium-organic frameworks with helical channels and tubes. Chem. Commun.2006, (45),4700-4702; (b) Zhao, X. Q.; Zhao, B.; Shi, W.; Cheng, P., Structures and luminescent properties of a series of Ln-Ag heterometallic coordination polymers. CrystEngComm 2009,11 (7) 1261-1269; (c) Gu, X.; Xue, D., Self-assembly of 3-D 4d-4f coordination frameworks based on 1-D inorganic heterometallic chains and linear organic linkers. CrystEngComm 2007,9(6),471-477.
    [103]. Jin, J.; Niu, S.; Han, Q.; Chi, Y, Synthesis and structure of a series of new luminescent Ag-Ln coordination polymers and the influence of the introduction of an Ag(i) ion on NIR luminescence from the Ln(Ⅲ) centre. New.J. Chem,2010,34(6),1176-1183.
    [104]. Wibowo, A. C.; Vaughn, S. A.; Smith, M. D.; zur Loye, H. C., Novel Bismuth and Lead Coordination Polymers Synthesized with Pyridine-2,5-Dicarboxylates:Two Single Component "White" Light Emitting Phosphors. Inorg. Chem.2010,49(23),11001-11008.
    [105]. Stylianou, K. C.; Heck, R.; Chong, S. Y; Bacsa, J.; Jones, J. T. A.; Khimyak, Y. Z.; Bradshaw, D.; Rosseinsky, M. J., A Guest-Responsive Fluorescent 3D Microporous Metal-Organic Framework Derived from a Long-Lifetime Pyrene Core. J. Am. Chem. Soc.2010,132 (12), 4119-4130.
    [106]. Yang, E.-C.; Li, J.; Ding, B.; Liang, Q.-Q.; Wang, X.-G.; Zhao, X.-J., An eight-connected 3D lead(II) metal-organic framework with octanuclear lead(II) as a secondary building unit:synthesis, characterization and luminescent property. CrystEngComm2008,10(2),158-161.
    [107]. Qiu, Y.; Deng, H.; Mou, J.; Yang, S.; Zeller, M.; Batten, S. R.; Wu, H.; Li, J., In situ tetrazole ligand synthesis leading to a microporous cadmium-organic framework for selective ion sensing. Chem. Commun.2009, (36),5415-5417.
    [108]. Chen, B.; Yang, Y.; Zapata, R.; Lin, G; Qian, G; Lobkovsky, E. B., Luminescent Open Metal Sites within a Metal-Organic Framework for Sensing Small Molecules. Adv. Mater.2007,19 (13),1693-1696.
    [109]. Bai, Y.; He, G.-j.; Zhao, Y.-g.; Duan, C.-y.; Dang, D.-b.; Meng, Q.-j., Porous material for absorption and luminescent detection of aromatic molecules in water. Chem. Commun.2006, (14), 1530-1532.
    [110]. Ma, D. Y.; Wang, W. X.; Li, Y. W.; Li, J.; Daiguebonne, C.; Calvez, G.; Guillou, O., In situ 2,5-pyrazinedicarboxylate and oxalate ligands synthesis leading to a microporous europium-organic framework capable of selective sensing of small molecules. CrystEngComm 2010,12 (12), 4372-4377.
    [111]. Jiang, H.-L.; Tatsu, Y.; Lu, Z.-H.; Xu, Q., Nori-, Micro-, and Mesoporous Metal-Organic Framework Isomers:Reversible Transformation, Fluorescence Sensing, and Large Molecule Separation.J.Am. Chem. Soc.2010,132(16),5586-5587.
    [112]. Takashima, Y.; Furukawa, S.; Kitagawa, S., Control of the charge-transfer interaction between a flexible porous coordination host and aromatic guests by framework isomerism. CrystEngComm2011, 13(10),3360-3363.
    [113]. (a) Zhang, C.; Che, Y.; Zhang, Z.; Yang, X.; Zang, L., Fluorescent nanoscale zinc(ii)-carboxylate coordination polymers for explosive sensing. Chem. Commun.2011,47(8), 2336-2338; (b) Lan, A. J.; Li, K. H.; Wu, H. H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M. C.; Li, J., A Luminescent Microporous Metal-Organic Framework for the Fast and Reversible Detection of High Explosives. Angew. Chem. Int. Ed.2009,48(13),2334-2338.
    [114]. Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; Van Tendeloo, G; Fischer, R. A., Metals@MOFs-Loading MOFs with Metal Nanoparticles for Hybrid Functions. Eur. J. Inorg. Chem. 2010,2010(24),3701-3714.
    [115]. Ishida, T.; Nagaoka, M.; Akita, T; Haruta, M., Deposition of Gold Clusters on Porous Coordination Polymers by Solid Grinding and Their Catalytic Activity in Aerobic Oxidation of Alcohols. Chem.-Eur.J.2008,14(28),8456-8460.
    [116]. Hermes, S.; Schroter, M.-K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R. A., Metal@MOF:Loading of Highly Porous Coordination Polymers Host Lattices by Metal Organic Chemical Vapor Deposition. Angew. Chem. Int. Ed.2005,44(38),6237-6241.
    [117]. Hwang, Y. K.; Hong, D.-Y.; Chang, J.-S.; Jhung, S. H.; Seo, Y.-K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; F6rey, G., Amine Grafting on Coordinatively Unsaturated Metal Centers of MOFs:Consequences for Catalysis and Metal Encapsulation. Angew. Chem. Int. Ed.2008,47(22), 4144-4148.
    [118]. Pan, Y. Y; Yuan, B. Z.; Li, Y. W.; He, D. H., Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework. Chem. Commun.2010,46(13),2280-2282.
    [119]. El-Shall, M. S.; Abdelsayed, V.; Khder, A.; Hassan, H. M. A.; El-Kaderi, H. M.; Reich, T. E., Metallic and bimetallic nanocatalysts incorporated into highly porous coordination polymer MIL-101.J.Mater. Chem.2009,19(41),7625-7631.
    [120]. Zlotea, C.; Campesi, R.; Cuevas, F.; Leroy, E.; Dibandjo, P.; Volkringer, C.; Loiseau, T.; Ferey, G r.; Latroche, M., Pd Nanoparticles Embedded into a Metal-Organic Framework Synthesis, Structural Characteristics, and Hydrogen Sorption Properties.J. Am. Chem. Soc.2010,132 (9), 2991-2997.
    [121]. Proch, S.; Herrmannsdorfer, J.; Kempe, R.; Kern, C.; Jess, A.; Seyfarth, L.; Senker, J., Pt@MOF-177:Synthesis, Room-Temperature Hydrogen Storage and Oxidation Catalysis. Chem. Eur.J.2008,14(27),8204-8212.
    [122]. Yang, S. J.; Choi, J. Y; Chae, H. K.; Cho, J. H.; Nahm, K. S.; Park, C. R., Preparation and Enhanced Hydrostability and Hydrogen Storage Capacity of CNT@MOF-5 Hybrid Composite. Chem. Mater.2009,21 (9),1893-1897.
    [123]. Xiang, Z. H.; Hu, Z.; Cao, D. P.; Yang, W..T.; Lu, J. M.; Han, B. Y; Wang, W. C., Metal-Organic Frameworks with Incorporated Carbon Nanotubes:Improving Carbon Dioxide and Methane Storage Capacities by Lithium Doping. Angew. Chem. Int. Ed.2011,50(2),491-494.
    [1]. O'Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M., The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets. Acc. Chem. Res.2008,41 (12),1782-1789.
    [2]. (a) Arduini, F.; Ricci, F.; Tuta, C. S.; Moscone, D.; Amine, A.; Palleschi, G., Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode. Anal. Chim. Acta 2006, 580(2),155-162; (b) Li, B.; He, Y.; Xu, C., Simultaneous determination of three organophosphorus pesticides residues in vegetables using continuous-flow chemiluminescence with artificial neural network calibration. Talanta 2007,72 (1),223-230; (c) Li, X.-H.; Xie, Z.-H.; Min, H.; Xian, Y.-Z.; Jin, L.-T., Amperometric Biosensor Based on Immobilization Acetylcholinesterase on Manganese Porphyrin Nanoparticles for Detection of Trichlorfon with Flow-Injection Analysis System. Electroanalys2007,, 19(24),2551-2557.
    [3]. (a) Chen, P.-S.; Huang, S.-D., Determination of ethoprop, diazinon, disulfoton and fenthion using dynamic hollow fiber-protected liquid-phase microextraction coupled with gas chromatography-mass spectrometry. Talanta 2006,69 (3),669-675; (b) Leandro, C. C.; Hancock, P.; Fussell, R. J.; Keely, B. J., Comparison of ultra-performance liquid chromatography and high-performance liquid chromatography for the determination of priority pesticides in baby foods by tandem quadrupole mass spectrometry.J.Chromatogr. A 2006,1103 (1),94-101; (c) Rotiroti, L.; Stefano, L. D.; Rendina, I.; Moretti, L.; Rossi, A. M.; Piccolo, A., Optical microsensors for pesticides identification based on porous silicon technology. Biosens. Bioelectron.2005,20(10),2136-2139.
    [4]. (a) Jeanty, G.; Marty, J. L., Detection of paraoxon by continuous flow system based enzyme sensor. Biosens. Bioelectron.1998,13 (2),213-218; (b) Vakurov, A.; Simpson, C. E.; Daly, C. L.; Gibson, T. D.; Millner, P. A., Acetylcholinesterase-based biosensor electrodes for organophosphate pesticide detection:I.Modification of carbon surface for immobilization of acetylcholinesterase. Biosens. Bioelectron.2004,20(6),1118-1125; (c) Gong, J.; Wang, L.; Song, D.; Zhu, X.; Zhang, L., Stripping voltammetric analysis of organophosphate pesticides using Ni/Al layered double hydroxides as solid-phase extraction. Biosens. Bioelectron.2009,25(2),493-496.
    [5]. (a) Marie-Claire, H., Graphitized carbons for solid-phase extraction.J.Chromatogr. A 2000, 885 (1-2),73-95; (b) Shi, L.; Liu, X.; Li, H.; Niu, W.; Xu, G., Application of Ceramic Carbon Materials for Solid-Phase Extraction of Organic Compounds. Anal. Chem.2006,78(4),1345-1348.
    [6]. Chen, B.; Yang, Y; Zapata, F.; Lin, G; Qian, G.; Lobkovsky, E. B., Luminescent Open Metal Sites within a Metal-Organic Framework for Sensing Small Molecules. Adv. Mater.2007,19(13), 1693-1696.
    [7]. (a) Phelan, W. A.; Kangas, M. J.; Drake, B. L.; Zhao, L. L.; Wang, J. K.; DiTusa, J. F.; Morosan, E.; Chan, J. Y., Crystal Growth, Structure, and Physical Properties of LnCu2(Al,Si)5 (Ln= La and Ce). Inorg. Chem.2011,51 (2),920-927; (b) Zheng, Y.-Z.; Evangelisti, M.; Tuna, F.; Winpenny, R. E. P., Co-Ln Mixed-Metal Phosphonate Grids and Cages as Molecular Magnetic Refrigerants.J. Am. Chem. Soc.2011,134(2),1057-1065; (c) Mondal, K. C.; Kostakis, G. E.; Lan, Y.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K., Defect-Dicubane Ni2Ln2 (Ln= Dy, Tb) Single Molecule Magnets. Inorg. Chem.2011,50(22),11604-11611; (d) Shimada, T.; Okazawa, A.; Kojima, N.; Yoshii, S.; Nojiri, H.; Ishida, T., Ferromagnetic Exchange Couplings Showing a Chemical Trend in Cu-Ln-Cu Complexes (Ln= Gd, Tb, Dy, Ho, Er). Inorg. Chem.2011,50(21),10555-10557; (e) Kuta, J.; Wander, M. C. F.; Wang, Z.; Jiang, S.; Wall, N. A.; Clark, A. E., Trends in Ln(Ⅲ) Sorption to Quartz Assessed by Molecular Dynamics Simulations and Laser-Induced Fluorescence Studies. J. Phys. Chem. C2011,115(43),21120-21127; (f) Stasiuk, G. J.; Tamang, S.; Imbert, D.; Poillot, C.; Giardiello, M.; Tisseyre, C.; Barbier, E. L.; Fries, P. H.; de Waard, M.; Reiss, P.; Mazzanti, M., Cell-Permeable Ln(Ⅲ) Chelate-Functionalized InP Quantum Dots As Multimodal Imaging Agents. ACSNano2011,5(10),8193-8201; (g) Kattel, K.; Park, J. Y.; Xu, W.; Kim, H. G.; Lee, E. J.; Bony, B. A.; Heo, W. C.; Lee, J. J.; Jin, S.; Baeck, J. S.; Chang, Y.; Kim, T. J.; Bae, J. E.; Chae, K. S.; Lee, G. H., A Facile Synthesis, In vitro and In vivo MR Studies of d-Glucuronic Acid-Coated Ultrasmall Ln2O3 (Ln= Eu, Gd, Dy, Ho, and Er) Nanoparticles as a New Potential MRI Contrast Agent. ACS Appl. Mat. Interfaces 2011,3 (9),3325-3334; (h) Kort, K. R.; Banerjee, S., Shape-Controlled Synthesis of Well-Defined Matlockite LnOCl (Ln:La, Ce, Gd, Dy) Nanocrystals by a Novel Non-Hydrolytic Approach. Inorg. Chem.2011,50(12),5539-5544; (i) Teshima, K.; Lee, S.; Shikine, N.; Wakabayashi, T.; Yubuta, K.; Shishido, T.; Oishi, S., Flux Growth of Highly Crystalline NaYF4:Ln (Ln= Yb, Er, Tm) Crystals with Upconversion Fluorescence. Cryst. Growth Des.2011,11(4), 995-999; (j) Meng, Q.; Witte, R. J.; Gong, Y.; Day, E. L.; Chen, J.; May, P. S.; Berry, M. T., Thin Film Deposition and Photodissociation Mechanisms for Lanthanide Oxide Production from Tris(2,2,6,6-tetramethyl-3,5-heptanedionato)Ln(III) in Laser-Assisted MOCVD. Chem. Mater.2010, 22 (22),6056-6064; (k) Lee, S.; Teshima, K.; Mori, S.; Endo, M.; Oishi, S., Selective Growth of Upconverting YbPO4:Ln (Ln= Er or Tm) Crystals in a Micro Reaction Cell. Cryst. Growth Des.2010, 10(4),1693-1698; (1) Banerjee, S.; Sheckelton, J.; Emge, T. J.; Brennan, J. G., Heterometallic Ln/Hg Tellurido Clusters. Inorg. Chem.2010,49(4),1728-1732; (m) Villa, A.; Hess, B.; Saint-Martin, H., Dynamics and Structure of Ln(III)-Aqua Ions:A Comparative Molecular Dynamics Study Using ab Initio Based Flexible and Polarizable Model Potentials.J.Phys. Chem. B2009,113(20),7270-7281; (n) Gulnar, A. K.; Sudarsan, V.; Vatsa, R. K.; Hubli, R. C.; Gautam, U. K.; Vinu, A.; Tyagi, A. K., CePO4:Ln (Ln= Tb3+and Dy3+) Nanoleaves Incorporated in Silica Sols. Cryst. Growth Des.2009,9 (5),2451-2456.
    [8]. (a) Dehaen, G.; Verwilst, P.; Eliseeva, S. V.; Laurent, S.; Vander Elst, L.; Muller, R. N.; De Borggraeve, W. M.; Binnemans, K.; Parac-Vogt, T. N., A Heterobimetallic Ruthenium-Gadolinium Complex as a Potential Agent for Bimodal Imaging. Inorg. Chem.2011,50(20),10005-10014; (b) Binnemans, K., Lanthanide-Based Luminescent Hybrid Materials. Chem. Rev.2009,109 (9), 4283-4374; (c) Lunstroot, K.; Baeten, L.; Nockemann, P.; Martens, J.; Verlooy, P.; Ye, X.; Gorller-Walrand, C.; Binnemans, K.; Driesen, K., Luminescence of LaF3:Ln3+ Nanocrystal Dispersions in Ionic Liquids.J. Phys. Chem. C 2009,113 (31),13532-13538; (d) Lunstroot, K.; Nockemann, P.; Van Hecke, K.; Van Meervelt, L.; Gorller-Walrand, C.; Binnemans, K.; Driesen, K., Visible and Near-Infrared Emission by Samarium(III)-Containing Ionic Liquid Mixtures. Inorg. Chem. 2009,48 (7),3018-3026; (e) Yang, Y.; Liu, X.; Nakamura, A.; Binnemans, K.; Liu, J., Pressure-Induced Phase Transitions on a Liquid Crystalline Europium(III) Complex. J. Phys. Chem. B 2008,112(17),5291-5295; (f) Schleid, T.; Strobel, S.; Dorhout, P. K.; Nockemann, P.; Binnemans, K.; Hartenbach, I., YF[MoO4] and YCl[MoO4]:Two Halide Derivatives of Yttrium ortho-Oxomolybdate: Syntheses, Structures, and Luminescence Properties. Inorg. Chem.2008,47 (9),3728-3735; (g) Binnemans, K., Lanthanides and Actinides in Ionic Liquids. Chem. Rev.2007,107(6),2592-2614; (h) Van Deun, R.; Fias, P.; Nockemann, P.; Van Hecke, K.; Van Meervelt, L.; Binnemans, K., Visible-Light-Sensitized Near-Infrared Luminescence from Rare-Earth Complexes of the 9-Hydroxyphenalen-l-one Ligand. Inorg. Chem.2006,45(26),10416-10418; (i) Binnemans, K.; Gorller-Walrand, C., Lanthanide-Containing Liquid Crystals and Surfactants. Chem. Rev.2002,102 (6),2303-2346; (j) Binnemans, K.; Galyametdinov, Y. G.; Van Deun, R.; Bruce, D. W.; Collinson, S. R.; Polishchuk, A. P.; Bikchantaev, I.; Haase, W.; Prosvirin, A. V.; Tinchurina, L.; Litvinov, I.; Gubajdullin, A.; Rakhmatullin, A.; Uytterhoeven, K.; Van Meervelt, L., Rare-Earth-Containing Magnetic Liquid Crystals.J. Am. Chem. Soc.2000,122 (18),4335-4344; (k) Duarte, A. P.; Gressier, M.; Menu, M.-J.; Dexpert-Ghys, J.; Caiut, J. M. A.; Ribeiro, S. J. L., Structural and Luminescence Properties of Silica-Based Hybrids Containing New Silylated-Diketonato Europium(Ⅲ) Complex. J. Phys. Chem. C2011,116(1),505-515; (1) Zhang, X. J.; Ballem, M. A.; Hu, Z. J.; Bergman, P.; Uvdal, K., Nanoscale Light-Harvesting Metal-Organic Frameworks. Angew. Chem. Int. Ed.2011,50 (25),5728-5732; (m) Zhang, X. J.; Ballem, M. A.; Ahren, M.; Suska, A.; Bergman, P.; Uvdal, K., Nanoscale Ln(III)-Carboxylate Coordination Polymers (Ln= Gd, Eu, Yb):Temperature-Controlled Guest Encapsulation and Light Harvesting. J.Am. Chem. Soc.2010,132(30),10391-10397.
    [9]. (a) Liu, L. L.; Ren, Z. G.; Zhu, L. W.; Wang, H. R.; Yan, W. Y.; Lang, J. P., Temperature-Driven Assembly of Ln(III) (Ln= Nd, Eu, Yb) Coordination Polymers of a Flexible Azo Calix 4 arene Polycarboxylate Ligand. Cryst. Growth Des.2011,11(8),3479-3488; (b) Liu, T. R.; Zhang, W. J.; Sun, W. H.; Cao, R., Conjugated Ligands Modulated Sandwich Structures and Luminescence Properties of Lanthanide Metal-Organic Frameworks. Inorg. Chem.2011,50 (11), 5242-5248; (c) Chen, M.; Chen, M. S.; Okamura, T.; Lv, M. F.; Sun, W. Y.; Ueyama, N., A series of silver(Ⅰ)-lanthanide(Ⅲ) heterometallic coordination polymers:syntheses, structures and photoluminescent properties. CrystEngComm 2011, 13 (11),3801-3810; (d) Hou, K. L.; Bai, F. Y.; Xing, Y. H.; Wang, J. L.; Shi, Z., A novel family of 3D photoluminescent lanthanide-bta-flexible MOFs constructed from 1,2,4,5-benzenetetracarboxylic acid and different spanning of dicarboxylate acid ligands. CrystEngComm2011,13(11),3884-3894; (e) Zeng, R. H.; Peng, G.; Qiu, Y C.; Zheng, S. R.; Li, W. S.; Zhang, W. X.; Deng, H.; Cai, Y. P., Synthesis, crystal structures and properties of Ln(III)-Cu(I)-Na(I) and Ln(Ⅲ)-Ag(I) heterometallic coordination polymers. CrystEngComm 2011,13 (11),3910-3919; (f) Rocha, J.; Paz, F. A. A.; Shi, F. N.; Ananias, D.; Silva, N. J. O.; Carlos, L. D.; Trindade, T., Mixed-Metal d-f Phosphonate Frameworks-Photoluminescence and Magnetic Properties. Eur. J. Inorg. Chem.2011, (13),2035-2044; (g) Devic, T.; Wagner, V.; Guillou, N.; Vimont, A.; Haouas, M.; Pascolini, M.; Serre, C.; Marrot, J.; Daturi, M.; Taulelle, F.; Ferey, G., Synthesis and characterization of a series of porous lanthanide tricarboxylates. Microporous MesoporousMater.2011,140(1-3),25-33; (h) Kobayashi, A.; Suzuki, Y.; Ohba, T.; Noro, S.; Chang, H. C; Kato, M., Ln-Co-Based Rock-Salt-Type Porous Coordination Polymers:Vapor Response Controlled by Changing the Lanthanide Ion. Inorg. Chem.2011,50(6),2061-2063; (i) MacNeill, C. M.; Day, C. S.; Marts, A.; Lachgar, A.; Noftle, R. E., Synthesis, crystal structure and properties of novel isostructural two-dimensional lanthanide-based coordination polymers with 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid. Inorg. Chim. Acta2011,365(1),196-203; (j) Hou, K. L.; Bai, F. Y.; Xing, Y. H.; Wang, J. L.; Shi, Z., Synthesis, structure and luminescence of a new series of rigid-flexible lanthanide coordination polymers constructed from benzene sulfonic acid and glutaric acid. Inorg. Chim. Acta2011,365(1)269-276; (k) Wang, M. X.; Long, L. S.; Huang, R. B.; Zheng, L. S., Influence of halide ions on the chirality and luminescent property of ionothermally synthesized lanthanide-based metal-organic frameworks. Chem. Commun.2011,47(35),9834-9836; (1) Monge, A.; Gandara, F.; Gutierrez-Puebla, E.; Snejko, N., Lanthanide, Y and Sc MOFs:where amazing crystal structures meet outstanding material properties. CrystEngComm 2011,13 (16), 5031-5044; (m) Wang, Y. L.; Jiang, Y. L.; Liu, Q. Y.; Tan, Y. X.; Wei, J. J.; Zhang, J., A series of three-dimensional lanthanide(III) coordination polymers of 2,5-dihydroxy-1,4-benzenedicarboxylic acid based on dinuclear lanthanide units. CrystEngComm2011,13(15),4981-4987; (n) Xu, J.; Su, W. P.; Hong, M. C.,3D lanthanide-transition-metal-organic frameworks constructed from tetranuclear {Ln(4)} SBUs and Cu centres with fsc net. CrystEngComm 2011,13 (12),3998-4004; (o) Yuan, N.; Sheng, T. L.; Tian, C. B.; Hu, S. M.; Fu, R. B.; Zhu, Q. L.; Tan, C. H.; Wu, X. T., Syntheses, structures and properties of three-dimensional lanthanide frameworks constructed with a trigonal anti-prismatic lanthanide cluster. CrystEngComm2011,13(12),4244-4250; (p) Zhu, Y. Y.; Sun, Z. G.; Tong, R.; Liu, Z. M.; Huang, C. Y.; Wang, W. N.; Jiao, C. Q.; Wang, C. L.; Li, C.; Chen, K., Hydrothermal synthesis, crystal structures, and luminescent properties of a series of new lanthanide oxalatophosphonates with a layer architecture. Dalton Trans.2011,40(20),5584-5590; (q) Huang, L.; Han, L. J.; Feng, W. J.; Zheng, L.; Zhang, Z. B.; Xu, Y.; Chen, Q.; Zhu, D. R.; Niu, S. Y., Two 3D Coordination Frameworks Based on Nanosized Huge Ln(26) (Ln= Dy and Gd) Spherical Clusters. Cryst. Growth Des.2010,10 (6),2548-2552; (r) Feng, R.; Jiang, F. L.; Wu, M. Y.; Chen, L.; Yan, C. F.; Hong, M. C., Structures and Photoluminescent Properties of the Lanthanide Coordination Complexes with Hydroxyquinoline Carboxylate Ligands. Cryst. Growth Des.2010,10(5),2306-2313; (s) Soares-Santos, P. C. R.; Cunha-Silva, L.; Paz, F. A. A.; Ferreira, R. A. S.; Rocha, J.; Carlos, L. D.; Nogueira, H. I. S., Photo luminescent Lanthanide-Organic Bilayer Networks with 2,3-Pyrazinedicarboxylate and Oxalate. Inorg. Chem.2010,49(7),3428-3440; (t) Yi, F. Y.; Lin, Q. P.; Zhou, T. H.; Mao, J. G., A Series of Novel Lanthanide(Ⅲ) Trisulfonates Based on Dinuclear Clusters. Cryst. Growth Des.2010,10 (4), 1788-1797; (u) Wang, Z.; Bai, F. Y.; Xing, Y. H.; Xie, Y.; Ge, M. F.; Niu, S. Y, Synthesis and luminescent properties of the first series of lanthanide complexes based on sebacate and 2,5-pyridinedicarboxylate. Inorg. Chim. Acta2010,363(4),669-675; (v) Zhou, T. H.; Yi, F. Y.; Li, P. X.; Mao, J. G., Synthesis, Crystal Structures, and Luminescent Properties of Two Series'of New Lanthanide (III) Amino-Carboxylate-Phosphonates. Inorg. Chem.2010,49(3),905-915; (w) Li, X. R.; Liu, T. R.; Lin, Q. P.; Cao, R., Rare Earth Metal Oxalatophosphonates:Syntheses, Structure Diversity, and Photoluminescence Properties. Cryst. Growth Des.2010,10(2),608-617; (x) Zhao, X. Q.; Zuo, Y.; Gao, D. L.; Zhao, B.; Shi, W.; Cheng, P., Syntheses, Structures, and Luminescence Properties of a Series of Ln(III)-Ba(II) Heterometal-Organic Frameworks. Cryst. Growth Des.2009,9 (9), 3948-3957; (y) Lu, W. G.; Jiang, L.; Feng, X. L.; Lu, T. B., Three-Dimensional Lanthanide Anionic Metal-Organic Frameworks with Tunable Luminescent Properties Induced by Cation Exchange. Inorg. Chem.2009,48(15),6997-6999; (z) Ma, J. X.; Huang, X. R.; Wei, R. P.; Zhou, L. Q.; Liu, W. S., Hydrothermal synthesis and crystal structures of two lanthanide coordination polymers with novel tetradentate-coordinated perchlorates. Inorg. Chim.Acta2009,362(10),3440-3446.
    [10]. Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T., Luminescent metal-organic frameworks. Chem. Soc. Rev.2009,38(5),1330-1352.
    [11]. Rocha, J.; Carlos, L. D.; Paz, F. A. A.; Ananias, D., Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem. Soc. Rev.2011,40(2),926-940.
    [12]. Chen, B.; Wang, L.; Zapata, F.; Qian, G.; Lobkovsky, E. B., A Luminescent Microporous Metal-Organic Framework for the Recognition and Sensing of Anions.J. Am. Chem. Soc.2008,130 (21),6718-6719.
    [13]. Wong, K. L.; Law, G. L.; Yang, Y. Y; Wong, W. T., A Highly Porous Luminescent Terbium-Organic Framework for Reversible Anion Sensing. Adv. Mater.2006,18(8),1051-1054.
    [14]. Guo, Z.; Xu, H.; Su, S.; Cai, J.; Dang, S.; Xiang, S.; Qian, G.; Zhang, H.; O'Keeffe, M.; Chen, B., A robust near infrared luminescent ytterbium metal-organic framework for sensing of small molecules. Chem. Commun.2011,47(19),5551-5553.
    [15]. Pramanik, S.; Zheng, C.; Zhang, X.; Emge, T. J.; Li, J., New Microporous Metal-Organic Framework Demonstrating Unique Selectivity for Detection of High Explosives and Aromatic Compounds. J.Am. Chem. Soc.2011,133(12),4153-4155.
    [16]. Fan, J.; Hanson, B. E., A two-dimensional cationic lattice built from [Zn6(HPO4)2(PO4)2]2+ clusters. Chem. Commun.2005, (18),2327-2329.
    [17]. Ma, D. Y; Wang, W. X.; Li, Y. W.; Li, J.; Daiguebonne, C.; Calvez, G.; Guillou, O., In situ 2,5-pyrazinedicarboxylate and oxalate ligands synthesis leading to a microporous europium-organic framework capable of selective sensing of small molecules. CrystEngComm 2010,12 (12), 4372-4377.
    [18]. (a) Liu, G.; Lin, Y, Electrochemical stripping analysis of organophosphate pesticides and nerve agents. Electrochem. Commun.2005,7(4),339-343; (b) Liu, G; Lin, Y, Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents. Anal. Chem.2005,77(18),5894-5901; (c) Du, D.; Ye, X.; Zhang, J.; Zeng, Y.; Tu, H.; Zhang, A.; Liu, D., Stripping voltammetric analysis of organophosphate pesticides based on solid-phase extraction at zirconia nanoparticles modified electrode. Electrochem. Commun.2008,10 (5),686-690; (d) Ni, Y; Qiu, P.; Kokot, S., Simultaneous determination of three organophosphorus pesticides by differential pulse stripping voltammetry and chemometrics. Anal. Chim. Acta 2004,516 (1-2),7-17.
    [1]. (a) Zhao, Y.-L.; Stoddart, J. F., Noncovalent Functionalization of Single-Walled Carbon Nanotubes. Acc. Chem. Res.2009,42 (8),1161-1171; (b) Sgobba, V.; Guldi, D. M., Carbon nanotubes-electronic/electrochemical properties and application for nanoelectronics and photonics. Chem. Soc. Rev.2009,38 (1),165-184; (c) Saito, N.; Usui, Y.; Aoki, K.; Narita, N.; Shimizu, M.; Hara, K.; Ogiwara, N.; Nakamura, K.; Ishigaki, N.; Kato, H.; Taruta, S.; Endo, M., Carbon nanotubes: biomaterial applications. Chem. Soc. Rev.2009,38(7),1897-1903; (d) Wang, J.; Chen, Y.; Blau, W. J., Carbon nanotubes and nanotube composites for nonlinear optical devices.J.Mater. Chem.2009,19 (40),7425-7443; (e) Lota, G.; Fic, K.; Frackowiak, E., Carbon nanotubes and their composites in electrochemical applications. Energy Environ. Sci.2011,4(5),1592-1605; (f) Hu, L.; Hecht, D. S.; Gruner, G., Carbon Nanotube Thin Films:Fabrication, Properties, and Applications. Chem. Rev.2010, 110(10),5790-5844; (g) Dillon, A. C., Carbon Nanotubes for Photoconversion and Electrical Energy Storage. Chem. Rev.2010,110 (11),6856-6872; (h) Cao, Q.; Rogers, J. A., Ultrathin Films of Single-Walled Carbon Nanotubes for Electronics and Sensors:A Review of Fundamental and Applied Aspects. Adv. Mater.2009,21 (1),29-53; (i) Sandanayaka, A. S. D.; Chitta, R.; Subbaiyan, N. K.; D'Souza, L.; Ito, O.; D'Souza, F., Photoinduced Charge Separation in Ion-Paired Porphyrin-Single-Wall Carbon Nanotube Donor-Acceptor Hybrids. J. Phys. Chem. C2009,113(30), 13425-13432; (j) Ding, M. N.; Tang, Y. F.; Gou, P. P.; Reber, M. J.; Star, A., Chemical Sensing with Polyaniline Coated Single-Walled Carbon Nanotubes. Adv. Mater.2011,23(4),536-540; (k) Liu, S.; Shen, Q.; Cao, Y.; Gan, L.; Wang, Z. X.; Steigerwald, M. L.; Guo, X. F., Chemical functionalization of single-walled carbon nanotube field-effect transistors as switches and sensors. Coord. Chem. Rev. 2010,254(9-10),1101-1116; (1) Shim, W. H.; Park, S. Y.; Park, M. Y.; Seo, H. O.; Kim, K. D.; Kim, Y. T.; Kim, Y. D.; Kang, J. W.; Lee, K. H.; Jeong, Y.; Lim, D. C., Multifunctional SWCNT-ZnO Nanocomposites for Enhancing Performance and Stability of Organic Solar Cells. Adv. Mater.2011, 23(4),519-522; (m) Maligaspe, E.; Sandanayaka, A. S. D.; Hasobe, T.; Ito, O.; D'Souza, F., Sensitive Efficiency of Photoinduced Electron Transfer to Band Gaps of Semiconductive Single-Walled Carbon Nanotubes with Supramolecularly Attached Zinc Porphyrin Bearing Pyrene Glues.J. Am. Chem. Soc. 2010,132(23),8158-8164; (n) Sandanayaka, A. S. D.; Ito, O.; Zhang, M. F.; Ajima, K.; Iijima, S.; Yudasaka, M.; Murakami, T.; Tsuchida, K., Photoinduced Electron Transfer in Zinc Phthalocyanine Loaded on Single-Walled Carbon Nanohorns in Aqueous Solution. Adv. Mater.2009,21 (43), 4366-4371.
    [2]. (a) Liu, C.; Chen, Y.; Wu, C. Z.; Xu, S. T.; Cheng, H. M., Hydrogen storage in carbon nanotubes revisited. Carbon 2010,48 (2),452-455; (b) Liu, C.; Fan, Y. Y.; Liu, M.; Cong, H. T.; Cheng, H. M.; Dresselhaus, M. S., Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 1999,286(5442),1127-1129; (c) Lee, S. M.; An, K. H.; Lee, Y. H.; Seifert, G.; Frauenheim, T., A Hydrogen Storage Mechanism in Single-Walled Carbon Nanotubes.J. Am. Chem. Soc.2001,123(21),5059-5063.
    [3]. (a) Ritschel, M.; Uhlemann, M.; Gutfleisch, O.; Leonhardt, A.; Graff, A.; Taschner, C; Fink, J., Hydrogen storage in different carbon nanostructures. Appl. Phys. Lett.2002,80 (16),2985-2987; (b) Panella, B.; Hirscher, M.; Roth, S., Hydrogen adsorption in different carbon nanostructures. Carbon 2005,43 (10),2209-2214; (c) Kowalczyk, P.; Brualla, L.; Zywocinski, A.; Bhatia, S. K., Single-walled carbon nanotubes:Efficient nanomaterials for separation and on-board vehicle storage of hydrogen and methane mixture at room temperature?J. Phys. Chem. C2007,111(13),5250-5257; (d) Kowalczyk, P.; Holyst, R.; Terrones, M.; Terrones, H., Hydrogen storage in nanoporous carbon materials:myth and facts. Phys. Chem. Chem. Phys.2007,9 (15),1786-1792; (e) Xu, W. C.; Takahashi, K.; Matsuo, Y.; Hattori, Y.; Kumagai, M.; Ishiyama, S.; Kaneko, K.; lijima, S., Investigation of hydrogen storage capacity of various carbon materials. Int. J. Hydrogen Energy 2007, 32(13),2504-2512.
    [4]. (a) Karousis, N.; Tagmatarchis, N.; Tasis, D., Current Progress on the Chemical Modification of Carbon Nanotubes. Chem. Rev.2010,110(9),5366-5397; (b) Chen, D. X.; Wang, Q.; Jin, J.; Wu, P.; Wang, H.; Yu, S. Q.; Zhang, H.; Cai, C. X., Low-Potential Detection of Endogenous and Physiological Uric Acid at Uricase-Thionine-Single-Walled Carbon Nanotube Modified Electrodes. Anal. Chem.2010,82(6),2448-2455; (c) Bekyarova, E.; Kalinina, I.; Sun, X. B.; Shastry, T.; Worsley, K.; Chi, X. L.; Itkis, M. E.; Haddon, R. C., Chemically Engineered Single-Walled Carbon Nanotube Materials for the Electronic Detection of Hydrogen Chloride. Adv. Mater.2010,22(7),848-852.
    [5]. Kim, D. Y.; Yang, C.-M.; Noguchi, H.; Yamamoto, M.; Ohba, T.; Kanoh, H.; Kaneko, K., Enhancement of H2 and CH4 adsorptivities of single wall carbon nanotubes produced by mixed acid treatment. Carbon 2008,46(4),611-617.
    [6]. Leonard, A. D.; Hudson, J. L.; Fan, H.; Booker, R.; Simpson, L. J.; O'Neill, K. J.; Parilla, P. A.; Heben, M. J.; Pasquali, M.; Kittrell, C.; Tour, J. M., Nanoengineered Carbon Scaffolds for Hydrogen Storage. J. Am. Chem. Soc.2008,131 (2),723-728.
    [7]. (a) Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.; Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi, O. M., Ultrahigh Porosity in Metal-Organic Frameworks. Science 2010,329(5990),424-428; (b) Furukawa, H.; Yaghi, O. M., Storage of Hydrogen, Methane, and Carbon Dioxide in Highly Porous Covalent Organic Frameworks for Clean Energy Applications. J. Am. Chem. Soc.2009,131 (25),8875-8883; (c) Rowsell, J. L. C.; Yaghi, O. M., Effects of Functionalization, Catenation, and Variation of the Metal Oxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties of Metal-Organic Frameworks. J. Am. Chem. Soc. 2006,128(4),1304-1315; (d) Millward, A. R.; Yaghi, O. M., Metal-Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature.J. Am. Chem. Soc. 2005,127(51),17998-17999; (e) Walton, K. S.; Millward, A. R.; Dubbeldam, D.; Frost, H.; Low, J. J.; Yaghi, O. M.; Snurr, R. Q., Understanding Inflections and Steps in Carbon Dioxide Adsorption Isotherms in Metal-Organic Frameworks.J. Am. Chem. Soc.2007,130(2),406-407; (f) Yuan, D. Q.; Lu, W. G.; Zhao, D.; Zhou, H. C., Highly Stable Porous Polymer Networks with Exceptionally High Gas-Uptake Capacities. Adv. Mater.2011,23(32),3723-3725; (g) Wang, X. S.; Ma, S. Q.; Rauch, K.; Simmons, J. M.; Yuan, D. Q.; Wang, X. P.; Yildirim, T.; Cole, W. C.; Lopez, J. J.; de Meijere, A.; Zhou, H. C., Metal-organic frameworks based on double-bond-coupled di-isophthalate linkers with high hydrogen and methane uptakes. Chem. Mater.2008,20(9),3145-3152; (h) Ma, S. Q.; Eckert, J.; Forster, P. M.; Yoon, J. W.; Hwang, Y. K.; Chang, J. S.; Collier, C. D.; Parise, J. B.; Zhou, H. C., Further Investigation of the Effect of Framework Catenation on Hydrogen Uptake in Metal-Organic Frameworks.J.Am. Chem. Soc.2008,130(47),15896-15902; (i) Uehara, H.; Diring, S.; Furukawa, S.; Kalay, Z.; Tsotsalas, M.; Nakahama, M.; Hirai, K.; Kondo, M.; Sakata, O.; Kitagawa, S., Porous Coordination Polymer Hybrid Device with Quartz Oscillator:Effect of Crystal Size on Sorption Kinetics.J. Am. Chem. Soc.2011,133 (31),11932-11935;(j) Seo, J.; Bonneau, C.; Matsuda, R.; Takata, M.; Kitagawa, S., Soft Secondary Building Unit:Dynamic Bond Rearrangement on Multinuclear Core of Porous Coordination Polymers in Gas Media.J.Am. Chem. Soc.2011,133(23), 9005-9013; (k) Kim, H.; Das, S.; Kim, M. G.; Dybtsev, D. N.; Kim, Y.; Kim, K., Synthesis of Phase-Pure Interpenetrated MOF-5 and Its Gas Sorption Properties. Inorg. Chem.2011,50 (8), 3691-3696; (1) Tanabe, K. K.; Wang, Z. Q.; Cohen, S. M., Systematic functionalization of a metal-organic framework via a postsynthetic modification approach.J. Am. Chem. Soc.2008,130 (26),8508-8517; (m) Cohen, S. M., Modifying MOFs:new chemistry, new materials. Chem. Sci. 2010,1(1),32-36; (n) Wang, Z. Q.; Tanabe, K. K.; Cohen, S. M., Tuning Hydrogen Sorption Properties of Metal-Organic Frameworks by Postsynthetic Covalent Modification. Chem. Eur. J.2010, 16(1),212-217; (o) Farha, O. K.; Bae, Y. S.; Hauser, B. G.; Spokoyny, A. M.; Snurr, R. Q.; Mirkin, C. A.; Hupp, J. T., Chemical reduction of a diimide based porous polymer for selective uptake of carbon dioxide versus methane. Chem. Commun.2010,46(7),1056-1058; (p) Farha, O. K.; Yazaydin, A. O.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T., De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem.2010,.2(11),944-948; (q) Han, S. S.; Deng, W.-Q.; Goddard, W. A., Improved Designs of Metal-Organic Frameworks for Hydrogen Storage. Angew. Chem. Int. Ed.2007, 46(33),6289-6292; (r) Ibarra, I. A.; Yang, S. H.; Lin, X.; Blake, A. J.; Rizkallah, P. J.; Nowell, H.; Allan, D. R.; Champness, N. R.; Hubberstey, P.; Schroder, M., Highly porous and robust scandium-based metal-organic frameworks for hydrogen storage. Chem. Commun.2011,47(29), 8304-8306.
    [8]. (a) Sumida, K.; Her, J. H.; Dinca, M.; Murray, L. J.; Schloss, J. M.; Pierce, C. J.; Thompson, B. A.; FitzGerald, S. A.; Brown, C. M.; Long, J. R., Neutron Scattering and Spectroscopic Studies of Hydrogen Adsorption in Cr3(BTC)2-A Metal-Organic Framework with Exposed Cr3+Sites.J. Phys. Chem. C2011,115(16),8414-8421; (b) Sumida, K.; Brown, C. M.; Herm, Z. R.; Chavan, S.; Bordiga, S.; Long, J. R., Hydrogen storage properties and neutron scattering studies of Mg2(dobdc)-a metal-organic framework with open Mg2+adsorption sites. Chem. Commun.2011,47(4),1157-1159; (c) Rowsell, J. L. C.; Spencer, E. C.; Eckert, J.; Howard, J. A. K.; Yaghi, O. M., Gas adsorption sites in a large-pore metal-organic framework. Science2005,309(5739),1350-1354.
    [9]. Dyke, C. A.; Tour, J. M., Solvent-Free Functionalization of Carbon Nanotubes. J. Am. Chem. Soc.2003,125(5),1156-1157.
    [10]. Kobashi, K.; Lomeda, J.; Chen, Z.; Azad, S.; Hwang, W.-F.; Tour, J. M., Preparation of single-walled carbon nanotubes-induced poly(p-oxybenzoyl) crystals.J. Polym. Sci, Part A:Polym. Chem.2008,46(4),1265-1277.
    [11]. Kaye, S. S.; Dailly, A.; Yaghi, O. M.; Long, J. R., Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5).J. Am. Chem. Soc.2007, 129(46),14176-14177.
    [12]. (a) Strano, M. S.; Doom, S. K.; Haroz, E. H.; Kittrell, C.; Hauge, R. H.; Smalley, R. E., Assignment of (n, m) Raman and Optical Features of Metallic Single-Walled Carbon Nanotubes. Nano Lett.2003,3 (8),1091-1096; (b) Strano, M. S., Probing Chiral Selective Reactions Using a Revised Kataura Plot for the Interpretation of Single-Walled Carbon Nanotube Spectroscopy.J. Am. Chem. Soc.2003,125(51),16148-16153.
    [13]. (a) Chattopadhyay, D.; Galeska, I.; Papadimitrakopoulos, F., A Route for Bulk Separation of Semiconducting from Metallic Single-Wall Carbon Nanotubes.J.Am. Chem. Soc.2003,125(11), 3370-3375; (b) Menard-Moyon, C.; Izard, N.; Doris, E.; Mioskowski, C., Separation of Semiconducting from Metallic Carbon Nanotubes by Selective Functionalization with Azomethine Ylides. J. Am. Chem. Soc.2006,128(20),6552-6553; (c) Yang, C.-M.; Park, J. S.; An, K. H.; Lim, S. C.; Seo, K.; Kim, B.; Park, K. A.; Han, S.; Park, C. Y.; Lee, Y. H., Selective Removal of Metallic Single-Walled Carbon Nanotubes with Small Diameters by Using Nitric and Sulfuric Acids. J. Phys. Chem.B2005,109(41),19242-19248.
    [14]. Doyle, C. D.; Rocha, J. D. R.; Weisman, R. B.; Tour, J. M., Structure-dependent reactivity of semiconducting single-walled carbon nanotubes with benzenediazonium salts.J.Am. Chem. Soc. 2008, 130(21),6795-6800.
    [15]. Price, B. K.; Tour, J. M., Functionalization of Single-Walled Carbon Nanotubes "On Water". J.Am. Chem. Soc.2006,128(39),12899-12904.
    [16]. (a) Price, B. K.; Hudson, J. L.; Tour, J. M., Green Chemical Functionalization of Single-Walled Carbon Nanotubes in Ionic Liquids.J.Am. Chem. Soc.2005,127(42),14867-14870; (b) Shin, J. Y.; Premkumar, T.; Geckeler, K. E., Dispersion of single-walled carbon nanotubes by using surfactants:Are the type and concentration important? Chem. Eur. J.2008,14(20),6044-6048.
    [17]. (a) Dyke, C. A.; Tour, J. M., Covalent Functionalization of Single-Walled Carbon Nanotubes for Materials Applications.J.Phys. Chem. A 2004,108(51),11151-11159; (b) Bayazit, M. K.; Clarke, L. S.; Coleman, K. S.; Clarke, N., Pyridine-Functionalized Single-Walled Carbon Nanotubes as Gelators for Poly(acrylic acid) Hydrogels. J. Am. Chem. Soc.2010,132 (44), 15814-15819.
    [18]. Graff, R. A.; Swanson, T. M.; Strano, M. S., Synthesis of Nickel-Nitrilotriacetic Acid Coupled Single-Walled Carbon Nanotubes for Directed Self-Assembly with Polyhistidine-Tagged Proteins. Chem. Mater.2008,20(5),1824-1829.
    [19]. Campidelli, S. p.; Ballesteros, B.; Filoramo, A.; Diaz, D. D. a.; de la Torre, G.; Torres, T. s.; Rahman, G M. A.; Ehli, C.; Kiessling, D.; Werner, F.; Sgobba, V.; Guldi, D. M.; Cioffi, C.; Prato, M.; Bourgoin, J.-P., Facile Decoration of Functionalized Single-Wall Carbon Nanotubes with Phthalocyanines via "Click Chemistry". J.Am. Chem. Soc.2008,130(34),11503-11509.
    [20]. Mukherjee, A.; Combs, R.; Chattopadhyay, J.; Abmayr, D. W.; Engel, P. S.; Billups, W. E., Attachment of Nitrogen and Oxygen Centered Radicals to Single-Walled Carbon Nanotube Salts. Chem. Mater.2008,20(23),7339-7343.
    [21]. Chakraborty, S.; Chattopadhyay, J.; Peng, H. Q.; Chen, Z. Y.; Mukherjee, A.; Arvidson, R. S.; Hauge, R. H.; Billups, W. E., Surface area measurement of functionalized single-walled carbon nanotubes.J.Phys. Chem.B2006,110(49),24812-24815.
    [22]. (a) Xiang, S. C.; Zhou, W.; Gallegos, J. M.; Liu, Y; Chen, B. L., Exceptionally High Acetylene Uptake in a Microporous Metal-Organic Framework with Open Metal Sites.J.Am. Chem. Soc.2009,131 (34),12415-12419; (b) Ma, L. Q.; Mihalcik, D. J.; Lin, W. B., Highly Porous and Robust 4,8-Connected Metal-Organic Frameworks for Hydrogen Storage. J. Am. Chem. Soc.2009, 131 (13),4610-4612; (c) Yang, W. B.; Greenaway, A.; Lin, X. A.; Matsuda, R.; Blake, A. J.; Wilson, C.; Lewis, W.; Hubberstey, P.; Kitagawa, S.; Champness, N. R.; Schroder, M., Exceptional Thermal Stability in a Supramolecular Organic Framework:Porosity and Gas Storage. J. Am. Chem. Soc.2010, 132(41),14457-14469; (d) Janiak, C.; Vieth, J. K., MOFs, MILs and more:concepts, properties and applications for porous coordination networks (PCNs). New J. Chem.2010,34(11),2366-2388.
    [23]. (a) Xin, Z. F.; Bai, J. F.; Shen, Y. M.; Pan, Y, Hierarchically Micro- and Mesoporous Coordination Polymer Nanostructures with High Adsorption Performance. Cryst. Growth Des.2010, 10 (6),2451-2454; (b) Serrano, D. P.; Aguado, J.; Escola, J. M.; Rodriguez, J. M.; Peral, A., Hierarchical Zeolites with Enhanced Textural and Catalytic Properties Synthesized from Organofunctionalized Seeds. Chem. Mater.2006,18(10),2462-2464; (c) Yan, Y.; Yang, S. H.; Blake, A. J.; Lewis, W.; Poirier, E.; Barnett, S. A.; Champness, N. R.; Schroder, M., A mesoporous metal-organic framework constructed from a nanosized C3-symmetric linker and Cu24(isophthalate)24 cuboctahedra. Chem. Commun.2011,47(36),9995-9997.
    [24]. Yoo, D.-H.; Rue, G.-H.; Hwang, Y.-H.; Kim, H.-K., Study of Nitrogen Adsorbed on Single-Walled Carbon Nanotube Bundles. J. Phys. Chem. B2002,106(13),3371-3374.
    [25]. (a) Gong, J.; Wang, L.; Song, D.; Zhu, X.; Zhang, L., Stripping voltammetric analysis of organophosphate pesticides using Ni/Al layered double hydroxides as solid-phase extraction. Biosens. Bioelectron.2009,25(2),493-496; (b) Du, D.; Ye, X.; Zhang, J.; Zeng, Y.; Tu, H.; Zhang, A.; Liu, D., Stripping voltammetric analysis of organophosphate pesticides based on solid-phase extraction at zirconia nanoparticles modified electrode. Electrochem. Commun.2008,10 (5),686-690; (c) Neumann, C. C. M.; Batchelor-McAuley, C.; Downing, C.; Compton, R. G., Anthraquinone Monosulfonate Adsorbed on Graphite Shows Two Very Different Rates of Electron Transfer:Surface Heterogeneity Due to Basal and Edge Plane Sites. Chem. Eur. J.2011,17(26),7320-7326; (d) Li, Q.; Batchelor-McAuley, C.; Lawrence, N. S.; Hartshorne, R. S.; Compton, R. G., The synthesis and characterisation of controlled thin sub-monolayer films of 2-anthraquinonyl groups on graphite surfaces. New J. Chem.2011,.35(11),2462-2470; (e) Du, D.; Wang, J.; Wang, L. M.; Lu, D. L.; Smith, J. N.; Timchalk, C.; Lin, Y. H., Magnetic Electrochemical Sensing Platform for Biomonitoring of Exposure to Organophosphorus Pesticides and Nerve Agents Based on Simultaneous Measurement of Total Enzyme Amount and Enzyme Activity. Anal. Chem.2011, 83(10),3770-3777.
    [26]. (a) Liu, G.; Lin, Y, Electrochemical Sensor for Organophosphate Pesticides and Nerve Agents Using Zirconia Nanoparticles as Selective Sorbents. Anal. Chem.2005,77(18),5894-5901; (b) Liu, G.; Lin, Y, Electrochemical stripping analysis of organophosphate pesticides and nerve agents. Electrochem. Commun.2005,7 (4),339-343; (c) Ni, Y.; Qiu, P.; Kokot, S., Simultaneous determination of three organophosphorus pesticides by differential pulse stripping voltammetry and chemometrics. Anal. Chim. Acta 2004,516(1-2),7-17; (d) Du, D.; Wang, M.; Zhang, J.; Cai, J.; Tu, H.; Zhang, A., Application of multiwalled carbon nanotubes for solid-phase extraction of organophosphate pesticide. Electrochem. Commun.2008,10(1),85-89.
    [1]. (a) Jiang, H.-L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q., Synergistic Catalysis of Au@Ag Core-Shell Nanoparticles Stabilized on Metal-Organic Framework.J. Am. Chem. Soc.2011,133(5), 1304-1306; (b) Jiang, H.-L.; Liu, B.; Akita, T.; Haruta, M.; Sakurai, H.; Xu, Q., Au@ZIF-8:CO Oxidation over Gold Nanoparticles Deposited to Metal-Organic Framework.J. Am. Chem. Soc.2009, 131 (32),11302-11303; (c) Liu, W.-C.; Lin, H.-K.; Chen, Y.-L.; Lee, C.-Y.; Chiu, H.-T., Growth of Carbon Nanocoils from K and Ag Cooperative Bicatalyst Assisted Thermal Decomposition of Acetylene. ACS Nano 2010,4 (7),4149-4157; (d) Amirav, L.; Alivisatos, A. P., Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures.J. Phys. Chem. Lett.2010,1(7), 1051-1054.
    [2]. (a) Liu, K.; You, H. P.; Jia, G.; Zheng, Y. H.; Song, Y. H.; Yang, M.; Huang, Y. J.; Zhang, H. J., Coordination-Induced Formation of One-Dimensional Nanostructures of Europium Benzene-1,3,5-tricarboxylate and Its Solid-State Thermal Transformation. Cryst. Growth Des.2009,9 (8), 3519-3524; (b) Zhu, Y. Y.; Sun, Z. G.; Tong, F.; Liu, Z. M.; Huang, C. Y.; Wang, W. N.; Jiao, C. Q.; Wang, C. L.; Li, C.; Chen, K., Hydrothermal synthesis, crystal structures, and luminescent properties of a series of new lanthanide oxalatophosphonates with a layer architecture. Dalton Trans.2011,40 (20),5584-5590; (c) Liu, K.; You, H. P.; Jia, G.; Zheng, Y H.; Huang, Y J.; Song, Y H.; Yang, M.; Zhang, L. H.; Zhang, H. J., Hierarchically Nanostructured Coordination Polymer:Facile and Rapid Fabrication and Tunable Morphologies. Cryst. Growth Des.2010,10(2),790-797; (d) Liu, K.; You, H. P.; Zheng, Y. H.; Jia, G.; Huang, Y. J.; Yang, M.; Song, Y H.; Zhang, L. H.; Zhang, H. J., Room-Temperature Synthesis of Multi-Morphological Coordination Polymer and Tunable White-Light Emission. Cryst. Growth Des.2010,10(1),16-19; (e) Dang, S.; Liu, Q. H.; Liu, K.; Guo, Z. Y.; Sun, L. N.; Song, S. Y.; Zhang, H. J., Controllable Synthesis of NIR-Luminescent ErQ(3) Nano-/Microstructures through Self-assembly Growth. Cryst. Growth Des.2010,10(10),4662-4667; (f) Guo, N.; Song, Y. H.; You, H. P.; Jia, G. A.; Yang, M.; Liu, K.; Zheng, Y. H.; Huang, Y. J.; Zhang, H. J., Optical Properties and Energy Transfer of NaCaPO4:Ce3+,Tb3+Phosphors for Potential Application in Light-Emitting Diodes. Eur. J. Inorg. Chem.2010, (29),4636-4642; (g) Zhang, L. H.; Jia, G.; You, H. P.; Liu, K.; Yang, M.; Song, Y. H.; Zheng, Y. H.; Huang, Y. J.; Guo, N.; Zhang, H. J., Sacrificial Template Method for Fabrication of Submicrometer-Sized YPO4:Eu3+Hierarchical Hollow Spheres. Inorg. Chem.2010,49(7),3305-3309; (h) Jia, G.; You, H. P.; Liu, K.; Zheng, Y. H.; Guo, N.; Zhang, H. J., Highly Uniform Gd2O3 Hollow Microspheres:Template-Directed Synthesis and Luminescence Properties. Langmuir 2010,26(7),5122-5128; (i) Song, Y. H.; You, H. P.; Yang, M.; Zheng, Y. H.; Liu, K.; Jia, G.; Huang, Y. J.; Zhang, L. H.; Zhang, H. J., Facile Synthesis and Luminescence of Sr5(PO4)3Cl:Eu2+Nanorod Bundles via a Hydrothermal Route. Inorg. Chem.2010, 49 (4),1674-1678; (j) Jia, G.; You, H. P.; Liu, K.; Zheng, Y. H.; Guo, N.; Jia, J. J.; Zhang, H. J., Highly Uniform YBO(3) Hierarchical Architectures:Facile Synthesis and Tunable Luminescence Properties. Chem. Eur. J.2010,16(9),2930-2937; (k) Yang, M; You, H. P.; Zheng, Y. H.; Liu, K.; Jia, G.; Song, Y. H.; Huang, Y. J.; Zhang, L. H.; Zhang, H. J., Hydrothermal Synthesis and Luminescent Properties of Novel Ordered Sphere CePO4 Hierarchical Architectures. Inorg. Chem.2009,48 (24), 11559-11565; (1) Zheng, Y. H.; You, H. P.; Jia, G.; Liu, K.; Song, Y. H.; Yang, M.; Zhang, H. J., Facile Hydrothermal Synthesis and Luminescent Properties of Large-Scale GdVO4:Eu3+Nanowires. Cryst. Growth Des.2009, 9(12),5101-5107; (m) Liu, K.; You, H. P.; Zheng, Y. H.; Jia, G.; Zhang, L. H.; Huang, Y. J.; Yang, M.; Song, Y. H.; Zhang, H. J., Facile shape-controlled synthesis of luminescent europium benzene-1,3,5-tricarboxylate architectures at room temperature. CrystEngComm 2009,11 (12),2622-2628; (n) Choi, C. L.; Li, H.; Olson, A. C. K.; Jain, P. K.; Sivasankar, S.; Alivisatos, A. P., Spatially Indirect Emission in a Luminescent Nanocrystal Molecule. Nano Lett.2011,11(6), 2358-2362; (o) Choi, C. L.; Koski, K. J.; Sivasankar, S.; Alivisatos, A. P., Strain-Dependent Photoluminescence Behavior of CdSe/CdS Nanocrystals with Spherical, Linear, and Branched Topologies. Nano Lett.2009,9(10),3544-3549.
    [3]. (a) Ma, W.; Swisher, S. L.; Ewers, T.; Engel, J.; Ferry, V. E.; Atwater, H. A.; Alivisatos, A. P., Photovoltaic Performance of Ultrasmall PbSe Quantum Dots. ACS Nano 2011,5(10),8140-8147; (b) Sheldon, M. T.; Trudeau, P.-E.; Mokari, T.; Wang, L.-W.; Alivisatos, A. P., Enhanced Semiconductor Nanocrystal Conductance via Solution Grown Contacts. Nano Lett.2009, 9 (11),3676-3682; (c) Trudeau, P.-E.; Sheldon, M.; Altoe, V.; Alivisatos, A. P., Electrical Contacts to Individual Colloidal Semiconductor Nanorods. Nano Lett.2008,8 (7),1936-1939; (d) Kovalenko, M. V.; Heiss, W.; Shevchenko, E. V.; Lee, J.-S.; Schwinghammer, H.; Alivisatos, A. P.; Talapin, D. V., SnTe Nanocrystals: A New Example of Narrow-Gap Semiconductor Quantum Dots. J. Am. Chem. Soc. 2007,129(37),11354-11355; (e) Li, L.-s.; Hu, J.; Yang, W.; Alivisatos, A. P., Band Gap Variation of Size-and Shape-Controlled Colloidal CdSe Quantum Rods. Nano Lett.2001,1(7),349-351; (f) Imahori, H.; Kang, S.; Hayashi, H.; Haruta, M.; Kurata, H.; Isoda, S.; Canton, S. E.; Infahsaeng, Y.; Kathiravan, A.; Pascher, T. r.; Chabera, P.; Yartsev, A. P.; Sundstrom, V., Photoinduced Charge Carrier Dynamics of Zn-Porphyrin-TiO2 Electrodes:The Key Role of Charge Recombination for Solar Cell Performance.J. Phys. Chem. A2010,115(16),3679-3690.
    [4]. (a) Ortiz, N.; Skrabalak, S. E., Controlling the Growth Kinetics of Nanocrystals via Galvanic Replacement:Synthesis of Au Tetrapods and Star-Shaped Decahedra. Cryst. Growth Des.2011,11(8), 3545-3550; (b) Skrabalak, S. E.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, C. M.; Xia, Y., Gold Nanocages:Synthesis, Properties, and Applications. Acc. Chem. Res.2008,41 (12),1587-1595; (c) Yang, X.; Skrabalak, S. E.; Li, Z.-Y.; Xia, Y.; Wang, L. V., Photoacoustic Tomography of a Rat Cerebral Cortex in vivo with Au Nanocages as an Optical Contrast Agent. Nano Lett.2007,7(12), 3798-3802.
    [5]. (a) Arcos, D.; Lopez-Noriega, A.; Ruiz-Hernandez, E.; Terasaki, O.; Vallet-Regi, M., Ordered Mesoporous Microspheres for Bone Grafting and Drug Delivery. Chem. Mater.2009,21 (6), 1000-1009; (b) Ruiz-Hernandez, E.; Lopez-Noriega, A.; Arcos, D.; Izquierdo-Barba, I.; Terasaki, O.; Vallet-Regf, M., Aerosol-Assisted Synthesis of Magnetic Mesoporous Silica Spheres for Drug Targeting. Chem. Mater.2007,19 (14),3455-3463; (c) Lopez-Noriega, A.; Arcos, D.; Izquierdo-Barba, I.; Sakamoto, Y.; Terasaki, O.; Vallet-Regi, M., Ordered Mesoporous Bioactive Glasses for Bone Tissue Regeneration. Chem. Mater.2006,18(13),3137-3144; (d) Shi, J.; Votruba, A. R.; Farokhzad, O. C.; Langer, R., Nanotechnology in Drug Delivery and Tissue Engineering:From Discovery to Applications. Nano Lett.2010,10 (9),3223-3230; (e) Farokhzad, O. C.; Langer, R., Impact of Nanotechnology on Drug Delivery. ACS Nano 2009, 3(1),16-20; (f) Bagalkot, V.; Zhang, L.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P. W.; Langer, R.; Farokhzad, O. C., Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer. Nano Lett.2007,7(10),3065-3070; (g) Imaz, I.; Rubio-Martinez, M.; Garcia-Fernandez, L.; Garcia, F.; Ruiz-Molina, D.; Hernando, J.; Puntes, V.; Maspoch, D., Coordination polymer particles as potential drug delivery systems. Chem. Commun. 2010,46(26),4737-4739.
    [6]. Holmes, S. M.; Girolami, G. S., Sol-gel synthesis of KVⅡCrⅢ(CN)62H2O:A crystalline molecule-based magnet with a magnetic ordering temperature above 100 ℃. J. Am. Chem. Soc.1999, 121 (23),5593-5594.
    [7]. (a) Vaucher, S.; Fielden, J.; Li, M.; Dujardin, E.; Mann, S., Molecule-Based Magnetic Nanoparticles:Synthesis of Cobalt Hexacyanoferrate, Cobalt Pentacyanonitrosylferrate, and Chromium Hexacyanochromate Coordination Polymers in Water-in-Oil Microemulsions. Nano Lett. 2001,2(3),225-229; (b) Vaucher, S.; Dujardin, E.; Lebeau, B.; Hall, S. R.; Mann, S., Higher Order Construction of Molecule-Based Magnets. Chem. Mater.2001,13(12),4408-4410; (c) Horike, S.; Matsuda, R.; Tanaka, D.; Matsubara, S.; Mizuno, M.; Endo, K.; Kitagawa, S., Dynamic motion of building blocks in porous coordination polymers. Angew. Chem. Int. Ed.2006,45(43),7226-7230; (d) Vaucher, S.; Li, M.; Mann, S., Synthesis of Prussian blue nanoparticles and nanocrystal superlattices in reverse microemulsions. Angew. Chem. Int. Ed.2000, 39(10),1793-1796; (e) Catala, L.; Gacoin, T.; Boilot, J. P.; Riviere, E.; Paulsen, C.; Lhotel, E.; Mallah, T., Cyanide-bridged CrⅢNiⅡ superparamagnetic nanoparticles. Adv. Mater.2003,15(10),826-829; (f) Brinzei, D.; Catala, L.; Louvain, N.; Rogez, G.; Stephan, O.; Gloter, A.; Mallah, T., Spontaneous stabilization and isolation of dispersible bimetallic coordination nanoparticles of CsxNi Cr(CN)6y.J.Mater. Chem.2006,16(26), 2593-2599; (g) Brinzei, D.; Catala, L.; Mathoniere, C.; Wernsdorfer, W.; Gloter, A.; Stephan, O.; Mallah, T., Photoinduced superparamagnetism in trimetallic coordination nanoparticles.J.Am. Chem. Soc.2007,129(13),3778-3779; (h) Volatron, R.; Heurtaux, D.; Catala, L.; Mathoniere, C.; Gloter, A.; Stephan, O.; Repetto, D.; Clemente-Leon, M.; Coronado, E.; Mallah, T., Photo-induced magnetic bistability in a controlled assembly of anisotropic coordination nanoparticles. Chem. Commun.2011, 47(7),1985-1987.
    [8]. Sun, X.; Dong, S.; Wang, E., Coordination-Induced Formation of Submicrometer-Scale, Monodisperse, Spherical Colloids of Organic-Inorganic Hybrid Materials at Room Temperature.J. Am. Chem. Soc.2005,127(38),13102-13103.
    [9]. Park, K. H.; Jang, K.; Son, S. U.; Sweigart, D. A., Self-Supported Organometallic Rhodium Quinonoid Nanocatalysts for Stereoselective Polymerization of Phenylacetylene.J.Am. Chem. Soc. 2006,128(27),8740-8741.
    [10]. (a) Oh, M.; Mirkin, C. A., Chemically tailorable colloidal particles from infinite coordination polymers. Nature 2005,438 (7068),651-654; (b) Heo, J.; Mirkin, C. A., Pseudo-allosteric recognition of mandelic acid with an enantioselective coordination complex. Angew. Chem. Int. Ed.2006,45(6),941-944.
    [11]. Rieter, W. J.; Pott, K. M.; Taylor, K. M. L.; Lin, W. B., Nanoscale coordination polymers for platinum-based anticancer drug delivery. J.Am. Chem. Soc.2008,130(35),11584-11585.
    [12]. (a) Carne, A.; Carbonell, C.; Imaz, I.; Maspoch, D., Nanoscale metal-organic materials. Chem. Soc. Rev.2011,40 (1),291-305; (b) Imaz, I.; Maspoch, D.; Rodriguez-Blanco, C.; Perez-Falcon, J. M.; Campo, J.; Ruiz-Molina, D., Valence-tautomeric metal-organic nanoparticles. Angew. Chem. Int. Ed.2008,47(10),1857-1860.
    [13]. Rieter, W. J.; Taylor, K. M. L.; An, H.; Lin, W.; Lin, W., Nanoscale Metal-Organic Frameworks as Potential Multimodal Contrast Enhancing Agents.J.Am. Chem. Soc.2006,128(28), 9024-9025.
    [14]. Taylor, K. M. L.; Rieter, W. J.; Lin, W. B., Manganese-Based Nanoscale Metal-Organic Frameworks for Magnetic Resonance Imaging. J.Am. Chem. Soc.2008,130 (44),14358-14359.
    [15]. Taylor, K. M. L.; Jin, A.; Lin, W. B., Surfactant-assisted synthesis of nanoscale gadolinium metal-organic frameworks for potential multimodal imaging. Angew. Chem. Int. Ed.2008,47(40), 7722-7725.
    [16]. Jung, S.; Oh, M., Monitoring shape transformation from nanowires to nanocubes and size-controlled formation of coordination polymer particles. Angew. Chem. Int. Ed.2008,47(11), 2049-2051.
    [17]. (a) Liu, D. M.; Huxford, R. C.; Lin, W. B., Phosphorescent Nanoscale Coordination Polymers as Contrast Agents for Optical Imaging. Angew. Chem. Int. Ed.2011,50(16),3696-3700; (b) Lin, W. B.; Hyeon, T.; Lanza, G. M.; Zhang, M. Q.; Meade, T. J., Magnetic Nanoparticles for Early Detection of Cancer by Magnetic Resonance Imaging. MRS Bull.2009,34(6),441-448; (c) Rieter, W. J.; Pott, K. M.; Taylor, K. M. L.; Lin, W., Nanoscale Coordination Polymers for Platinum-Based Anticancer Drug Delivery.J. Am. Chem. Soc.2008,130(35),11584-11585; (d) Kim, J. S.; Rieter, W. J.; Taylor, K. M. L.; An, H.; Lin, W.; Lin, W., Self-Assembled Hybrid Nanoparticles for Cancer-Specific Multimodal Imaging.J.Am. Chem. Soc.2007,129(29),8962-8963; (e) Kim, J. S.; Rieter, W. J.; Taylor, K. M. L.; An, H.; Lin, W. L.; Lin, W. B., Self-assembled hybrid nanoparticles for cancer-specific multimodal imaging. J.Am. Chem. Soc.2007,129(29),8962-8963.
    [18]. (a) Huxford, R. C.; deKrafft, K. E.; Boyle, W. S.; Liu, D. M.; Lin, W. B., Lipid-coated nanoscale coordination polymers for targeted delivery of antifolates to cancer cells. Chem. Sci.2012, 3(1),198-204; (b) Vivero-Escoto, J. L.; Taylor-Pashow, K. M. L.; Huxford, R. C.; Della Rocca, J.; Okoruwa, C.; An, H. Y.; Lin, W. L.; Lin, W. B., Multifunctional Mesoporous Silica Nanospheres with Cleavable Gd(III) Chelates as MRI Contrast Agents:Synthesis, Characterization, Target-Specificity, and Renal Clearance. Small 2011,7 (24),3519-3528; (c) Della Rocca, J.; Huxford, R. C.; Comstock-Duggan, E.; Lin, W. B., Polysilsesquioxane Nanoparticles for Targeted Platin-Based Cancer Chemotherapy by Triggered Release. Angew. Chem. Int. Ed.2011,50(44),10330-10334; (d) Della Rocca, J.; Liu, D. M.; Lin, W. B., Nanoscale Metal-Organic Frameworks for Biomedical Imaging and Drug Delivery. Ace. Chem. Res.2011,44(10),957-968; (e) Della Rocca, J.; Lin, W. B., Nanoscale Metal-Organic Frameworks:Magnetic Resonance Imaging Contrast Agents and Beyond. Eur. J. Inorg. Chem.2010, (24),3725-3734; (f) Taylor-Pashow, K. M. L.; Della Rocca, J.; Xie, Z. G.; Tran, S.; Lin, W. B., Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal-Organic Frameworks for Imaging and Drug Delivery.J.Am. Chem. Soc.2009,131 (40),14261-14263; (g) Lin, W. B.; Rieter, W. J.; Taylor, K. M. L., Modular Synthesis of Functional Nanoscale Coordination Polymers. Angew. Chem. Int. Ed.2009,48(4),650-658; (h) Dekrafft, K. E.; Xie, Z. G.; Cao, G. H.; Tran, S.; Ma, L. Q.; Zhou, O. Z.; Lin, W. B., Iodinated Nanoscale Coordination Polymers as Potential Contrast Agents for Computed Tomography. Angew. Chem. Int. Ed.2009,48(52),9901-9904.
    [19]. Wen, Y.-H.; Cheng, J.-K.; Feng, Y.-L.; Zhang, J.; Li, Z.-J.; Yao, Y.-G., Synthesis and Crystal Structure of [La(BTC)(H2O)6]n. ChineseJ. Struct. Chem.2005,24(12),1440-1444.
    [20]. Deng, H.; Liu, C.; Yang, S.; Xiao, S.; Zhou, Z.-K.; Wang, Q.-Q., Additive-Mediated Splitting of Lanthanide Orthovanadate Nanocrystals in Water:Morphological Evolution from Rods to Sheaves and to Spherulites. Cryst. Growth Des.2008, 8(12),4432-4439.
    [21]. (a) Lu, Z.-Z.; Zhang, R.; Li, Y.-Z.; Guo, Z.-J.; Zheng, H.-G., Solvatochromic Behavior of a Nanotubular Metal-Organic Framework for Sensing Small Molecules. J. Am. Chem. Soc.2011,133 (12),4172-4174; (b) Lan, A. J.; Li, K. H.; Wu, H. H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M. C.; Li, J., A Luminescent Microporous Metal-Organic Framework for the Fast and Reversible Detection of High Explosives. Angew. Chem. Int. Ed.2009,48(13),2334-2338; (c) Chen, B. L.; Wang, L. B.; Xiao, Y. Q.; Fronczek, F. R.; Xue, M.; Cui, Y. J.; Qian, G D., A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for the Sensing of Metal Ions. Angew. Chem. Int. Ed. 2009,48(3),500-503; (d) Ma, D. Y; Wang, W. X.; Li, Y. W.; Li, J.; Daiguebonne, C.; Calvez, G.; Guillou, O., In situ 2,5-pyrazinedicarboxylate and oxalate ligands synthesis leading to a microporous europium-organic framework capable of selective sensing of small molecules. CrystEngComm 2010, 12(12),4372-4377; (e) Das, M. C.; Xu, H.; Xiang, S. C.; Zhang, Z. J.; Arman, H. D.; Qian, G. D.; Chen, B. L., A New Approach to Construct a Doubly Interpenetrated Microporous Metal-Organic Framework of Primitive Cubic Net for Highly Selective Sorption of Small Hydrocarbon Molecules. Chem. Eur. J.2011,17(28),7817-7822; (f) Zhang, Z. J.; Xiang, S. C.; Rao, X. T.; Zheng, Q. A.; Fronczek, F. R.; Qian, G D.; Chen, B. L., A rod packing microporous metal-organic framework with open metal sites for selective guest sorption and sensing of nitrobenzene. Chem. Commun.2010,46 (38),7205-7207.
    [22]. (a) Tanaka, D.; Henke, A.; Albrecht, K.; Moeller, M.; Nakagawa, K.; Kitagawa, S.; Groll, J., Rapid preparation of flexible porous coordination polymer nanocrystals with accelerated guest adsorption kinetics. Nat. Chem.2010,2 (5),410-416; (b) Cho, W.; Lee, H. J.; Oh, M., Growth-Controlled Formation of Porous Coordination Polymer Particles. J. Am. Chem. Soc.2008, 130(50),16943-16946.
    [23]. (a) Xu, H.; Liu, F.; Cui, Y. J.; Chen, B. L.; Qian, G. D., A luminescent nanoscale metal-organic framework for sensing of nitroaromatic explosives. Chem. Commun.2011,47(11), 3153-3155; (b) Li, Z. Q.; Qiu, L. G.; Wang, W.; Xu, T.; Wu, Y; Jiang, X., Fabrication of nanosheets of a fluorescent metal-organic framework Zn(BDC)(H2O)n (BDC=1,4-benzenedicarboxylate):Ultrasonic synthesis and sensing of ethylamine. Inorg. Chem. Commun.2008,11(11),1375-1377; (c) Hatakeyama, W.; Sanchez, T. J.; Rowe, M. D.; Serkova, N. J.; Liberatore, M. W.; Boyes, S. G, Synthesis of Gadolinium Nanoscale Metal-Organic Framework with Hydrotropes:Manipulation of Particle Size and Magnetic Resonance Imaging Capability. ACS Appl. Mat. Interfaces 2011,3 (5), 1502-1510; (d) Gu, Z.-Y.; Jiang, J.-Q.; Yan, X.-P., Fabrication of Isoreticular Metal-Organic Framework Coated Capillary Columns for High-Resolution Gas Chromatographic Separation of Persistent Organic Pollutants. Anal. Chem.2011,83(13),5093-5100; (e) Ni, Z.; Masel, R. I., Rapid Production of Metal-Organic Frameworks via Microwave-Assisted Solvothermal Synthesis.J.Am. Chem. Soc.2006,128(38),12394-12395; (f) Tsuruoka, T.; Furukawa, S.; Takashima, Y.; Yoshida, K.; Isoda, S.; Kitagawa, S., Nanoporous Nanorods Fabricated by Coordination Modulation and Oriented Attachment Growth. Angew. Chem. Int. Ed.2009,48(26),4739-4743; (g) Li, Y. S.; Bux, H.; Feldhoff, A.; Li, G. L.; Yang, W. S.; Caro, J., Controllable Synthesis of Metal-Organic Frameworks:From MOF Nanorods to Oriented MOF Membranes. Adv. Mater.2010,22(30),3322-3326.
    [24]. Pramanik, S.; Zheng, C.; Zhang, X.; Emge, T. J.; Li, J., New Microporous Metal-Organic Framework Demonstrating Unique Selectivity for Detection of High Explosives and Aromatic Compounds.J.Am. Chem. Soc.2011,133(12),4153-4155.
    [25]. Zhang, K.-L.; Gao, H.-Y.; Qiao, N.; Zhou, F.; Diao, G.W., Preparation and characterization of two novel three-dimensional supramolecular networks with blue photoluminescence. Inorg. Chim. Acta 2008,361(1),153-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700