用户名: 密码: 验证码:
稀土改性Ni基催化剂上CO_2/CH_4重整制合成气的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于对化工能源和环境保护的实际需求,二氧化碳重整甲烷制备合成气是目前C1化学领域中颇受关注的课题。其原因在于,可以充分利用自然界中丰富的天然气和二氧化碳资源,制备具有低H_2/CO比的合成气,而低H_2/CO比的合成气是进行一系列重要化工生产的优良原料,有广泛的应用前景。为了制备高活性、高稳定性和高抗积碳性能的催化剂,在文献调研的基础上,本论文采用溶胶-凝胶法制备了一系列含有稀土氧化物的镍基催化剂,考察了稀土元素(La_2O_3或Sm_2O_3)的含量对催化剂的催化性能和物化性能的影响,并与其它制备方法进行了比较。考察了以稀土氧化物为载体对甲烷、二氧化碳的转化率和氢气、一氧化碳的选择性,及其对抗积碳的影响。同时,利用稳定的Ni/Sm_2O_3-CaO催化剂进行了动力学研究,在此基础上提出了CO_2/CH_4重整反应的机理。应用包括BET,XRD,XPS,XAES,AFM,TME,TG/DTA,H_2-TPR等多种表征手段对催化剂物化性质和积碳进行了深入的分析,并与催化剂的催化性能和反应稳定性相关联,得到了性能优良的CO_2/CH_4重整催化剂。本论文得到如下一些结论:
     1.分别采用溶胶-凝胶法、浸渍法、离子交换法制备了相同Ni含量的10%Ni/La-ZSM-5催化剂。在固定床反应器中,于700℃,常压下把这些催化剂用于CO_2/CH_4重整制合成气。实验结果表明,甲烷转化率增加的顺序是:溶胶-凝胶法>浸渍法>离子交换法。在稳定性测试中溶胶-凝胶法制备的催化剂稳定性最好,浸渍法催化剂在反应初期活性较高,但易失活。具有典型尖晶石结构的La_2NiO_4,通过溶胶-凝胶法被均匀地分散在具有高比表面积的ZSM-5载体上,与采用浸渍法和离子交换法制备的催化剂相比,此方法制备的催化剂,Ni的分散度高,颗粒较小,从而能提供较多的CH_4裂解活性位,并且CO_2能将CH_4解离生成的碳物种及时消除,故在高空速(GHSV = 4.8×104 ml·g~(-1)·h~(-1))和长时间重整反应后(36 h),催化活性一直保持不变。由溶胶-凝胶法制备的催化剂在抗积碳方面的能力也好于其它两种方法制备的催化剂。这是由于溶胶-凝胶法制备的催化剂中含有高分散和高稳定的镍粒子,同时在活性点周围,酸性的CO_2容易被La_2O_3吸附形成La_2O_2CO_3物种,而La_2O_2CO_3能解离为CO和O物种,而氧物种能够与催化剂表面的碳物种(CHx)反应生成CO,从而达到消除积碳的作用。从DTA图上可以看出,采用溶胶-凝胶法制备的催化剂上的积碳分为两种类型,其一是丝状碳,二是石墨型碳,而采用浸渍法和离子交换法催化剂上的积碳主要是石墨型碳,这可能是因为沉积在Ni颗粒上的碳原子容易进入Ni晶粒的晶格,并在晶格间扩散,没有及时被氧物种消除,使其沉积在Ni晶粒和载体的界面上,并逐渐石墨化造成的。
     2.采用溶胶-凝胶法制备了Ni/CaO, Ni/Sm_2O_3和不同Sm/Ca摩尔比的Ni/Sm_2O_3-CaO (Sm/Ca = 1:4,1:1和4:1)催化剂,实验结果表明,与Ni/CaO, Ni/Sm_2O_3相比,Ni/Sm_2O_3-CaO (Sm/Ca = 1:4, 1:1和4:1)催化剂具有较高的比表面积,较小的Ni晶粒及较强的抗积碳能力。XRD和HRTEM的分析结果表明适量Sm_2O_3的添加能够消除大的Ni金属颗粒,提高Ni的分散度,使反应活性有明显改善,而过量的Sm_2O_3的加入却容易导致催化剂失活。在对反应积碳的研究中发现,采用碱土载体和稀土金属氧化物作载体的催化剂在CO_2/CH_4重整过程中具有较好的抗积碳性能。反应中主要的积碳形式有两种。通过100 h在GHSV = 4.8×10~4 ml·g~(-1)·h~(-1),700℃,CO_2/CH_4 = 1:1,条件下的CO_2/CH_4反应中,证明Ni/Sm_2O_3-CaO (Sm/Ca = 1:4)在较长时间内也可保持稳定的催化性能(100 h)。
     3.相对于浸渍法制备的Ni/SL催化剂,由溶胶-凝胶法制备的Ni/SL催化剂具有较大的比表面积、适宜的孔分布和稳定的结构。由(Sm_2O_3)0.77(La_2O_3)0.23载体制备的负载镍催化剂在CO_2重整CH_4反应中表现出了很好的反应特性。在Ni/(Sm_2O_3)_(0.77)(La_2O_3)_(0.23)(sol-gel)催化剂上甲烷和二氧化碳的转化率分别是56﹪和60%,氢气和一氧化碳的选择性分别是96﹪和98%。如此高的活性主要是由于在催化剂中存在着高分散和高稳定性的镍粒子。通过XRD的试验已证明了这些高分散粒子的存在。另外,此催化剂也表现出了很好的抗积碳能力,这是由于具有碱性的(Sm_2O_3)0.77(La_2O_3)0.23稀土化合物能够吸附二氧化碳,尤其在活性点Ni0周围形成La_2O_2CO_3物种,此物种容易与碳物种(CHx)反应生成CO。结果导致由甲烷裂解的碳物种(CHx)还未转化成石墨碳,就与氧物种反应生成了一氧化碳。
     4.在固定床微分反应器中,考察了反应参数对Ni/Sm_2O_3-CaO(1:4)催化剂反应活性的影响。通过改变反应的温度和反应物的压力研究了Ni/Sm_2O_3-CaO(1:4)催化剂上的本征动力学行为。在600~700℃的反应温度范围内,原料气CH_4和CO_2的表观活化能是17.59和29.97 kcal·mol~(-1),而生成物CO和H_2的活化能分别为19.82和33.2 kcal·mol~(-1)。由于逆水气反应,当在反应物中增加H_2的进料压力,可以提高CO的生成速率。在0-50 kPa压力范围内,甲烷和二氧化碳的压力变化都影响甲烷的消耗速率。根据实验和文献的分析,推导出了可能的基元反应,并根据L-H模型,推导出了反应本征动力学方程,二氧化碳的分解反应是在Ni/Sm_2O_3-CaO (Sm/Ca等于1:4)催化剂上进行CO_2/CH_4重整反应的速率决定步骤。
Due to the practical demand for chemical industry and environment protection, a CO2 reforming of methane to syngas has attracted considerable attention in Cl chemistry field. By this reaction, natural gas and carbon dioxide, both are greenhouse gas in nature, can be transformed to syngas with low ratio of H_2/CO, which is a proper feed for many important chemical engineering processes. It presents extensive practical prospect. In order to prepare catalysts with high activity, stability and excellent resistance to carbon deposition for this reaction, based on a great deal of literature, a sol-gel technique is employed to prepare a series of Ni-based catalysts contained rare earth oxides. The effect of rare earth element (Sm_2O_3 or La_2O_3) on the catalytic performance and physicochemical property of catalysts was investigated. The comparison was done between sol-gel and other preparation methods. The effect of rare earth oxide as a support on the conversion of CH_4 and CO2, the selectivity of H_2 and CO and the resistance to carbon deposition over catalysts was investigated. In the meantime, the kinetic behavior of the CO_2/CH_4 reforming reaction over high stable Ni/Sm_2O_3-CaO catalyst was investigated. A mechanism of the CO_2/CH_4 reforming has been proposed based on the experimental results and report in literature. Many characterization techniques, such as BET, XRD, XPS, XAES, AFM, HRTME(EDX), TG/DTA, H_2-TPR were used to analyze the physicochemical property of the catalysts and the behavior of carbon deposition. The obtained results were correlated with catalytic performance and reaction stability. We have obtained the catalyst with high catalytic performance for CO_2/CH_4 reforming. The main conclusions are as follows:
     (1) The catalysts of 10% Ni/La-ZSM-5 with same loading amount of Ni were prepared by means of the sol-gel, incipient-wetness impregnation and ion-exchange methods, respectively. The prepared catalysts were used to produce syngas from CO2 and CH_4 at 700℃under normal pressure in a fix-bed reactor. The order on conversion of CH_4 is as follows:sol-gel>imp.>ion-exchange. Additionally, the catalyst prepared by a sol-gel technique exhibited higher performance than those prepared by impregnation or ion-exchange method, whereas the catalyst prepared by impregnation showed rather high activity at the beginning of the reaction but resulted in deactivation easily. The La_2NiO_4 catalyst had a typical spinel structure. By means of a sol-gel method La_2NiO_4 were uniformly dispersed on a ZSM-5 support. By comparison with the impregnation and ion-exchange method, the La_2NiO_4/ZSM-5 catalyst prepared by a sol-gel method, exhibited high dispersion and small Ni particles, which can provide more active sites for CH_4 decomposition and CO_2 was able to eliminate the carbon species generated from CH_4 decomposition. At the GHSV = 4.8×10~4 ml·g~(-1)·h~(-1), the catalytic activity was changeless during long-time reforming. Concerning resistance to carbon deposition, the catalyst prepared by a sol-gel technique exhibited higher performance than those prepared by other method. This is due to the formation of highly dispersed and stable Ni particles in the former, meanwhile, on the adjacent Ni sites, the La_2O_3 can adsorb CO_2 to form the La_2O_2CO_3 species, the La_2O_2CO_3 species decomposed into CO and O species, which react with accumulated carbon (CHx) on catalyst surface to produce CO. In addition, TG/DTA analysis indicated that at least two kinds of carbon depositions (filamentous whisker carbon and graphitic carbon) were formed on the catalyst prepared by sol-gel method, whereas only one kind of carbon deposition, graphitic carbon, was observed on the catalyst prepared by impregnation and ion-exchange methods. This is due to the lack of enough oxygen species to react with CHx in the latter, and CHx may further decompose into coke species, which penetrated into the Ni lattice and diffusion through the metal lattice, and final, the coke species gradually changed to graphitic carbon.
     (2) A sol-gel method was employed to prepare Ni/CaO, Ni/Sm_2O_3 and a series of Ni/Sm_2O_3-CaO (the molar ratio of Sm/Ca is 1:4, 1:1 and 4:1,respectively) catalysts dispersed uniformly. The Ni/Sm_2O_3-CaO (Sm/Ca is 1:4, 1:1 and 4:1) catalysts exhibited the high surface areas, carbon deposition resistance and the small Ni particles compare with the Ni/CaO and Ni/Sm_2O_3 catalysts. X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analyses reveal that appropriate addition of Sm_2O_3 can suppress the formation of large nickel particle and produce the highly dispersed nickel species, and consequently, improves the catalytic activity, whereas excess addition of Sm_2O_3 reduces the catalyst activity. It is found that the resistance to carbon deposition can be greatly improved with the alkaline earth and rare earth oxides as the supports at CO_2/CH_4 reforming. Long-term experiments were carried out, showing the excellent stability of the Ni/Sm_2O_3-CaO (Sm/Ca is 1:4) in the range of 100 h.
     (3) The Ni/(Sm_2O_3)0.77(La_2O_3)0.23 (sol-gel) catalyst prepared by the sol-gel technique showed large specific surface area, appropriate pore distribution and stable structure compared to Ni/(Sm_2O_3)0.77(La_2O_3)0.23 prepared by impregnation method. (Sm_2O_3)0.77(La_2O_3)0.23 as a support gives good performances for CO_2/CH_4 reforming reaction. The CH_4 and CO_2 conversion were 56 and 60% respectively, and the H_2 and CO selectivity were 96 and 98% over the Ni/(Sm_2O_3)0.77(La_2O_3)0.23 (sol-gel) catalyst. The high activity attributed to the high dispersion of the nickel particles. There exists highly dispersion of the nickel particles has been proved by XRD technique. In the meantime, it also showed the excellent resistance to carbon deposition. This is due to the rare earth oxides, (Sm_2O_3)0.77(La_2O_3)0.23 with basicity, which is favorable for CO_2 adorption on the adjacent Ni sites to form La_2O_2CO_3 species. As a consequence, the active carbon species (CHx) can be removed rapidly by the O species before converting to graphitic carbon.
     (4) The effect of reaction parameters on the catalytic activity of Ni/Sm_2O_3-CaO (Sm/Ca is 1:4) catalyst for CO_2 reforming of CH_4 was studied. The kinetic behavior of Ni/Sm_2O_3-CaO (Sm/Ca is 1:4) catalyst in the reforming reaction was investigated as a functions of temperature and partial pressures of CH_4 and CO_2. The apparent activation energy for CH_4 and CO_2 consumption, and H_2 and CO production were 17.59, 29.97, 33.2 and 19.82 kcal·mol~(-1), respectively, in the range of 600–700℃. An increase of the H_2 partial pressure leads to a continuous enhancement of the rate of CO formation, due to the simultaneous occurrence of the water–gas shift reaction. The variation of CH_4 and CO_2 partial pressures have strong influence on the rate of methane consumption in the pressure range of 2–48 kPa, respectively. A reactive mechanism of the CO_2/CH_4 reforming was proposed based on the experimental results and some reviews. Based on this mechanism, a kinetic model was developed. The activation of CO_2 to form CO and O is suggested to be the rate-determining step for the CO_2/ CH_4 reforming over Ni/Sm_2O_3-CaO (Sm/Ca is 1:4) catalyst.
引文
[1] 马鸣,陈伟,姜健准等,我国天然气资源的开发利用现状,石油化工,2005, 34(4): 394-398
    [2] 宋师忠,焦艳霞,二氧化碳用途综述与生产现状,化工科技市场,2003, 12: 13-15
    [3] Ross J R H, VanKeulen A N J, Hegarty M E S, et al., The catalytic conversion of natural gas to useful products,Catal. Today, 1996, 30: 193-199
    [4] Vannice M A, Catalytic Synthesis of Hydrocarbons from Carbon Monoxide and Hydrogen, Catal. Rev. Sci. Eng., 1976, 14: 153-191
    [5] Chubb T A, Characteristics of CO2-CH4 Reforming Methanation Cycle Relevant to the Solchem Thermochemical Power System, Sol. Energy, 1980, 24: 341-345
    [6] McCrary J H, McCrary G E, Chubb T A, et al, an Experimental-Study of the CO2-CH4 Reforming-Methanation Cycle as a Mechanism for Converting and Transporting Solar Energy, Sol. Energy, 1982, 29: 141-151
    [7] Fish J D, Hawn D C, Closed-Loop Thermochemical Energy-Transport Based on CO2 Reforming of Methane-Balancing the Reaction Systems, J. Sol. Energy Eng., 1987, 109: 215-220
    [8] Edwards J H, Do K T, Maitra A M, et al. The use of solar-based CO2/CH4 reforming for reducing greenhouse gas emissions during the generation of electricity and process heat, Energy Conversion and Management, 1996, 37(6-8): 1339-1344
    [9] Kurioka M, Nakata K, Jintoku T, et al. Palladium-catalyzed acetic-acid synthesis from methane and carbon monoxide or dioxide, Chem. Lett., 1995, (3): 244-244
    [10] Asami K, Fujita T, Kusakabe K I, et al., Conversion of methane with carbon dioxide into C2 hydrocarbons over metal oxides, Appl. Catal., A 1995, 126: 245-255
    [11] Asami K, Shikada T, Fujimoto K, Effect of oxidants on the oxidative coupling of methane over alead-oxide catalyst, Bull. Chem. Soc, Jpn., 1991, 64: 266-271
    [12] Nishiyama T, Aika K I, Mechanism of the oxidative coupling of methane using CO2 as an oxidant over PbO-MgO, J. Catal., 1990, 122: 346-351
    [13] Lang J,Zeitschr, Physikal. Chem., 1888, 2: 161
    [14] Fischer F, Tropsch H, Brennst of Chem., 1928, 3
    [15] Gadalla A M, Bower B, The Role of Catalyst Support on the Activity of Nickel for Reforming Methane with CO2, Chem. Eng. Sci., 1988, 43: 3049-3062
    [16] Richardson J T, Paripatyadar S A, Carbon Dioxide Reforming of Methane with Supported Rhodium, Appl. Catal., 1990, 61: 293-309
    [17] Rostrupnielsen J R, Hansen J H B, CO2-Reforming of Methane over Transition Metals, J. Catal., 1993, 144 (1): 38-49
    [18] Bradford M C J, Vannice M A, Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity, Appl. Catal., A 1996, 142: 73-96
    [19] Yamazaki O, Nozaki T, Omata K, Fujimoto K, Reduction of Carbon Dioxide by Methane with Ni-on-MgO-CaO Containing Catalysis, Chem. Lett., 1992, 1953-1954
    [20] Yamazaki O, Tomishige K, Fujimoto K, Development of highly stable nickel catalyst for methane-steam reaction under low steam to carbon ratio, Appl. Catal., A 1996, 136: 49-56
    [21] Ruckenstein E, Hu Y H, Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts, Appl. Catal., A 1995, 133: 149-161
    [22] Udengaard N R, Bak Hansen J H, Hanson D C, et al, Sulfur Passivated Reforming Process Lowers Syngas H2/CO Ratio, Oil Gas J., 1992, 90: 62-67
    [23] Choudhary V R, Uphade B S, Mamman A S, Simultaneous steam and CO2 reforming of methane to syngas over NiO/MgO/SA-5205 in presence and absence of oxygen, Appl. Catal., A 1998, 168: 33-46
    [24] Averbukh A Y, et al, Heterogeneous Incomplete Oxidation of Methane in Nature Gas in the Presence of homogeneous Initiators, Nauk Osn Pererab Nefti Gasa Neftelkhim, Tezisy Dokl, Vses Konf, 1977, 175, CA 9293839.
    [25] Hoogendoorn J C, Gas from Coal for Synthesis of Hydrocarbons, Communication 960. 112th IGE General Meeting, London, 1975.
    [26] Eilers J, et al, A Process for the Synthesis of HCN on Platinum Catalysts, Proc. AIChE Spring National Meeting, Orlando, FL, 1990, 18-22
    [27] Vilesov N G, et al, Acid-Base Interaction on Oxide Surfaces, Zh Prikl Kbim, 1977, 50, 2183, CA, 89, 125675
    [28] Keller G E, Bhasin M M, Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts, J Catal., 1982, 73: 9-19
    [29] Ross J R H, VanKeulen A N J, Hegarty M E S, Seshan K, The catalytic conversion of natural gas to useful products, Catal. Today, 1996, 30: 193-199
    [30] Vannice M A, Catalytic synthesis of hydrocarbon from carbon-monoxide and hydrogen, Catal. Rev.-Sci. Eng., 1976, 14: 153-191
    [31] Gillies M T, C1-Based Chemicals from Hydrogen and Carbon Monoxide, Noyes Data Corporation, Park Ridge, New Jersey, U.S.A,1982
    [32] Royer A S, Chemicals for Synthesis gas, D Reidel, Publishing Company, Goston 1983.
    [33] 李文钊,天然气催化转化新进展,石油与天然气化工,1998, 27(1): 1-3
    [34] 黄涛,姚洁,王公应,甲醇氧化羰化合成DMC铜系催化剂的研究,天然气化工,1998, 23(1): 26-29
    [35] Rostrupnielsen J R, Catalytic Steam Reforming Catalysis Science and Technology (Anderson J. R, Boudart M, eds), Springer, Berlin, 1984, 5: 1
    [36] Rider D E, Twigg M W, Catalysts HandBook 2"d den (M. Twigg, eds) Wolfe, Publ, London, 1989, 1
    [37] Rostrup-Nielsen J R, Dybkjer I, Christiansen L J, NATO ASI Chemical Reactors Technology for Environmentally Safe Reactors and Products (H.D. Lasa, eds) Kluwer, Dordrecht,1992, 249
    [38] Garcia L,French R,Czemik S,et al. Catalytic steam reforming of bio-oils for the production hydrogen:effects of catalyst composition, Appl. Catal., A 2000, 201(2): 225-239
    [39] Kikuchi E, Membrane reactor application to hydrogen production, Catal. Today, 2000, 56(1-3): 97-101
    [40] Ahmed K, Foger K, Kinetics of internal steam reforming of methane on Ni/YSZ-based anodes for solid oxide fuel cells, Catal. Today, 2000, 63(2-4): 479-487
    [41] Froment G F, Bischoff K B, Chemical reactor Analysis and Design, John Wiley, New York. 1991
    [42] Gadalla A M, Sommer M E, Carbon dioxide Reforming of Methane on Nickel Catalysts, Chem. Eng. Sci., 1989, 44(12): 2825-2829
    [43] Richardson J T, Paripatyadar S A, Carbon dioxide Reforming of Methane with Supported Rhodium, Appl. Catal., 1990, 61: 293-309
    [44] 李新生,徐杰,林励吾主编,催化新反应与新材料,河南科学技术出版社,1996, P7
    [45] Stubl D R, Prophet H, JANAF Thermochemical Tables, NSRDS-NBS 37, Washington D C. 1971
    [46] Wang S B, Lu G Q, Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art, Energy & Fuels, 1996, 10: 896-904
    [47] 许峥,张继炎,张鎏,CH4-CO2转化的研究进展,石油化工, 1997, 6: 402-407
    [48] ?lgaard-Nielsen B, Luntz A C, Holmblad P M, Chorkendorf I, Activated dissociative chemisorption of methane on Ni (100): a direct mechanism under thermal conditions? Catal. Lett., 1995, 32: 15-30
    [49] Luntz A C, Winters H F, Dissociation of Methane and Ethane on Pt(110) – Evidence for a Direct Mechanism under Thermal Conditions, J. Chem. Phys., 1994, 101(12): 10980-10989
    [50] Luntz A C, Harris J, CH4 Dissociation on Metals-a Quantum Dynamics Model. Surf. Sci., 1991, 258(1-3): 397-426
    [51] Seets D C, Wheeler M C, Mullins C B, Mechanism of the dissociative chemisorption of methane over Ir(110): Trapping-mediated or direct?, Chem. Phys. Lett., 1997, 266: 431-436
    [52] Ceyer S T, Yang Q Y, Lee M B, et al., in Methane Conversion (D.M. Bibby, C.D. Chang, R.F. Howe, S. Yurak, eds) Elsevier, Amsterdam, 1988, p51
    [53] Vansanten R A, Neurock M, Concepts in Theoretical Heterogeneous Catalytic Reactivity, Catal. Rev. Sci. Eng., 1995, 37(4): 557-698
    [54] Lowe J P, Quantum Chemistry, 2nd ed, Academic Press, Boston, 1993
    [55] Trevor D J, Cox D M, Kaldor A, Methane Activation on Unsupported Platinum Clusters, J. Am. Chem. Soc., 1990, 112: 3742-3749
    [56] Kuijpers E G M, Breedijk A K, Vanderwal W J J, et al., Chemisorption of methane on Ni/SiO2 catalysts and reactivity of the chemisorption products toward hydrogen, J. Catal., 1983, 81: 429-439
    [57] Beebe T P, Goodman D W, Kay B D, et al., Kinetics of the Activated Dissociative Adsorption of Methane on the Low Index Planes of Nickel single–crystal Surfaces, J. Chem. Phys., 1987, 87: 2305-2315
    [58] Kaminsky M, Atomic & Ionic Impact Phenomena on Metal Surfaces, Springer Verlag, New York, 1965
    [59] Minot C, VanHove M A, Somorjai G A, A covalent model for the bonding of adsorbed hydrocarbon fragments on the (111) face of platinum,Surf. Sci., 1983, 127: 441-460
    [60] Koster A D, Van Santen R A, Molecular orbital studies of the adsorption of CH3, CH2, and CH on Rh(111) and Ni(111) surfaces, J. Catal., 1991, 127: 141-166
    [61] Zheng C, Apeloig Y, Hofman R, Bonding and Coupling of C-1 Fragments on Metal Surfaces, J. Am. Chem. Soc., 1988, 110: 749-774
    [62] Aparicio L M, Transient Isotopic Studies and Microkinetic Modeling of Methane Reforming over Nickel Catalysts, J. Catal., 1997, 165: 262-274
    [63] Ozaki A, Isotopic Studies in Heterogeneous Catalysis, Academic Press, New York, 1977
    [64] Osaki T, Masuda H, Horiuchi T, et al., Highly Hydrogen-Deficient Hydrocarbon Species for the CO2 Reforming of CH4 on CO/Al2O3 Catalyst, Catal. Lett., 1995, 34: 59-63
    [65] Osaki T, Masuda H, Mori T, Intermediate Hydrocarbon Species for the CO2-CH4 Reaction on Supported Ni Catalysis, Catal. Lett., 1994, 29: 33-37
    [66] Erkelens J, Wosten W J, Infrared spectra of chemisorbed molecules: V. Magnetic and infrared measurements on methane, ethane, ethylene, and acetylene adsorbed on silica-supported nickel, J. Catal., 1978, 54(2): 143-154
    [67] Takayasu O, Hongo N, Matsuura I, Spillover Effect for the Reducing Reaction of CO2 with CH4 over SiO2-supported Transition-Metal Catalysts Physically Mixed with MgO, Stud. Surf. Sci. Catal., 1993, 77: 305-308
    [68] Solymosi F, Kustan G, Erdohelyi A, Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals, Catal. Lett., 1991, 11: 149-156
    [69] Erdohelyi A, Cserenyi J, Solymosi F, Activation of CH4 and Its Reaction with CO2 over Supported Rh Catalysts, J. Catal., 1993, 141: 287-299
    [70] Solymosi F, Cserenyi J, Decomposition of CH4 over supported Ir catalysts,Catal. Today, 1994, 21: 561-569
    [71] Erdohelyi A, Cserenyi J, Papp E, et al., Catalytic reaction of methane with carbon dioxide over supported palladium,Appl. Catal., A 1994, 108: 205-219
    [72] Erdohelyi A, Fodor K, Solymosi F, Reaction of CH4 with CO2 and H2O over supported Ir catalyst, Stud. Surf. Sci. Catal., 1997, 107: 525-530
    [73] Ferreira-Aparicio P, Rodriguez-Ramos I, Guerrero-Ruiz A, Methane interaction with silica and alumina supported metal catalysts,Appl. Catal., A 1997, 148: 343-356
    [74] Solymosi F, The Bonding, Structure and Reactions of CO2 Adsorbed on Clean and Promoted Metal-Surfaces, J. Mol. Catal., 1991, 65: 337-358
    [75] Wambach J, Freund H J, in Carbon Dioxide Chemistry: Environmental Issues (J. Paul, C.M. Pradier, eds) Athenaeum Press, Cambridge, 1994, p31
    [76] Segner J, Campbell C T, Doyen G, et al., Catalytic oxidation of CO on Pt(111): The influence of surface defects and composition on the reaction dynamics, Surf. Sci., 1984, 138: 505-523
    [77] Nikolic B Z, Huang H, Gervassio D, et al, Electroredution of Carbon dioxide on Platinum single-Crystal Electrodes-Electrochemical and in situ FTIR Studies, J. Electroanal. Chem., 1990, 295: 415-423
    [78] Rodes A, Pastor E, Iwasita T, Carbon dioxide Reduction on Platinum Single-Crystal Surfaces-Voltammetric and FTIRs Results, Anal. Quim., 1993, 89: 458-464
    [79] RomanMartinez M C, CazorlaAmoros D, DeLecea C S M, et al., Structure sensitivity of CO2 hydrogenation reaction catalyzed by Pt/carbon catalysts, Langmuir, 1996, 12: 379-385
    [80] Vernon P D F, Green M L H, Cheetham A K, et al., Partial oxidation of methane to synthesis gas, and carbon dioxide as an oxidising agent for methane conversion, Catal. Today, 1992, 13: 417-426
    [81] Gesser H D, Hunter N R, Shigapov A N, et al., Carbon Dioxide Reforming with Methane to CO and H2 in a Hot Wire Thermal Diffusion Column (TDC) Reactor, Energy & Fuels, 1994, 8: 1123-1125
    [82] Swaan H M, Kroll V C H, Martin G A, et al. Deactivation of supported nickel catalysts during the reforming of methane by carbon dioxide, Catal. Today, 1994, 21: 571-578
    [83] Nandini A, Pant K K, Dhingra S C, Kinetic study of the catalytic carbon dioxide reforming of methane to synthesis gas over Ni-K/CeO2-Al2O3 catalyst, Appl. Catal., A 2006, 308: 119–127
    [84] Gadalla A M, Sommer M E, Synthesis and Characterization of Catalysts in the System Al2O3-MgO-NiO-Ni for Methane Reforming with CO2, J. Am. Ceram. Soc., 1989, 72: 683-687
    [85] Bradford M C J, Vannice M A, Catalytic reforming of methane with carbon dioxide over nickel catalysts II. Reaction kinetics,Appl. Catal., A 1996, 142: 97-122
    [86] Bradford M C J, Vannice M A, CO2 Reforming of CH4 over Supported Pt Catalysts, J. Catal., 1998, 173: 157-171
    [87] Bodrov I M, Apel'baum L O, Temkin M I, Kinet. Catal., 1964, 5: 614
    [88] Nakamura J, Aikawa K, Sato K, et al, Role of support in reforming of CH4 with CO2 over Rh catalysts, Catal. Lett., 1994, 25: 265-270
    [89] Bodrov I M, Apel'Baurn L O, Kinet. Catal., 1967, 8: 326
    [90] Wang H Y, Au C T, CH4/CD4 isotope effects in the carbon dioxide reforming of methane to syngas over SiO2-supported nickel catalysts, Catal. Lett., 1996 38: 77-79
    [91] Wang H Y, Au C T, Carbon dioxide reforming of methane to syngas over SiO2-supported rhodium catalysts. Appl. Catal., A 1997, 155: 239-252
    [92] Burghgraef H, Jansen A P J, Vansanten R A, Electronic-Structure Calculations and Dynamics of Methane Activation on Nickel and Cobalt, J. Chem. Phys., 1994, 101: 11012-11020
    [93] Zhang Z L, Verykios X E, Mechanistic aspects of carbon dioxide reforming of methane to synthesis gas over Ni catalysts, Catal. Lett., 1996, 38: 175-179
    [94] Kroll V C H, Swann H M, Lacombe S, Mirodatos C, Methane Reforming Reaction with Carbon Dioxide over Ni/SiO2 Catalyst II. A Mechanistic Study, J. Catal., 1997, 164: 387-398
    [95] Shustorovich E, Bell A T, Oxygen-assisted cleavage of O-H, N-H, and C-H bonds on transition-metal surfaces-bond-order-conservation morse-potential analysis, Surf. Sci., 1992, 268: 397-405
    [96] Walter K, Buyevskaya O V, Wolf D, et al, Rhodium-catalyzed partial oxidation of methane to CO and H2. In situ DRIFTs studies on surface intermediates, Catal. Lett., 1994, 29: 261-270
    [97] Qin D, Lapszewicz J, Jiang X, Comparison of Partial Oxidation and Steam-CO2 Mixed Reforming of CH4 to Syngas on MgO-Supported Metals, J. Catal., 1996, 159: 140-149
    [98] Shustorovich E, Bell A T, an Analysis of Fischer-Tropsch Synthesis by the Bond-Order-Conservation-Morse-Potential Approach, Surf. Sci., 1991, 248: 359-368
    [99] Mark M F, Maier W F, Active Surface Carbon- a Reactive Intermediate in the Production of Synthesis Gas from Methane and Carbon dioxide, Angew. Chem. Int, ED. Eng., 1994, 33: 1657-1660
    [100] Clarke D B, Suzuki I, Bell A T, an Infrared Study of the Interactions of CO and CO2 with Cu/SiO2, J. Catal., 1993, 142: 27-36
    [101] Osaki T, Horiuchi T, Suzuki K, et al., Kinetics, intermediates and mechanism for the CO2-reforming of methane on supported nickel catalysts, J. Chem. Soc,Faraday Trans., 1996, 92: 1627-1631
    [102] Lercher J A, Bitter J H, Hally W, et al., Design of stable catalysts for methane-carbon dioxide reforming, Stud. Surf. Sci. Catal., 1996, 101: 463-472
    [103] Miller J A, Bowman C T, Mechanism and Modeling of Nitrogen Chemistry in Combustion, Progress in Energy and Combustion Science, 1989, 15(4): 287-338
    [104] Reitmeier R E, Atwood K, Bennett H A, et al., Production of synthesis gas By Reacting Light Hydrocarbons with Steam and Carbon Dioxide,Ind. Eng. Chem., 1948, 40: 620-626
    [105] White G A, Roszkowski T R, Stanbridge D W, Predict Carbon Formation, Hydrocarbon Process, 1975, 54: 130-136
    [106] Sacco A, Jr., Geurts F W A H, Jablonski G A, Lee S, R.A. Gately, Carbon deposition and filament growth on Fe, Co, and Ni foils using CH4-H2-H2O-CO-CO2 gas mixtures, J. Catal., 1989, 119: 322-341
    [107] Rodriguez N M, a Review of Catalytically Grown Carbon Nanofibers, J. Mater. Res., 1993, 8: 3233-3250
    [108] Blyholder G, Lawless M, A theoretical study of the site of CO dissociation on Fe(100), Surf. Sci., 1993, 290: 155-162
    [109] Zaera F, Kollin E, Gland J L, Observation of an Unusually Low C-O Stretching Frequency - CO Chemisorption on a MO(100) Surface, Chem. Phys. Lett., 1985, 121: 464-468
    [110] Johnson S, Madix R J, Desorption of hydrogen and carbon monoxide from Ni(100), Ni(100)p(2 × 2)S, and Ni(100)c(2 × 2)S surfaces, Surf. Sci., 1981, 108: 77-98
    [111] Xu Y S, Hong X L, EHMO calculations for CO dissociation on supported metal catalysts, J. Mol. Catal., 1985, 33: 179-188.
    [112] Somorjai G A, in Bonding Energetics in Organometallic Compounds(T.J. Marks eds,) ACS Symposium Series 428, American Chemical Society, Washingyon, DC, 1990, 218
    [113] Tavares M T, Alstrup I, Berriardo C A, et al., CO Disproportionation on Silica-Supported Nickel and Nickel-Copper Catalysts, J. Catal., 1994, 147: 525-534
    [114] Chesnokov V V, Zaikovskii V I, Buyanov R A, et al., Morphology of carbon from methane on nickel-containing catalysts, Catal.Today, 1995, 24: 265-267
    [115] Tsipopuriari V A, Efstathiou A M, Zhang Z L, et al., Reforming of methanewith carbon dioxide to synthesis gas over supported Rh catalysts, Catal. Today, 1994, 21: 579-587
    [116] Bradford M C J, Vannice M A, Metal-support interactions during the CO2 reforming of CH4 over model TiOx/Pt catalysts,Catal. Lett., 1997, 48: 31-38
    [117] Zhang Z L, Verkios X E, Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts, Catal. Today, 1994, 21: 589-595
    [118] Horiuchi T, Sakuma K, Fukui T, et al, Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst, Appl. Catal., A 1996, 144: 111-120
    [119] Kim G J, Cho D S, Kim K H, Kim J H, the Reaction of CO2 with CH4 to Synthesize H2 and CO over Nickel-loaded Y-Zeolites, Catal. Lett., 1994, 28: 41-52
    [120] Tang S B, Qiu F L, Lu S J, Effect of supports on the carbon deposition of nickel catalysts for methane reforming with CO2 , Catal.Today, 1995, 24: 253-255
    [121] Djaidja A, Libs S, Kiennemann A, et al, Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts, Catal. Today, 2006, 113: 194–200
    [122] Kroll V C H, Swaan H M, Mirodatos C, Methane Reforming Reaction with Carbon Dioxide Over Ni/SiO2Catalyst: I. Deactivation Studies, J. Catal., 1996, 161: 409-422
    [123] Ito M, Tagawa T, Goto S, Suppression of carbonaceous depositions on nickel catalyst for the carbon dioxide reforming of methane, Appl. Catal., A 1999, 177(1): 15-23
    [124] Perera J S H Q, Couves J W, Sankar G, et al., the Catalytic Activity of Ru and Ir Supported on Eu2O3 for the Reaction, CO2 + CH4-reversible-2H2 + 2CO - a Viable Solar –Thermal Energy System, Catal. Lett., 1991, 11: 219-225
    [125] Qin D, Lapszewicz J, Study of Mixed Steam and CO2 Reforming of CH4 to Syngas on MgO Supported Metals, Catal.Today, 1994, 21: 551-560
    [126] Ashcroft A T, Cheetham A K, Green M L H, et al., Partial Oxidation of Methane to Synthesis Gas -Using Carbon dioxide, Nature, 1991, 352: 225-226
    [127] Guerrero Ruiz A, Sepulveda Escribano A, Rodriguez-Ramos I, Cooperative action of cobalt and MgO for the catalysed reforming of CH4 with CO2, Catal. Today, 1994, 21: 545-550
    [128] Stagg S M, Resasco D E, Effects of Promoters and Supports on Coke Formationon Pt Catalysts during CH4 Reforming with CO2, Stud. Surf. Sci. Catal., 1997, 111: 543-550
    [129] Wang R, Xu H Y, Liu X B,et al, Role of redox couples of Rh0/Rhδ+ and Ce4+/Ce3+ in CH4/CO2 reforming over Rh–CeO2/Al2O3 catalyst, Appl. Catal., A 2006, 305: 204–210
    [130] Yang M, Papp H, CO2 reforming of methane to syngas over highly active and stable Pt/MgO catalysts, Catal. Today, 2006, 115: 199–204
    [131] Tokunaga O, Ogasawara S, Reduction of Carbon Dioxide with Methane over Ni Catalyst, React. Kinet. Catal. Lett., 1989, 39: 69-74
    [132] 徐恒泳,孙希贤,范业梅等,甲烷、二氧化碳转化制合成气的研究,Ⅰ催化剂及其催化性能,石油化工,1992, 3: 147-153
    [133] Verykios X E, Mechanistic aspects of the reaction of CO2 reforming of methane over Rh/Al2O3 Catalyst, Appl. Catal., A 2003, 255: 101-111
    [134] Tomishige K, Kanzawa S, Suzuki K, et al, Effective heat supply from combustion to reforming in methane reforming with CO2 and O2: comparison between Ni and Pt catalysts, Appl. Catal., A 2002, 233: 35-44
    [135] Bradford M C J, Vannice M V, CO2 Reforming of CH4 over Supported Ru Catalysts, J. Catal., 1999, 183: 69-75
    [136] Bitter J H, Seshan K, Lercher J A, Deactivation and Coke Accumulation during CO2/CH4Reforming over Pt Catalysts, J. Catal., 1999, 183: 336-343
    [137] Bhat R N, Sachtler W M N, Potential of zeolite supported rhodium catalysts for the CO2 reforming of CH4, Appl. Catal., A 1997, 150: 279-296
    [138] O’Connor A M, Schuurman Y, Ross J R H, et al. Transient studies of carbon dioxide reforming of methane over Pt/ZrO2 and Pt/Al2O3, Catal. Today, 2006, 115: 191–198
    [139] Wisniewski M, Boréave A, Gélin P, Catalytic CO2 reforming of methane over Ir/Ce0.9Gd0.1O2-x, Catal. Commun., 2005, 6: 596–600
    [140] Hou Z Y, Chen P, Fang H L, Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts, International Journal of Hydrogen Energy, 2006, 31: 555-561
    [141] Fischer F, Tropsch H, Brennst of Chem., 1928, 3: 39
    [142] Tokunaga O, Osada Y, Ogasawara S, Reaction of CO2/CH4 as a High level heat –Transport System, Fuel, 1989, 68: 990-994
    [143] Roh H S, Jun K W, Dong W S, et al., Highly stable Ni catalyst supported on Ce–ZrO2 for oxy-steam reforming of methane, Catal. Lett., 2001, 74(1-2): 31-36
    [144] Zhang Z L, Verykios X E, Carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 catalysts, Appl. Catal., A 1996, 138: 109-133
    [145] Ruckenstein E, Wang H Y, Carbon Deposition and Catalytic Deactivation during CO2 Reforming of CH4 over Co/γ-Al2O3 Catalysts, J. Catal., 2002, 205: 289-293
    [146] Dong W S, Roh H S, Jun K W, et al., Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content, Appl. Catal., A 2002, 226: 63-72
    [147] Mamedov A K, Mirzabekova S R, Nuriyev S A, Aliyev V S, Conversion of Propane with Carbon dioxide into C2-C3 Olefins and CO, Petroleum Chemistry, 1991, 31(5): 627-634
    [148] 纪敏,周美娟,毕颖丽等,Ni/γ-A12O3,Ni/MgO,Ni/SiO2催化剂上甲烷与二氧化碳重整反应的研究,分子催化,1997, 11(1): 6-l2
    [149] 路勇,邓存,丁雪加等,担载型钴金属催化剂上甲烷与二氧化碳转化制合成气,催化学报,1995, 6: 447-452
    [150] Claridge J B, York A P E, Brungs A J, New Catalysts for the Conversion of Methane to Synthesis Gas: Molybdenum and Tungsten Carbide, J. Catal., 1998, 180: 85-100
    [151] Takanabe K, Nagaoka K, Nariai K, et al, Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane, J. Catal., 2005, 232: 268-275
    [152] 李春林,伏义路,不同方法制备的催化剂对重整反应的催化性能,催化学报,2003, 24(3): 187-192
    [153] 许峥,张继炎,赵金保,等.超细镍基催化剂上重整反应的性能Ⅱ制备方法对催化性能和抗积碳性能的影响,催化学报,2000, 2l(4): 309-313
    [154] 索掌怀,徐秀峰,马华宪,等.制备方法对Ni/MgO/Al2O3催化剂在甲烷与二氧化碳重整反应活性的影响,催化学报,2000, 21(5): 411-414
    [155] 徐占林,毕颖丽,甄开吉.Β-氧化铝型六铝酸盐BaNiA12O3催化甲烷CO2重整制合成气,分子催化,1999, 13(6): 447-452
    [156] 徐占林,崔湘浩,甄明,等.六铝酸盐LaMA111O19-δ催化CO2重整甲烷制合成气,高等学校化学学报,2000, 21(2): 298-300
    [157] Montoya J A, Pascual E R, Gimon C, et al, Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel, Catal. Today, 2000, 63: 71-85
    [158] Hayakawa T, Suzuki S, Nakamura J, et al, CO2 reforming of CH4 over Ni/perovskite catalysts prepared by solid phase crystallization method, Appl. Catal., A 1999, 183(2): 273-285
    [159] Shishido T, Sukenobu M, Morioka H, et al, CO2 reforming of CH4 over Ni/Mg-Al oxide catalysts prepared by solid phase crystsllization method from Mg-Al hydrotalcite-like precursors, Catal. Lett., 2001, 73(1): 21-26
    [160] 纪敏,周美娟,毕颖丽,等.La2O3/Ni/SrA112O19催化剂上甲烷与二氧化碳重整反应的研究,分子催化,1997, 11(1): 13-l9
    [161] Zhang Z L, Enophon E, et al., Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conventional nickel-based catalysts, J. Phys. Chem., 1996, 100(2): 744-754
    [162] Ruckenstein E, Hu Y H, The effect of precursor and preparation conditions of MgO on the CO2 reforming of CH4 over Ni/MgO catalysts, Appl. Catal., A 1997, 154: 185-205
    [163] Nimwattanakul W, Luengnaruemitchai A, Jitkarnka S, Potential of Ni supported on clinoptilolite catalysts for carbon dioxide reforming of methane, International Journal of Hydrogen Energy, 2006, 31: 93-100
    [164] Masai M, Kado H, Miyake A, et al., in Methane Coversion (B.M. Biddy, C.D. Chang, eds) Elsevier, Amsterdam, 1988, 67
    [165] Takayasu O,Matsuura I, et al, Proc 10'h ICC, Budapest, 1992, 1951
    [166] 唐松柏,邱发礼,CH4-CO2 转化反应载体对负载型 Ni 催化剂抗积碳性能的影响,天然气化工,1994, 19(6): 10-14
    [167] 任杰,陈仰光,吴东等,甲烷、二氧化碳重整制合成气催化剂的研究 I Ni-Al2O3间的相互作用对催化剂性能的影响,分子催化,1994, 3: 181-190
    [168] Chen Y G, Ren J, Conversion of methane and carbon dioxide into synthesis gas over alumina supported nickel catalysts Effect of Ni-Al2O3 interactions, Catal. Lett., 1994, 29: 3948
    [169] Sridhar S, Sichen D, Seetharaman S, Investigation of the Kinetics of Reduction of Nickel-Oxide and Nickel Aluminate by Hydrogen, Zeitschrift fur Metallkunde, 1994, 85(9): 616-620
    [170] Bhattacharyya A, Chang V W, CO2 Reforming of Methane to Syngas- Deactivation Behavior of Nickel Aluminate Spinel Catalysts, Stud. Surf. Sci. Catal., 1994, 88: 207-213
    [171] Chen Y G, Yamazaki O, Tomishige K, Fujimoto K, Noble metal promoted Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2, Catal. Lett., 1996, 39: 91-95
    [172] Hu Y H, Ruckenstein E, An optimum NiO content in the CO2 reforming of CH4 with NiO/MgO solid solution catalysts, Catal. Lett., 1996, 36: 145-149
    [173] Ruckenstein E, Hu Y H, Role of support in CO2 reforming of CH4 to syngas over Ni catalysts, J. Catal., 1996, 162: 230-238
    [174] Hu Y H, Rhckenstein E, Temperature-Programmed Desorption of CO Adsorbed on NiO/MgO, J. Catal., 1996, 163: 306-311
    [175] Hu Y H, Rhckenstein E, The effect of precursor and preparation conditions of MgO on the CO2 reforming of CH4 over NiO/MgO catalysts, Appl. Catal., A 1997, 154: 185-205
    [176] Hu Y H, Rhckenstein E, The characterization of a highly effective NiO/MgO solid solution catalyst in the CO2 reforming of CH4, Catal. Lett., 1997, 43: 71-77
    [177] Hu Y H, Rhckenstein E, CH4 TPR-MS of NiO/MgO Solid Solution Catalysts, Langmuir, 1997, 13: 2055-2058
    [178] Roberts S, Gone R J, A Study of Pt Films on ZRO2 (100), J. Phys. Chem., 1991, 95: 5600-5604
    [179] Roberts S, Gorte R J, a Comparison of Pt over layers on Alpha-Al2O3(0001), ZnO(0001)Zn, and ZnO(0001)O, J. Chem. Phys., 1990, 93: 5337-5344
    [180] Baker R T K, Prestridge E B, Garten R L, Electron microscopy of supported metal particles : I. Behavior of Pt on titanium oxide, aluminum oxide, silicon oxide, and carbon, J. Catal., 1979, 56: 390-406
    [181] Chang J S,Park S E,Chon H, Catalytic activity and coke resistance in the carbon dioxide reforming of methane to synthesis gas over zeolite-supported Ni catalysts, Appl, Catal., 1996, 45(1-2): 111-124
    [182] 官丽红, 史克荣,徐恒泳等,甲烷二氧化碳转化制合成气稀土助剂抗积碳性能的研究,哈尔滨师范大学自然科学学报,1999, 15(2): 74-76
    [183] Ascencion Montoya J,Enrique Romero,Antonio Monzon, Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts synthesized by sol-gel method. 16th Meetingof the North American Catalysis Society, the Wesfin Hotel Copley Place Boston Massachusetts, May 30-june 4, 1999
    [184] 李基涛,陈旦明,严前古等,助剂对CH4/CO2重整镍基催化剂性能的影响,天然气化工,1999, 24(3): 25-27
    [185] Frusteri K, Arena F, Calogero G, et al, Potassium enhanced stability of Ni/MgO catalysts in the dry reforming of methane, Catal. Commun., 2001, 2(2): 49-56
    [186] Seok S H, Choi S H, Park E D, et al, Mn-Promoted Ni/Al2O3 Catalysts for Stable Carbon Dioxide Reforming of Methane, J. Catal., 2002, 209: 6-15
    [187] Schuurman Y, Mirodatos C, Aparicio P F, et al., Bifunctional pathways in the carbon dioxide reforming of methane over MgO-promoted Ru/C catalysts, Catal. Lett., 2000, 66: 33-37
    [188] Chen Y G, Tomishige K, Yokoyama K, Fujimoto K, Promoting effect of Pt, Pd and Rh noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2 , Appl. Catal., A 1997, 165: 335-347
    [189] Park S E, Shim E K, Lee K W, et al, Formation of Methylformate during Hydrogenation of CO2 over Cu/ZnO/Al2O3 and K-Fe/L Zeolite Catalysts, Stud. Surf. Sci. Catal., 1994, 84: 1595-1602
    [190] Slagtem A, Olsbye U, Blom R,et al., Characterization of Ni on La modified Al2O3 catalysts during CO2 reforming of methane, Appl. Catal., A 1997, 165: 379-390
    [191] 史克英,徐恒泳,商永臣, 等,天然气和二氧化碳转化制合成气的研究 Ⅲ.催化剂抗积碳性能,分子催化,1995, 3: 161-164
    [192] Jeong H, Kim K I, Kim D, Effect of promoters in the methane reforming with carbon dioxide to synthesis gas over Ni/HY catalysts, J. Mol. Catal., A 2006, 246: 43–48
    [193] Li X C, Wu M, Lai Z H, Studies on nickel-based catalysts for carbon dioxide reforming of methane, Appl. Catal., A 2005, 290: 81–86
    [194] Baker R T K, Catalytic growth of carbon filaments, Carbon,1989, 27(3): 315-323
    [195] Somorjai G A, In: Marks T J ed. ACS Symposium Series 428: Bonding Energetics in Organometallic Compounds. Washington D C: ACS, 1990, 218
    [196] 李春林,伏义路,孟明,等,添加水蒸气对 CH4-CO2 重整催化剂Ni/CeO2-ZrO2-Al2O3中Ni组分结构影响的EXAFS研究,核技术,2002, 25(10): 879-882
    [197] Chen Y G, Tomishige K, Fujimato K, Formation and characteristic properties of carbonaceous species on nickel-magnesia solid solution catalysts during CH4-CO2 reforming reaction,Appl. Catal., A 1997, 161(1-2): L11-L17
    [198] Luo J Z, Yu Z L, Ng C F, et al, CO2/CH4 Reforming over Ni–La2O3/5A: An Investigation on Carbon Deposition and Reaction Steps, J. Catal., 2000, 194: 198-210
    [199] Iyi N, Takekawa S, Kimura S, Crystal chemistry of hexaaluminates: β-alumina and magnetoplumbite structures, J. Sol. State Chem., 1989, 83: 8-19
    [200] Liu B S, Au C T, Cabon deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas,Appl. Catal., A 2003, 244: 181-195
    [201] Li H S,Wang J F, Study on CO2 reforming of methane to syngas over Al2O3-ZrO2 supported Ni catalysts prepared via a direct sol-gel process, Chem. Eng. Sci., 2004, 59(22-23): 4861-4867
    [202] Tomiyama S, Takahashi R, Stato S, et al. Preparation of Ni/SiO2 catalyst with high thermal stability for CO2-reforming of CH4, Appl. Catal., A 2003, 241(1-2): 349-361
    [203] Tang S, Ji L, Lin J, et al. CO2 reforming of methane to synthesis gas over sol-gel-made Ni/γ-Al2O3 catalysts from organometallic precursors, J. Catal., 2000, 194(2): 424-430
    [204] 许峥,张鎏,张继炎等,超细镍基催化剂上 CH4-CO2 重整反应的性能 I. 制备方法对催化剂结构和还原性能的影响,催化学报,2000, 21(3): 234-238
    [205]李文英,朱素渝,孙泉等,CH4/CO2重整反应镍催化剂的积碳性能研究,第七届全国催化会议论文集,大连,1994, 201-203
    [206] Tesner P A, Robinovich E Y, Rafalkes I S, et al., Formation of carbon fibers from acetylene, Carbon, 1970, 8: 435-450
    [207] Baker R T K, Harris P S, Thomas R B, et al. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene,J. Catal., 1973, 30: 86-95
    [208] Snoeck J W, Froment G F, Fowlesy M, Kinetic Study of the Carbon Filament Formation by Methane Cracking on a Nickel Catalyst, J. Catal., 1997, 169: 250-262
    [209] 黄传敬,郑小明,费金华,用不同前驱体制备的Co/SiO2催化剂的结构及其CO2/CH4重整反应性能,催化学报,2001, 22(2): 138-142
    [210] Takenaka S, Kato E, Tomikubo Y, et al. Structural change of Ni species duringthe methane decomposition and the subsequent gasification of deposited carbon with CO2 over supported Ni catalysts, J. Catal., 2003, 219: 176-185
    [211] Zhang Y, Smith K J, Carbon formation thresholds and catalyst deactivation during CH4 decomposition on supported Co and Ni catalysts, Catal. Lett., 2004, 95 (1-2): 7-l2
    [212] 江琦,邓国才,担载型含稀土三组份体系在CO2甲烷化反应中的催化性能,稀土,1998, 19(5): 37-41
    [213] 米纳切夫,稀土在催化剂中的反应[M],北京:科学出版社,1987, 56: 45
    [214] Wallace W E, The Rare Earth in Science and technology, New York:Plenum,1982
    [215] 盛茵,马福泰,助催化剂 Sm2O3 对甲烷化镍催化剂的作用,高等学校化学学报,1992, 13(2): 259-261
    [216] Mueller-Buschbaum H, Anorg Z, Allg. Chem., 1967, 41: 355
    [217] Xu S, Yan X B, Wang X L, Catalytic performances of NiO-CeO2 for the reforming of methane with CO2 and O2, Fuel, 2006, 85: 2243-2247
    [218] Ruckenstein E, Hu Y H, Interactions between Ni and La2O3 in Ni/La2O3 Catalysts Prepared Using Different Ni Precursors, J. Catal.,1996, l6l(1): 55-61
    [219] 陈吉祥,邱业君,张继炎等,La2O3和CeO2对CH4-CO2重整Ni/MgO催化剂结构和性能的影响,物理化学学报,2004, 20(1): 76-80
    [220] Buchholz T, Wild U, Muhler M, et al., Hydroisomerization of n-hexane over Pt/sulfated zirconia:activity, reversible deactivation, and surface analysis,Appl. Catal., A 1999, 189: 225-236
    [221] Paal Z, Schlogl R, Ertl G, J. Chem. Soc., Faraday Trans., 1992, 88: 1179
    [222] 李春林,伏义路,水蒸汽对 Ni/Ce-Zr-A1-Ox 催化剂上 CO2-CH4 反应积碳的影响,物理化学学报,2004, 20(专刊): 906-910
    [223] 路勇,余长春,刘育等,CH4/CO2重整制合成气Co催化剂上积碳的XPS/AES、TEM和XRD表征,天然气化工,1998, 23: 4-8
    [224] Uwamino Y, Ishizuka Y, Yamatera H, X-ray photoelectron spectroscopy of rare earth compounds, J. Electron Spectrosc. Relat. Phenom., 1984, 34: 67-78
    [225] Nefedov V I, Firsov M N, Shaplygin I S, Electronic structures of MRhO2, MRh2O4, RhMO4 and Rh2MO6 on the basis of X-ray spectroscopy and ESCA data, J. Electron Spectrosc. Relat. Phenom., 1982, 26: 65-78
    [226] Suzuki C, Kawai J, Takahashi M, The electronic structure of rare-earth oxides in the creation of the core hole, Chem. Phys., 2000, 253: 27-40
    [227] Gómez-Sainero L M, Baker R T, Metcalfe I S, et al, Investigation of Sm2O3–CeO2-supported palladium catalysts for the reforming of methanol: The role of the support, Appl. Catal., A 2005, 294: 177–187
    [228] Liu B S, Gao L Z, Au C T, Preparation, characterization and application of a catalytic NaA membrane for CH4/CO2 reforming to syngas, Appl. Catal., A 2002, 235(1-2): 193-206
    [229] 胡泽善,张量渠,郭慎独,La2O3对天然气蒸汽转化Ni/α-Al2O3催化剂性能的影响,催化学报, 1992, 13(2): 83-89
    [230] Lemonidou A A, Vasalos I A, Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al2O3 catalyst, Appl. Catal., A 2002, 228: 227-235
    [231] Bradford M C J, Vannice M A, CO2 reforming of CH4, Catal. Rev. Sci. Eng., 1999, 41: 1-42
    [232] Sakai Y, Saito H, Sodesawa T, et al., Catalytic Reactions of Hydrocarbon with Carbon Dioxide over Metallic Catalysts, React. Kinet. Catal. Lett., 1984, 24: 253
    [233] Takano A, Tagawa T, Goto S, Carbon Dioxide Reforming of Methane on Supported Nickel Catalysts,J. Chem Eng. Jpn., 1994, 27(6): 727
    [234] Osaki T, Horiuchi T, Suzuki K, et al, Suppression of Carbon Deposition in CO2 Reforming of Methane on Metal Sulfide Catalysts. Catal. Lett., 1995, 35: 39
    [235] Efstathiou A M, Kladi A, Tsipouriari V A, et al., Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts : II. A Steady-State Tracing Analysis: Mechanistic Aspects of the Carbon and Oxygen Reaction Pathways to Form CO, J. Catal., 1996, 158: 64-75
    [236] Mark M F, Maier W F, CO2-Reforming of Methane on Supported Rh and Ir Catalysts,J. Catal., 1996, 164: 122-130
    [237] Osaki T, Fukaya H, Horiuchi T, et al., Isotope Effect and Rate Determining Step of the CO2 Reforming of Methane over Supported Ni Catalyst. J. Catal., 1998, 180: 106-109
    [238] Ferreira-Aparicio P, Marquez-Alvarez C, Rodriguez-Ramos I, et al., A Transient Kinetic Study of the Carbon Dioxide Reforming of Methane over Supported Ru Catalysts. J. Catal., 1999, 184: 202-212
    [239] Lu G Q, Wang S B, Ni-based Catalysts for Carbon Dioxide Reforming ofMethane,CHEMTECH, 1999, 29(1): 37-43
    [240] Mark M F,Mark F, Maier W F,Reaction Kinetics of the CO2 Reforming of Methane,Chem. Eng. Technol., 1997, 20: 361
    [241] Lewis W K,Gilliland E R, Reed W A, Reaction of Methane with Copper Oxide in a Fluidized Bed. Ind. Eng. Chem., 1949, 41: 1227-1237
    [242] Olsbye U, Wurzel T, Mleczko L, Kinetic and Reaction Engineering Studies of Dry Reforming of Methane over a Ni/La/Al2O3 Catalyst. Ind. Eng. Chem. Res., 1997, 36: 5180-5188
    [243] Osaki T,Horiuchi T, Suzuki K, et al., Appl. Catal., A 1997, 155: 229-238
    [244] Kroll V C H, Tjatjopoulos G J, Mirodatos C, Kinetics of Methane Reforming over Ni/SiO2 Catalysts Based on a Stepwise Mechanistic Model,Stud. Surf. Sci. Catal.,1998, 119: 753-758
    [245] Wang S, Lu G Q, Reaction Kinetics and Deactivation of Ni based Catalysts in CO2 Reforming of Methane,React. Eng. Pollut. Prev., 2000, 75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700