用户名: 密码: 验证码:
基于MDP的桥梁结构全寿命成本研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型桥梁结构在服役期间由于受外界环境、荷载等因素的影响,性能不断退化。为了保障桥梁结构服役期间的安全与可靠,需对结构进行检测和维修。不恰当的维修决策将导致桥梁结构全寿命周期成本过高,或引起桥梁结构失效造成严重的经济损失,因此,开展桥梁结构的全寿命设计方法的研究具有重要的现实意义。本文基于马尔可夫决策过程(Markov Decision Processes,简记为MDP)对桥梁结构全寿命成本及桥梁结构的维修策略开展研究。本文主要内容如下:
     首先,针对隐式极限状态方程且非线性程度较高时,响应面法求解可靠指标的误差大,而采用Monte Carlo抽样包括重要抽样方法,虽然精度高但计算效率低,对于结构有限元分析进行抽样几乎不能实现的状况,本文提出采用Kriging插值技术建立极限状态超曲面的代理模型,在验算点处应用Monte Carlo重要抽样方法对代理模型抽样进而求得结构的失效概率。结果表明:方法在隐式极限状态方程且非线性程度较高时精度良好,同时较Monte Carlo抽样或重要抽样效率高。
     其次,建立了基于MDP的全寿命成本分析方法,采用值迭代法得到结构寿命周期最优维修策略。研究结构的自身转移矩阵、维修决策影响矩阵及状态综合转移矩阵的确定方法,并以此为基础建立桥梁结构性能退化的马尔可夫模型及桥梁结构全寿命最优维修决策模型。
     最后,以桥梁结构全寿命总成本最小为目标,以可靠指标为约束建立桥梁结构全寿命总成本评价模型;采用基于MDP的全寿命分析方法确定一般桥梁结构的最优初始抗力和全寿命周期内的最优维修策略,研究初始抗力、抗力衰减规律、折现率、失效费用对桥梁结构全寿命周期内可靠指标、总成本及维修决策的影响规律。
Large bridges are deteriorating continuously during their service lives, because of external environment, load and other factors. Necessary maintenance and inspection should be taken on bridge structures for ensuring safety and reliability during service. However, irrelevancy maintenance policies may lead to high life-cycle cost or structural failure, cause enormous economic loss. Life-cycle design of bridge structure has great research significance. This dissertation focuses on investigation of life-cycle cost and maintenance policy of bridge structure by using a Markov Decision Processes-based (MDP) modeling approach. The main contents are as follows:
     Firstly, a new method based on Kringing technology and Monte Carlo important sampling was proposed for structural reliability analysis. Kriging technology can be used to alleviate the computational burden as well as response surface method (RSM). However, surrogate model constructed by Kriging technology is more accurate than that constructed by RSM, especially when the limit state function is strong nonlinear. Monte Carlo important sampling was used to obtain the failure probability of this surrogate model. The results show that the proposed method has excellent accuracy and is more efficient than the direct Monte Carlo sampling and important sampling.
     Then, a life cycle design method based on MDP was proposed and value iteration method was used to identify optimal maintenance policy. In order to build the Markov degradation model of bridge structures and determine the optimal maintence policy, the methods used to determine the self-transition matrix, decision-effect matrix and joint-transition matrix were researched.
     Finally, holding the objective of minimization of expected life-cycle cost, the economic model of bridge life-cycle design was developed to satisfy the reliability index. A MDP modeling approach was used to identify optimal structural initial resistance and their associated maintenance policies. The effects of initial resistance, resistance deterioration, discount rate and failure loss on bridge life-cycle costs, reliability index and maintenance policy were discussed.
引文
1 Federal Highway Administration (FHwA). Status of the nation’s highways, bridges, and transit. 2002 Conditions and Performance Rep., FHwA, Washington, D.C.
    2秦权.基于时变可靠度的桥梁检测与维修方案优化.公路.2002, 9(9):17~25
    3王光远.结构软设计理论初探.哈尔滨:哈尔滨建筑工程学院, 1987
    4王光远.工程软设计理论.北京:科学出版社, 1992
    5 H. Bonstedt. Life Cycle Cost Analysis for Bridges: In Search of Better Investment and Engineering Decisions. http://www.pcap.org/presentations, 2003
    6 E. Gabler. Transportation Asset Management: The Role of Engineering Economic Analysis. Faderal Highway Administration. 2003
    7 M. Hastak, A. Mirniran, R. Deepak. A Framework for Life-Cycle Cost Assessment of Composites: in Construction. Journal of Reinforced Plastics and Composites. 2003, 22(15): 1409~1422
    8 R.F. Chandler. Life-Cycle Cost Model for Evaluating the Sustainability of Bridge Decks: A Comparison of Conventional Concrete Joints and Engineered Cementitious Composite Link Slabs. University of Michigan, Report No. CSS04-06, 2004
    9李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(I):系统设计,土木工程学报, 2006, 39(4): 29~44
    10李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(II):系统实现,土木工程学报, 2006,.39(4): 45~53
    11 D,M, Frangopol, K.Y. Lin. Life-cycle cost design of deteriorating structures. Journal of Structural Engineering. 1997, 36(10):1390-1401
    12 M.A. Hassanain, R.E. Loov. Cost optimization of concrete bridge infrastructure. Canadian Journal of Civil Engineering. 2003, 30(5): 841~849
    13 A. Miyamoto, K. Kawamura, H. Nakamura. Bridge management system and maintenance optimization for existing bridge. Computer-aided Civil and Infrastructure Engineering. 2005
    14 Y.J. Lee, L.M. Chang. Rehabilitation decision analysis and life-cycle costingof the infrastructure system. Construction Research. 2003
    15 J.S. Kong, D.M. Frangopol. Life-cycle reliability-based maintenance cost optimization of deteriorating structures with emphasis on bridges. Journal of Structural Engineering. 2003, 129(6):818-828
    16 J.S. Kong, D.M. Frangopol. Cost-reliability interaction in Life-cycle cost optimization of deteriorating structures. Journal of Structural Engineering. 2004, 130(11):1704-1712
    17 Y. Mori, B.R. Ellingwood. Maintaining Reliability of Concrete Structures. II:Optimization Inspection/Repair. Journal of Structural Engineering. 1994, 120(3):846-862
    18 T.S. William, M.G. Douglas. Models for Bridge Maintenance Management. Journal of Transportation Engineering. 1994, 120(1): 37~51
    19 Zongwei Tao, B.C. Ross, J. Hugh Ellis. Reliability-based bridge design and life cycle management with Markov decision processes. Structural Safety. 1994, 16:111~132
    20 G Morcus. Performance Prediction of Bridge Deck Systems Using Markov Chains. ASCE, 2006.
    21贡金鑫,仲伟秋,赵国藩.工程结构可靠性基本理论的发展与应用(1).建筑结构学报. 2002, 23(4): 2~9
    22 A.M. Hasofer, N.C. Lind. Exact and Invariant Second-moment Format. Journal of Engineering Mechanics Division. ASCE, 1974, 100(1): 111~121
    23赵国藩,金伟良,贡金鑫.结构可靠度理论.北京:中国建筑工业出版社. 2000
    24 K. Breitung. Asymptotic Approximations for Multinormal Integrals. Journal of Engineering Mechanics. ASCE, 1984, 110(3): 357~366
    25 R.Y. Rubinstein, D.P. Kroese. Simulation and the Monte-Carlo Method. 2nd edition. New York: Wiley, 2007
    26 G. Augusti, A. Baratta, Casciati F. Probabilistic Methods in Structural Engineering. London: Chapman and Hall, 1984
    27中国科学院计算中心概率统计组.概率统计计算.北京:科学出版社, 1979
    28中华人民共和国国家标准.港口工程结构可靠度设计统计标准(GB 50158-92).北京:中国计划出版社, 1992
    29 Y. Ben-Haim. A Non-Probabilistic Concept of Reliability. Structural Safety. 1994, 14(4): 227~245
    30 Y. Ben-Haim. A Non-Probabilistic Measure of Reliability of Linear Systems Based on Expansion of Convex Models. Structural Safety. 1995, 17(2): 91~109
    31 Y. Ben-Haim. Robust Reliability in The Mechanical Sciences. Berlin: Springer-Verlag, 1996
    32郭书祥,吕震宙.结构非概率可靠性方法和概率可靠性方法的比较.应用力学学报. 2003, 20(3): 107~110
    33中华人民共和国国家标准.工程结构可靠度设计统一标准(GB50153-92).北京:中国计划出版社. 1992
    34 M.R. Rajashekhar, B.R. Ellingwood. A New Look at the Response Surface Approach for Reliability Analysis. Structrual Safety. 1993, 12: 205~220
    35 S.H. Kim, S.W. Na. Response Surface Method Using Vector Projected Sampling Points. Structural Safety. 1997, 19(1): 3~19
    36 X.L Guan, R.E. Melchers. Effect of Response Surface Parameter Variation on Structural Reliability Estimates. Structural Safety. 2001, 23: 429~444
    37 B.D. Youn, K.K Choi. A New Response Surface Methodology for Reliability-based Design Optimization. Computers and Structures. 2004, 82: 241~256
    38 L. Faravelli. A Response Surface Approach for Reliability Analysis. Journal of Engineering Mechanics, ASCE. 1989, 115(12): 2763~2781
    39 C.G. Bucher, U. Bourgund. A Fast and Efficient Response Surface Approach for Structural Reliability Problems. Structural Safety. 1990, 7: 57~66
    40 G.I. Schu?ller, C.G. Bucher, U. Bourgund, W. Ouypornprasert. On Efficient Computational Schemes to Calculate Structural Failure Probabilities. Probabilistic Engineering Mechanics 1989, 4(1): 10~18
    41 Y.W. Liu, F. Moses. A Sequential Response Surface Method and Its Application in the Reliability Analysis of Aircraft Structrual Systems. Structural Safety. 1994, 16: 39~46
    42庄镇泉.神经网络与神经计算机.北京:科学出版社, 1994
    43 P.D. Wasserman. Advanced Methods in Neural Computing. New York: Van Nostrand Reinhold, 1993
    44 K.I. Diamantaras. Principal Component Neural Networks-Theory and Appliaction. A Wiley-Interscience Publication, John Wiley & Sons, Inc., 1996
    45姜绍飞.基于神经网络的结构优化与损伤检测.北京:科学出版社, 2002
    46姜绍飞.基于神经网络的结构分析与设计.沈阳建筑工程学院学报. 2001, 17(4): 255~258
    47桂劲松,康海贵.计算结构可靠度的RBF神经网络响应面法.海洋工程. 2004, 22(3): 81~85
    48王家华,高海余,周叶.克里金地质绘图技术——计算机的模型和算法.北京:石油工业出版社, 1999
    49 Kaymaz. Application of Kriging Method to Structural Reliability Problems. Structural Safety. 2005, 27: 133~151
    50 V.N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-Verlag, 1995
    51 V.N. Vapnik. Statistical Learning Theory. New York, Wiley, 1998
    52 V.N. Vapnik.统计学习理论的本质.张学工译.北京:清华大学出版社, 2000
    53邓乃扬,田英杰.数据挖掘中的新方法——支持向量机.北京:科学出版社, 2004
    54方开泰.均匀设计与均匀设计表.北京:科学出版社, 1994
    55 J. Su, J.E. Renaud. Automatic Differentiation in Robust Optimization. 6th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA, 1996, 1: 201~215
    56 S.E. Haupt, R.L. Haupt. Practical Genetic Algorithms. Hoboken, New Jersey: John Wiley & Sons, 2004
    57 S. Engelund, R. Rackwitz. A Benchmark Study on Importance Sampling Techniques in Structural Reliability. Structural Safety. 1993, 12: 255~276
    58 Y. Ibrahim. Observations on Applications of Importance Sampling in Structural Reliability Analysis. Structural Safety. 1991, 9: 269~281
    59 G.I. Schu?ller, R. Stlx. A Critical Appraisal of Methods to Determine Failure Probabilities. Structural Safety. 1987, 4: 293~309
    60 R.E. Melchers. Importance Sampling in Structural Systems. Structural Safety. 1989, 6: 3~10
    61 M. Shinozuka. Basic Analysis of Structural Safety. Journal of Structural Engineering, ASCE. 1980, 109(3): 721~739
    62 J.N.希德尔著,陈立周等译.工程概率设计——原理与应用.北京:科学出版社, 1989
    63贡金鑫,赵国藩.结构可靠度分析中的最小方差抽样.上海力学. 1996, 17(3): 245~252
    64赵国藩,金伟良,贡金鑫.结构可靠度理论.北京:中国建筑工业出版社, 2000
    65佟晓利,赵国藩.一种与结构可靠度反洗几何法相结合的响应面法.土木工程学报. 1997, 30(4): 51~57
    66胡奇英,刘建庸.马尔可夫决策过程引论.西安:西安电子科技大学出版社, 2000
    67高文森,潘伟.大学数学——随机数学.北京:高等教育出版社, 2004
    68邓永录,梁之舜.随机点过程及其应用.科学出版社, 1992
    69祝学衍.马尔可夫链原理及应用实例探讨,中国论文在线
    70郭先平,戴永隆.连续时间马尔可夫决策过程的折扣模型.数学学报, 2002, 45(1):171~182.
    71候振挺,郭先平.马尔可夫决策过程.湖南科学技术出版社, 1998.
    72 R.A. Howard. Dynamic programming and Markov processes. The MIT Press, Cambridge, M A, 1960
    73 Z. Lounis, D.J. Vanier, et al. Effective decision-making tools for roofing maintenance management, Proc. 1st International Conf. on New Information Technologies for Decision Making in Construction, Montreal. 1998
    74 M.P. Enright, D.M. Frangopol. Condition Prediction of Deteriorating Concrete Bridge Using Bayesian Updating. Journal of Structural Engineering, 1999, 125(10): 1118~1125
    75 A.C. Mark, Carlos Santamarina, Carl Turkstra, H.V.. Erik. Modeling Bridge Deterioretion with Markov Chains. Journal of Transportation Engineering. 1991, 118(6):820-833
    76 Y. Jiang, M. Saito, K.C. Sinha. Bridge performance prediction model using the Markov chain. Transportation Research Record 1180, Transportation Research Board, Washington, DC, 25–32
    77 G. Morcous, Z. Lounis. Identification of Environmental Categories forMarkovian Deterioration Models of Bridge Decks, ASCE,2003, 8(6):353~361
    78 Zongwei Tao, B.C. Ross , J. Hugh Ellis. Reliability-Based Structural Design with Markov Decision Processes. Journal of Structural Engineering, ASCE, 1995, 121(6):971~980
    79范立础.桥梁工程.北京:人民交通出版社, 2005
    80马军海,余俊林.全寿命成本分析在桥梁设计中的应用.公路. 2009(8):225~231
    81 J. Kanda, B.R. Ellingwood. Formulation of load factors based on optimum reliability[J]. Structural Safety, 1991, 9: 197~210
    82 Y. Mori, B.R. Ellingwood. Maintaining Reliability of Concrete Structures. II: Optimum Inspection/Repair. Journal of Structural Engineering, ASCE, 1994, 120(3): 846~862

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700