用户名: 密码: 验证码:
实时荧光PCR在肿瘤护理诊断中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤的发生机制和治疗一直是医疗卫生领域的难题之一。随着分子生物学技术的发展,肿瘤的发生机制逐渐被揭示,为肿瘤的预防,控制和治疗提供了新的依据和途径。肿瘤是一种高度异质性的疾病,从分子生物学角度来讲,涉及非常多的基因改变,包括基因突变,表达,表观遗传学等多个领域。不同的肿瘤类型,不同的肿瘤患者,不同的发病部位,不同的组织学类型都涉及了不同基因的不同改变形式,而这些改变形式与肿瘤患者的预后及对治疗的反应性相关。因此,针对肿瘤异质性,以患者分子生物学状态为依据的个体化治疗应运而生。从肿瘤的预防,早期诊断到肿瘤的控制和治疗等一系列过程中都需要对患者的分子生物学状态进行深入的分析后才能给出具体的方案。而这一过程的实施主要依赖于肿瘤的护理诊断。通过对肿瘤特异性的生物标记物进行检测和分析,得到肿瘤的相关分子生物学信息后,依据生物学信息制定个体化的治疗方案。因此,快速准确地检测这些标记物在临床上十分重要。本论文以实体瘤个体化治疗中涉及的生物标记物为研究对象,以实时PCR技术为平台,建立相应分子诊断技术用于临床中基因突变和基因表达的检测和定量,服务于肿瘤的诊断,预后评估和靶向治疗。
     第一章绪论
     本章回顾了肿瘤的个体化治疗以及护理诊断的概念,总结了目前在肿瘤护理诊断中研究相对透彻的生物标记物及其诊断方法,着重讲述了实时PCR技术的原理和应用,最后提出了本论文的研究目的,内容及意义。
     第二章探针溶解曲线技术检测非小细胞肺癌EGFR基因突变
     非小细胞肺癌EGFR基因突变状态与靶向药物吉非替尼和厄罗替尼的药物疗效相关。中国人群中EGFR基因突变率约为30%,因此对EGFR基因突变状态的检测可以有效筛选药物受益人群。本研究针对EGFR基因突变数量多(29种突变),突变类型复杂(包括单碱基替换,插入,缺失三种类型突变)的情况,利用探针熔解曲线技术,并结合突变富集技术,实现了6管反应体系对29种突变类型的同时检测,经优化后体系对突变的检测能力高达0.1%,即可以检测到1000个细胞中混有的1个突变细胞。此外,该检测体系通过对141份肺癌组织标本进行检测发现阳性标本38份,阳性率为27.0%,并经过测序验证,与已有文献报道一致。实时PCR技术的应用,缩短了检测时间,只需经过1.5个小时的PCR扩增和30分钟的熔解曲线分析即可得到检测结果,多重体系的使用简化了操作,节约了试剂和标本用量,也大大降低了检测成本。总之,该检测体系具有快速,简便,准确,成本低等优点,具有较大的临床应用价值。
     第三章多重定量PAP技术用于EGFR基因和KRAS基因突变检测
     肿瘤体细胞突变检测面临的最大挑战是需要从大量的野生背景DNA中检测到微量的突变DNA,因此要求检测技术具有较强的抗干扰能力和高选择性,以实现稀有突变检测。本研究立足于稀有突变的检测要求,在传统PAP技术的基础上,在PAP引物5'端引入一段标签序列,作为DNA探针结合序列,并加入DNA探针检测实现实时PCR技术与PAP技术的结合,建立具有高选择能力的标签双PAP技术用于检测低突变含量的标本。该技术首先应用于肺癌EGFR基因突变检测,然后进一步用于结直肠癌KRAS基因突变检测,检测结果证明该技术解决了传统PAP技术需要PCR产物后处理的问题,闭管操作防止污染,同时简化了操作步骤;此外,该检测体系保持了传统PAP技术对突变的富集能力,选择性高达0.01%,非常适合稀有突变的检测;最后,标签序列及其检测探针的引入实现了多重扩增体系的建立,通过在体系中引入内控,使该检测体系具备对突变含量定量的能力,可以为临床提供更多信息帮助医生制定有效的治疗方案。
     第四章多重qRT-PCR技术用于乳腺癌复发风险相关21基因定量
     基因表达作为生物标记物用于指导用药和预后已经越来越广泛的被应用到临床中。本研究基于21基因表达谱对早期乳腺癌患者复发风险的评估作用,以实时PCR技术为平台,建立多重qRT-PCR技术实现6管反应体系对21个基因表达水平的同时定量。该定量体系通过设计小片段扩增产物实现对发生部分降解的FFPE标本RNA的定量;扩增引物5'端同源加尾设计使21基因可以同时被一条引物扩增,实现不同基因间扩增效率的一致性(同一反应体系中各基因扩增效率差不超过5%);通过对不同扩增产物检测探针标记不同荧光基团实现了一个反应体系中多个基因的同时扩增和检测。该体系经过稳定性评估其扩增Cq值的批间差不超过5%,稳定性好。此外,多重qRT-PCR检测体系与免疫组化结果有非常好的一致性,证明了该体系的定量准确性。最后,我们用70份乳腺癌FFPE标本对多重qRT-PCR检测体系在乳腺癌复发风险预测上的作用进行了评估,结果证明该体系通过对21基因定量结果进行分析后计算复发分数将患者分为高复发风险和低复发风险两组,两组的实际复发率差异显著(P<0.05)。多重qRT-PCR检测体系减少了反应数,简化了操作,节约标本用量,降低了成本,通过与免疫组化技术的比对证明其定量的准确性,非常适合临床使用。
Tumorigenesis and treatment is one of the difficult issue for medical treatment and public health system. As the development of molecular biology, the mechanism of tumorigenesis is discovered gradually and provide new approach for the prevention, control and therapy of tumor. Tumor is a kind of disease with high heterogeneity, in the field of molecular biology, it refers to lots of gene variations including gene mutaion, expression, epigenetics and so on. Different tumor types, patients, tumor locations and histologic types contain different kinds of gene variations, and all these gene variations are related to patients prognosis and response to therapy. Therefore, the personalized medicine based on molecular biology comes with the tumor heterogeneity. The therapy decision should be made based on the individualized situation in the course of tumor prevention, early diagnosis, control and therapy. This process can be achieved only by companion diagnosis. Companion diagnosis could give doctor more information by detecting tumor biomakers. Therefore, it is important to detect these biomakers rapidly and accurately. Our study established molecular diagnostic technology based on real-time PCR to detect gene mutation and expression.
     In chapter one, we firstly recalled the concept of personalized medicine and companion diagnosis in tumor, review the currently used biomakers which have been studied clearly and corresponding detecting technologies. We then illustrated the prineciple and application of real-time PCR. Finally, the objective and content of this dissertation were proposed.
     In chapter two, a multiplex real-time PCR system based on probe melting curve technology was developed for screening of29mutations in EGFR gene. Approximately30%of patients with lung cancer contained EGFR gene mutaions and these mutations were related to the efficacy of gefitinib and erlotinib. Our detection system used6reactions to detect29mutations simultaneously and had a high selectivity up to0.1%which means1mutaion cell exist in1000cells can be detected by our detection system. In the141lung cancer samples we detected,38samples were found to be mutaion positive and validated by DNA sequencing which was consistent with previous reports. The application of multiplex PCR in the system makes the detection can be done within2hours and save reaction reagent and sample, reduce the cost. It is a rapid, simple, accurate and cost-effective way to apply to the clinical.
     In chapter three, we established a new technology called real-time Tag-Bi-PAP based on traditional PAP technology to detect the rare mutaion from wild type backgroud. A tag sequence were added to the5'terminus of PAP primers to hybridize with DNA probe and make the PAP can be done in a real-time way. This new method was fisrtly used to detect EGFR mutations and then apply to KRAS gene mutations. The results showed that real-time Tag-Bi-PAP could give a selectivity of0.01%. There is no need to make PCR products postprocessing compared with the traditional PAP, so it is simple and rapid. Furthermore, the adding of internal control gene in the reaction system endowed the technology with the ability of quantifing the mutation content and provided more information to help doctor make a decision.
     In chapter four, we developed a multiplex qRT-PCR system to quantify mRNA levels of21genes.21-gene was a expression profile used for evaluating the recurrence risk of patients with breast cancer. We used6reactions to detect the21gene expression simultaneously based on real-time PCR (multiplex qRT-PCR). This multiplex qRT-PCR system can be used to detect FFPE sample which was fragmented due to degradation by designing short amplification products. Different genes had a similar amplification efficiencies by using only one primer to amplify all the21genes(the difference of amplification efficiencies between genes were within5%). The interassay variances (%CV) of Cq values for each gene were all within5%, indicating stability of the multiplex qRT-PCR system. Furthermore, the quantitative results from multiplex qRT-PCR system were consistent with the results from immunohistochemistry which demonstrated the accuracy of this system. Finally,70FFPE samples were used to validate whether the21-gene proflie quantified by multiplex qRT-PCR system had a predictive function on recurrence risk of breast cancer in china. The results showed a significant difference in recurrence rate between high risk recurrence group and low risk recurrence group (P<0.05). The multiplex qRT-PCR system reduced the reation numbers, simplfied the manipulation, saved the samples and cost.
引文
[1]Ginsburg GS, Willard HF. Genomic and personalized medicine:foundations and applications[J]. Transl Res,2009,154(6):277-287.
    [2]Allison M. Is personalized medicine finally arriving [J]. Nat Biotechnol,2008,26(5):509-517.
    [3]Croce CM. Oncogenes and cancer[J]. N Engl J Med,2008,358(5):502-511.
    [4]Groffen J, Stephenson JR, Heisterkamp N, et al. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22[J]. Cell,1984,36(1):93-99.
    [5]Shtivelman E, Lifshitz B, Gale RP, et al. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia[J]. Nature,1985,315(6020):550-554.
    [6]Druker BJ, Talpaz M, Resta DJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia[J]. N Engl J Med,2001,344(14):1031-1037.
    [7]Ottmann OG, Druker BJ, Sawyers CL, et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias[J]. Blood,2002, 100(6):1965-1971.
    [8]Roche-Lestienne C, Soenen-Cornu V, Grardel-Duflos N, et al. Several types of mutations of the Abl gene can be found in chronic myeloid leukemia patients resistant to STI571, and they can pre-exist to the onset of treatment[J]. Blood,2002,100(3):1014-1018.
    [9]Hamburg MA, Collins FS. The path to personalized medicine[J]. N Engl J Med,2010, 363(4):301-304.
    [10]Papadopoulos N, Kinzler KW, Vogelstein B. The role of companion diagnostics in the development and use of mutation-targeted cancer therapies[J]. Nat Biotechnol,2006,24(8):985-995.
    [11]Serova OM, Mazoyer S, Puget N, et al. Mutations in BRCA1 and BRCA2 in breast cancer families:are there more breast cancer-susceptibility genes?[J]. Am J Hum Genet,1997, 60(3):486-495.
    [12]Levy-Lahad E, Catane R, Eisenberg S, et al. Founder BRCA1 and BRCA2 mutations in Ashkenazi Jews in Israel:frequency and differential penetrance in ovarian cancer and in breast-ovarian cancer families[J]. Am J Hum Genet,1997,60(5):1059-1067.
    [13]Schwartz GF, Hughes KS, Lynch HT, et al. Proceedings of the international consensus conference on breast cancer risk, genetics, & risk management, April,2007[J]. Cancer,2008, 113(10):2627-2637.
    [14]Schwartz MD, Lerman C, Brogan B, et al. Impact of BRCA1/BRCA2 counseling and testing on newly diagnosed breast cancer patients[J]. J Clin Oncol,2004,22(10):1823-1829.
    [15]Lodder L, Frets PG, Trijsburg RW, et al. Psychological impact of receiving a BRCA1/BRCA2 test result[J]. Am J Med Genet,2001,98(1):15-24.
    [16]Ichikawa Y, Lemon SJ, Wang S, et al. Microsatellite instability and expression of MLH1 and MSH2 in normal and malignant endometrial and ovarian epithelium in hereditary nonpolyposis colorectal cancer family members[J]. Cancer Genet Cytogenet,1999,112(1):2-8.
    [17]Gille JJ, Hogervorst FB, Pals G, et al. Genomic deletions of MSH2 and MLH1 in colorectal cancer families detected by a novel mutation detection approach[J]. Br J Cancer,2002, 87(8):892-897.
    [18]Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications[J]. Proc Natl Acad Sci U S A,2001, 98(19):10869-10874.
    [19]Yu K, Lee CH, Tan PH, et al. Conservation of breast cancer molecular subtypes and transcriptional patterns of tumor progression across distinct ethnic populations[J]. Clin Cancer Res, 2004,10(16):5508-5517.
    [20]Parker JS, Mullins M, Cheang MC, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes[J]. J Clin Oncol,2009,27(8):1160-1167.
    [21]Evans WE, McLeod HL. Pharmacogenomics--drug disposition, drug targets, and side effectsfJ]. N Engl J Med,2003,348(6):538-549.
    [22]Phillips KA, Veenstra DL, Oren E, et al. Potential role of pharmacogenomics in reducing adverse drug reactions:a systematic review[J]. JAMA,2001,286(18):2270-2279.
    [23]Mattison LK, Soong R, Diasio RB. Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil pharmacogenetics and pharmacogenomics[J]. Pharmacogenomics,2002, 3(4):485-492.
    [24]Cave H, van der Werff ten Bosch J, Suciu S, et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer--Childhood Leukemia Cooperative Group[J]. N Engl J Med,1998, 339(9):591-598.
    [25]Bose S, Deininger M, Gora-Tybor J, et al. The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals:biologic significance and implications for the assessment of minimal residual disease[J]. Blood,1998,92(9):3362-3367.
    [26]Bruggemann M, Raff T, Flohr T, et al. Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia[J]. Blood,2006, 107(3):1116-1123.
    [27]van der Velden VH, Hochhaus A, Cazzaniga G, et al. Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR:principles, approaches, and laboratory aspects[J]. Leukemia,2003,17(6):1013-1034.
    [28]Matsunaga T, Takemoto N, Sato T, et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia[J]. Nat Med,2003,9(9):1158-1165.
    [29]Cilloni D, Messa F, Rosso V, et al. Increase sensitivity to chemotherapeutical agents and cytoplasmatic interaction between NPM leukemic mutant and NF-kappaB in AML carrying NPM1 mutations[J]. Leukemia,2008,22(6):1234-1240.
    [30]Chou WC, Tang JL, Lin LI, et al. Nucleophosmin mutations in de novo acute myeloid leukemia: the age-dependent incidences and the stability during disease evolution[J]. Cancer Res,2006, 66(6):3310-3316.
    [31]Palmisano M, Grafone T, Ottaviani E, et al. NPM1 mutations are more stable than FLT3 mutations during the course of disease in patients with acute myeloid leukemia[J]. Haematologica, 2007,92(9):1268-1269.
    [32]Gorello P, Cazzaniga G, Alberti F, et al. Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations[J]. Leukemia,2006, 20(6):1103-1108.
    [33]Masui H, Kawamoto T, Sato JD, et al. Growth inhibition of human tumor cells in athymic mice by anti-epidermal growth factor receptor monoclonal antibodies[J]. Cancer Res,1984, 44(3):1002-1007.
    [34]Hynes NE, Lane HA. ERBB receptors and cancer:the complexity of targeted inhibitors[J]. Nat Rev Cancer,2005,5(5):341-354.
    [35]Normanno N, Bianco C, De Luca A, et al. Target-based agents against ErbB receptors and their ligands:a novel approach to cancer treatment[J]. Endocr Relat Cancer,2003,10(1):1-21.
    [36]Ciardiello F, Tortora G. A novel approach in the treatment of cancer:targeting the epidermal growth factor receptor[J]. Clin Cancer Res,2001,7(10):2958-2970.
    [37]Grunwald V, Hidalgo M. Developing inhibitors of the epidermal growth factor receptor for cancer treatmen[J]. J Natl Cancer Inst,2003,95(12):851-867.
    [38]Ranson M, Hammond LA, Ferry D, et al. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors:results of a phase I trial[J]. J Clin Oncol,2002,20(9):2240-2250.
    [39]Herbst RS, Maddox AM, Rothenberg ML, et al. Selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 is generally well-tolerated and has activity in non-small-cell lung cancer and other solid tumors:results of a phase I trial[J]. J Clin Oncol,2002,20(18):3815-3825.
    [40]Baselga J, Rischin D, Ranson M, et al. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types[J]. J Clin Oncol,2002,20(21):4292-4302.
    [41]LoRusso PM, Herbst RS, Rischin D, et al. Improvements in quality of life and disease-related symptoms in phase I trials of the selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 in non-small cell lung cancer and other solid tumors[J]. Clin Cancer Res,2003, 9(6):2040-2048.
    [42]Hidalgo M, Siu LL, Nemunaitis J, et al. Phase 1 and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies[J]. J Clin Oncol,2001,19(13):3267-3279.
    [43]Lacouture ME. Mechanisms of cutaneous toxicities to EGFR inhibitors[J]. Nat Rev Cancer, 2006,6(10):803-812.
    [44]Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected][J]. J Clin Oncol,2003,21(12):2237-2246.
    [45]Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer:a randomized trial[J]. JAMA,2003,290(16):2149-2158.
    [46]Thatcher N, Chang A, Parikh P, et al. Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer:results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer)[J]. Lancet,2005, 366(9496):1527-1537.
    [47]Perez-Soler R, Chachoua A, Hammond LA, et al. Determinants of tumor response and survival with erlotinib in patients with non--small-cell lung cancer[J]. J Clin Oncol,2004,22(16):3238-3247.
    [48]Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer[J]. N Engl J Med,2005,353(2):123-132.
    [49]Bezjak A, Tu D, Seymour L, et al. Symptom improvement in lung cancer patients treated with erlotinib:quality of life analysis of the National Cancer Institute of Canada Clinical Trials Group Study BR.21[J]. J Clin Oncol,2006,24(24):3831-3837.
    [50]Toh CK, Gao F, Lim WT, et al. Never-smokers with lung cancer:epidemiologic evidence of a distinct disease entity[J]. J Clin Oncol,2006,24(15):2245-2251.
    [51]Gridelli C, Bareschino MA, Schettino C, et al. Erlotinib in non-small cell lung cancer treatment: current status and future development[J]. Oncologist,2007,12(7):840-849.
    [52]Sridhar SS, Seymour L, Shepherd FA. Inhibitors of epidermal-growth-factor receptors:a review of clinical research with a focus on non-small-cell lung cancer[J]. Lancet Oncol,2003,4(7):397-406.
    [53]Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib[J]. N Engl J Med,2004, 350(21):2129-2139.
    [54]Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy [J]. Science,2004,304(5676):1497-1500. [55] Sequist LV, Bell DW, Lynch TJ, et al. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer[J]. J Clin Oncol,2007,25(5):587-595.
    [56]Shigematsu H, Lin L, Takahashi T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers[J]. J Natl Cancer Inst,2005, 97(5):339-346.
    [57]Pham D, Kris MG, Riely GJ, et al. Use of cigarette-smoking history to estimate the likelihood of mutations in epidermal growth factor receptor gene exons 19 and 21 in lung adenocarcinomas[J]. J Clin Oncol,2006,24(11):1700-1704.
    [58]Tsao MS, Sakurada A, Cutz JC, et al. Erlotinib in lung cancer-molecular and clinical predictors of outcome[J]. N Engl J Med,2005,353(2):133-144.
    [59]Sharma SV, Bell DW, Settleman J, et al. Epidermal growth factor receptor mutations in lung cancer[J]. Nat Rev Cancer,2007,7(3):169-181.
    [60]Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib[J]. N Engl J Med,2005,352(8):786-792.
    [61]Kosaka T, Yatabe Y, Endoh H, et al. Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib[J]. Clin Cancer Res, 2006,12(19):5764-5769.
    [62]Yun CH, Boggon TJ, Li Y, et al. Structures of lung cancer-derived EGFR mutants and inhibitor complexes:mechanism of activation and insights into differential inhibitor sensitivity [J]. Cancer Cell,2007,11(3):217-227.
    [63]Cappuzzo F, Hirsch FR, Rossi E, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer[J]. J Natl Cancer Inst,2005,97(9):643-655.
    [64]Hirsch FR, Varella-Garcia M, Bunn PA, Jr., et al. Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer[J]. J Clin Oncol,2006,24(31):5034-5042.
    [65]Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling[J]. Science,2007,316(5827):1039-1043.
    [66]Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer[J]. N Engl J Med,2008,359(17):1757-1765.
    [67]Khambata-Ford S, Garrett CR, Meropol NJ, et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab[J]. J Clin Oncol,2007,25(22):3230-3237.
    [68]Di Nicolantonio F, Martini M, Molinari F, et al. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer[J]. J Clin Oncol,2008, 26(35):5705-5712.
    [69]Sartore-Bianchi A, Martini M, Molinari F, et al. PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies[J]. Cancer Res,2009, 69(5):1851-1857.
    [70]Velho S, Oliveira C, Ferreira A, et al. The prevalence of PIK3CA mutations in gastric and colon cancer[J]. Eur J Cancer,2005,41(11):1649-1654.
    [71]Ikenoue T, Kanai F, Hikiba Y, et al. Functional analysis of PIK3CA gene mutations in human colorectal cancer[J]. Cancer Res,2005,65(11):4562-4567.
    [72]Jhawer M, Goel S, Wilson AJ, et al. PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab[J]. Cancer Res,2008,68(6):1953-1961.
    [73]Sawai H, Yasuda A, Ochi N, et al. Loss of PTEN expression is associated with colorectal cancer liver metastasis and poor patient survival[J]. BMC Gastroenterol,2008,8:56.
    [74]DeMatteo RP. The GIST of targeted cancer therapy:a tumor (gastrointestinal stromal tumor), a mutated gene (c-kit), and a molecular inhibitor (STI571)[J]. Ann Surg Oncol,2002,9(9):831-839.
    [75]Debiec-Rychter M, Dumez H, Judson I, et al. Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group[J]. Eur J Cancer,2004,40(5):689-695.
    [76]Ciardiello F, Tortora G. EGFR antagonists in cancer treatment[J]. N Engl J Med,2008, 358(11):1160-1174.
    [77]Colbern GT, Hiller AJ, Musterer RS, et al. Antitumor activity of Herceptin in combination with STEALTH liposomal cisplatin or nonliposomal cisplatin in a HER2 positive human breast cancer model[J]. J Inorg Biochem,1999,77(1-2):117-120.
    [78]Baselga J, Tripathy D, Mendelsohn J, et al. Phase Ⅱ study of weekly intravenous trastuzumab (Herceptin) in patients with HER2/neu-overexpressing metastatic breast cancer[J], Semin Oncol, 1999,26(4 Suppl 12):78-83.
    [79]Baselga J. Herceptin alone or in combination with chemotherapy in the treatment of HER2-positive metastatic breast cancer:pivotal trials[J]. Oncology,2001,61 Suppl 2:14-21.
    [80]Ghafoor A, Jemal A, Ward E, et al. Trends in breast cancer by race and ethnicity [J]. CA Cancer J Clin,2003,53(6):342-355.
    [81]Fisher B, Jeong JH, Bryant J, et al. Treatment of lymph-node-negative, oestrogen-receptor-positive breast cancer:long-term findings from National Surgical Adjuvant Breast and Bowel Project randomised clinical trials[J]. Lancet,2004,364(9437):858-868.
    [82]Chang HY, Nuyten DS, Sneddon JB, et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival[J]. Proc Natl Acad Sci U S A,2005,102(10):3738-3743.
    [83]Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets[J]. Proc Natl Acad Sci U S A,2003,100(14):8418-8423.
    [84]Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours[J]. Nature, 2000,406(6797):747-752.
    [85]van't Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer[J]. Nature,2002,415(6871):530-536.
    [86]Chang HY, Sneddon JB, Alizadeh AA, et al. Gene expression signature of fibroblast serum response predicts human cancer progression:similarities between tumors and wounds[J]. PLoS Biol, 2004,2(2):E7.
    [87]Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer[J]. N Engl J Med,2004,351(27):2817-2826.
    [88]Ma XJ, Wang Z, Ryan PD, et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen[J]. Cancer Cell,2004,5(6):607-616.
    [89]Cianfrocca M, Gradishar W. New molecular classifications of breast cancer[J]. CA Cancer J Clin,2009,59(5):303-313.
    [90]Hayashi Y, Kuriyama H, Umezu H, et al. Class III beta-tubulin expression in tumor cells is correlated with resistance to docetaxel in patients with completely resected non-small-cell lung cancer[J]. Intern Med,2009,48(4):203-208.
    [91]Hari M, Yang H, Zeng C, et al. Expression of class III beta-tubulin reduces microtubule assembly and confers resistance to paclitaxel[J]. Cell Motil Cytoskeleton,2003,56(1):45-56.
    [92]Hasegawa S, Miyoshi Y, Egawa C, et al. Prediction of response to docetaxel by quantitative analysis of class I and III beta-tubulin isotype mRNA expression in human breast cancers[J]. Clin Cancer Res,2003,9(8):2992-2997.
    [93]Mozzetti S, Ferlini C, Concolino P, et al. Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients[J]. Clin Cancer Res,2005, 11(1):298-305.
    [94]Shirota Y, Stoehlmacher J, Brabender J, et al. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy[J]. J Clin Oncol,2001,19(23):4298-4304.
    [95]Ceppi P, Volante M, Novello S, et al. ERCC1 and RRM1 gene expressions but not EGFR are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine[J]. Ann Oncol,2006,17(12):1818-1825.
    [96]Olaussen KA, Dunant A, Fouret P, et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy [J]. N Engl J Med,2006,355(10):983-991.
    [97]Metzger R, Leichman CG, Danenberg KD, et al. ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy [J]. J Clin Oncol,1998,16(l):309-316.
    [98]Lord RV, Brabender J, Gandara D, et al. Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer[J]. Clin Cancer Res,2002,8(7):2286-2291.
    [99]Yu JJ, Lee KB, Mu C, et al. Comparison of two human ovarian carcinoma cell lines (A2780/CP70 and MCAS) that are equally resistant to platinum, but differ at codon 118 of the ERCC1 gene[J]. Int J Oncol,2000,16(3):555-560.
    [100]Park DJ, Zhang W, Stoehlmacher J, et al. ERCC1 gene polymorphism as a predictor for clinical outcome in advanced colorectal cancer patients treated with platinum-based chemotherapy[J]. Clin Adv Hematol Oncol,2003,1(3):162-166.
    [101]Viguier J, Boige V, Miquel C, et al. ERCC1 codon 118 polymorphism is a predictive factor for the tumor response to oxaliplatin/5-fluorouracil combination chemotherapy in patients with advanced colorectal cancer[J]. Clin Cancer Res,2005,11(17):6212-6217.
    [102]Hu JJ, Smith TR, Miller MS, et al. Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity [J]. Carcinogenesis,2001,22(6):917-922.
    [103]Stoehlmacher J, Ghaderi V, Iobal S, et al. A polymorphism of the XRCC1 gene predicts for response to platinum based treatment in advanced colorectal cancer[J]. Anticancer Res,2001, 21(4B):3075-3079.
    [104]Gurubhagavatula S, Liu G, Park S, et al. XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy[J]. J Clin Oncol,2004,22(13):2594-2601.
    [105]Stoehlmacher J, Park DJ, Zhang W, et al. Association between glutathione S-transferase P1, T1, and Ml genetic polymorphism and survival of patients with metastatic colorectal cancer[J]. J Natl Cancer Inst,2002,94(12):936-942.
    [106]Frank TS, Manley SA, Olopade 01, et al. Sequence analysis of BRCA1 and BRCA2: correlation of mutations with family history and ovarian cancer risk[J]. J Clin Oncol,1998, 16(7):2417-2425.
    [107]Favis R, Day JP, Gerry NP, et al. Universal DNA array detection of small insertions and deletions in BRCA1 and BRCA2[J]. Nat Biotechnol,2000,18(5):561-564.
    [108]Chin TM, Anuar D, Soo R, et al. Detection of epidermal growth factor receptor variations by partially denaturing HPLC[J]. Clin Chem,2007,53(1):62-70.
    [109]Ogino S, Kawasaki T, Brahmandam M, et al. Sensitive sequencing method for KRAS mutation detection by Pyrosequencing[J]. J Mol Diagn,2005,7(3):413-421.
    [110]Bai H, Mao L, Wang HS, et al. Epidermal growth factor receptor mutations in plasma DNA samples predict tumor response in Chinese patients with stages ⅢB to IV non-small-cell lung cancer[J]. J Clin Oncol,2009,27(16):2653-2659.
    [111]Vogelstein B, Kinzler KW. Digital PCR[J]. Proc Natl Acad Sci U S A,1999, 96(16):9236-9241.
    [112]Yung TK, Chan KC, Mok TS, et al. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients[J]. Clin Cancer Res,2009,15(6):2076-2084.
    [113]Sauer T, Guren MG, Noren T, et al. Demonstration of EGFR gene copy loss in colorectal carcinomas by fluorescence in situ hybridization (FISH):a surrogate marker for sensitivity to specific anti-EGFR therapy?[J]. Histopathology,2005,47(6):560-564.
    [114]Cappuzzo F, Varella-Garcia M, Shigematsu H, et al. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients[J]. J Clin Oncol,2005,23(22):5007-5018.
    [115]Vincent-Salomon A, MacGrogan G, Couturier J, et al. Calibration of immunohistochemistry for assessment of HER2 in breast cancer:results of the French multicentre GEFPICS study [J]. Histopathology,2003,42(4):337-347.
    [116]Pauletti G, Dandekar S, Rong H, et al. Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer:a direct comparison of fluorescence in situ hybridization and immunohistochemistry[J]. J Clin Oncol,2000,18(21):3651-3664.
    [117]Gown AM. Current issues in ER and HER2 testing by IHC in breast cancer[J]. Mod Pathol, 2008,21 Suppl2:S8-S15.
    [118]Badve SS, Baehner FL, Gray RP, et al. Estrogen-and progesterone-receptor status in ECOG 2197:comparison of immunohistochemistry by local and central laboratories and quantitative reverse transcription polymerase chain reaction by central laboratory[J]. J Clin Oncol,2008, 26(15):2473-2481.
    [119]Vinatzer U, Dampier B, Streubel B, et al. Expression of HER2 and the coamplified genes GRB7 and MLN64 in human breast cancer:quantitative real-time reverse transcription-PCR as a diagnostic alternative to immunohistochemistry and fluorescence in situ hybridization[J]. Clin Cancer Res,2005, 11(23):8348-8357.
    [120]Cronin M,Pho M, Dutta D,et al. Measurement of gene expression in archival paraffin-embedded tissues:development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay[J]. Am J Pathol,2004,164(]):35-42.
    [121]Iverson AA, Gillett C, Cane P, et al. A single-tube quantitative assay for mRNA levels of hormonal and growth factor receptors in breast cancer specimens[J]. J Mol Diagn,2009, 11(2):117-130.
    [122]Higuchi R, Dollinger G, Walsh PS, et al. Simultaneous amplification and detection of specific DNA sequences[J]. Biotechnology (NY),1992,10(4):413-417.
    [123]Mackay J, Landt O. Real-time PCR fluorescent chemistries[J]. Methods Mol Biol,2007, 353:237-261.
    [124]Wittwer CT, Herrmann MG, Moss AA, et al. Continuous fluorescence monitoring of rapid cycle DNA amplification[J]. Biotechniques,1997,22(1):130-131,134-138.
    [125]Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction[J]. Anal Biochem,1997,245(2):154-160.
    [126]Ishiguro T, Saitoh J, Yawata H, et al. Homogeneous quantitative assay of hepatitis C virus RNA by polymerase chain reaction in the presence of a fluorescent intercalater[J]. Anal Biochem, 1995,229(2):207-213.
    [127]Bengtsson M, Karlsson HJ, Westman G, et al. A new minor groove binding asymmetric cyanine reporter dye for real-time PCR[J]. Nucleic Acids Res,2003,31 (8):e45.
    [128]Wittwer CT, Reed GH, Gundry CN, et al. High-resolution genotyping by amplicon melting analysis using LCGreen[J]. Clin Chem,2003,49(6 Pt 1):853-860.
    [129]Monis PT, Giglio S, Saint CP. Comparison of SYTO9 and SYBR Green Ⅰ for real-time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis[J]. Anal Biochem,2005,340(1):24-34.
    [130]Holland PM, Abramson RD, Watson R, et al. Detection of specific polymerase chain reaction product by utilizing the 5'----3' exonuclease activity of Thermus aquaticus DNA polymerase[J]. Proc Natl Acad Sci U S A,1991,88(16):7276-7280.
    [131]Tiemann C, Vogel A, Dufaux B, et al. Rapid DNA typing of HLA-B27 allele by real-time PCR using lightcycler technology[J]. Clin Lab,2001,47(3-4):131-134.
    [132]Tyagi S, Kramer FR. Molecular beacons:probes that fluoresce upon hybridization[J]. Nat Biotechnol,1996,14(3):303-308.
    [133]Bon MA, van Oeveren-Dybicz A, van den Bergh FA. Genotyping of HLA-B27 by real-time PCR without hybridization probes[J]. Clin Chem,2000,46(7):1000-1002.
    [134]Wittwer CT, Ririe KM, Andrew RV, et al. The LightCycler:a microvolume multisample fluorimeter with rapid temperature control[J]. Biotechniques,1997,22(1):176-181.
    [135]Cheng J, Zhang Y. Li Q. Real-time PCR genotyping using displacing probes[J]. Nucleic Acids Res,2004,32(7):e61.
    [136]Li Q, Luan G, Guo Q. et al. A new class of homogeneous nucleic acid probes based on specific displacement hybridization[J]. Nucleic Acids Res,2002,30(2):E5.
    [137]Whitcombe D, Theaker J, Guy SP, et al. Detection of PCR products using self-probing amplicons and fluorescence[J]. Nat Biotechnol,1999,17(8):804-807.
    [138]Winn-Deen ES. Direct Fluorescence Detection of Allele-Specific PCR Products Using Novel Energy-Transfer Labeled Primers[J]. Mol Diagn,1998,3(4):217-221.
    [139]Mackay IM, Arden KE, Nitsche A. Real-time PCR in virology [J]. Nucleic Acids Res,2002, 30(6):1292-1305.
    [140]Khodakov DA, Zakharova NV, Gryadunov DA, et al. An oligonucleotide microarray for multiplex real-time PCR identification of HTV-1, HBV, and HCV[J]. Biotechniques,2008, 44(2):241-246,248.
    [141]Abe M, Klett C, Wieland E, et al. Two-step real-time PCR quantification of all subtypes of human immunodeficiency virus type 1 by an in-house method using locked nucleic acid-based probes[J]. Folia Med (Plovdiv),2008,50(3):5-13.
    [142]Probert WS, Bystrom SL, Khashe S, et al.5' exonuclease assay for detection of serogroup Y Neisseria meningitidis[J]. J Clin Microbiol,2002,40(11):4325-4328.
    [143]Esaki H, Noda K, Otsuki N, et al. Rapid detection of quinolone-resistant Salmonella by real time SNP genotyping[J]. J Microbiol Methods,2004,58(1):131-134.
    [144]Qi Y, Patra G, Liang X, et al. Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis[J]. Appl Environ Microbiol,2001, 67(8):3720-3727.
    [145]McKillip JL, Drake M. Real-time nucleic acid-based detection methods for pathogenic bacteria in food[J]. J Food Prot,2004,67(4):823-832.
    [146]Critzer FJ, Dsouza DH, Golden DA. Transcription analysis of stxl, marA, and eaeA genes in Escherichia coli O157:H7 treated with sodium benzoate[J]. J Food Prot,2008,71(7):1469-1474.
    [147]Vaitilingom M, Pijnenburg H, Gendre F, et al. Real-time quantitative PCR detection of genetically modified Maximizer maize and Roundup Ready soybean in some representative foods[J]. J Agric Food Chem,1999,47(12):5261-5266.
    [148]Chong SS, Boehm CD, Higgs DR, et al. Single-tube multiplex-PCR screen for common deletional determinants of alpha-thalassemia[J]. Blood,2000,95(1):360-362.
    [149]Tan AS, Quah TC, Low PS, et al. A rapid and reliable 7-deletion multiplex polymerase chain reaction assay for alpha-thalassemia[J]. Blood,2001,98(l):250-251.
    [150]Huang Q, Zheng L, Zhu Y, et al. Multicolor combinatorial probe coding for real-time PCR[J]. PLoS One,2011,6(1):e16033.
    [151]Zimmermann B, Holzgreve W, Wenzel F, et al. Novel real-time quantitative PCR test for trisomy 21 [J]. Clin Chem,2002,48(2):362-363.
    [152]Hu Y, Zheng M, Xu Z, et al. Quantitative real-time PCR technique for rapid prenatal diagnosis of Down syndrome[J]. Prenat Diagn,2004,24(9):704-707.
    [153]Zuo Z, Chen SS, Chandra PK, et al. Application of COLD-PCR for improved detection of KRAS mutations in clinical samples[J]. Mod Pathol,2009,22(8):1023-1031.
    [154]Zhou L, Palais RA, Smith GD, et al. Enrichment and detection of rare alleles by means of snapback primers and rapid-cycle PCR[J]. Clin Chem,2010,56(5):814-822.
    [155]Bieche I, Onody P, Laurendeau I, et al. Real-time reverse transcription-PCR assay for future management of ERBB2-based clinical applications[J]. Clin Chem,1999,45(8 Pt 1):1148-1156.
    [156]Sasaki H, Endo K, Konishi A, et al. EGFR Mutation status in Japanese lung cancer patients: genotyping analysis using LightCycler[J]. Clin Cancer Res,2005, 11(8):2924-2929.
    [157]Endo K, Konishi A, Sasaki H, et al. Epidermal growth factor receptor gene mutation in non-small cell lung cancer using highly sensitive and fast TaqMan PCR assay[J]. Lung Cancer,2005, 50(3):375-384.
    [158]Haneda H, Sasaki H, Shimizu S, et al. Epidermal growth factor receptor gene mutation defines distinct subsets among small adenocarcinomas of the lung[J]. Lung Cancer,2006,52(1):47-52.
    [159]Zhou C, Ni J, Zhao Y, et al. Rapid detection of epidermal growth factor receptor mutations in non-small cell lung cancer using real-time polymerase chain reaction with TaqMan-MGB probes [J]. Cancer J,2006,12(1):33-39.
    [160]Takano T, Ohe Y, Tsuta K, et al. Epidermal growth factor receptor mutation detection using high-resolution melting analysis predicts outcomes in patients with advanced non small cell lung cancer treated with gefitinib[J]. Clin Cancer Res,2007,13(18 Pt 1):5385-5390.
    [161]Oh JE, Lim HS, An CH, et al. Detection of low-level KRAS mutations using PNA-mediated asymmetric PCR clamping and melting curve analysis with unlabeled probes[J]. J Mol Diagn,2010, 12(4):418-424.
    [162]Luo JD, Chan EC, Shih CL, et al. Detection of rare mutant K-ras DNA in a single-tube reaction using peptide nucleic acid as both PCR clamp and sensor probe[J]. Nucleic Acids Res,2006, 34(2):el2.
    [163]Chen CY, Shiesh SC, Wu SJ. Rapid detection of K-ras mutations in bile by peptide nucleic acid-mediated PCR clamping and melting curve analysis:comparison with restriction fragment length polymorphism analysis[J]. Clin Chem,2004,50(3):481-489.
    [164]Chiu RW, Murphy MF, Fidler C, et al. Determination of RhD zygosity:comparison of a double amplification refractory mutation system approach and a multiplex real-time quantitative PCR approach[J]. Clin Chem,2001,47(4):667-672.
    [165]Morlan J, Baker J, Sinicropi D. Mutation detection by real-time PCR:a simple, robust and highly selective method[J]. PLoS One,2009,4(2):e4584. [166] Dxs. EGFR29 Mutation Test Kit[J].2008.
    [167]Bustin SA. Absolute quantification of mRNA using real-time reverse transcription pblymerase chain reaction assays[J]. J Mol Endocrinol,2000,25(2):169-193.
    [168]Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines:minimum information for publication of quantitative real-time PCR experiments [J]. Clin Chem,2009,55(4):611-622.
    [169]Morrison TB, Weis JJ, Wittwer CT. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification[J]. Biotechniques,1998,24(6):954-958,960,962.
    [170]Pfaffl MW, Lange IG, Daxenberger A, et al. Tissue-specific expression pattern of estrogen receptors (ER):quantification of ER alpha and ER beta mRNA with real-time RT-PCR[J]. APMIS, 2001,109(5):345-355.
    [171]Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Res,2001,29(9):e45.
    [172]Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biol,2002, 3(7):RESEARCH0034.
    [173]Schmittgen TD, Zakrajsek BA. Effect of experimental treatment on housekeeping gene expression:validation by real-time, quantitative RT-PCR[J]. J Biochem Biophys Methods,2000, 46(1-2):69-81.
    [174]Pfaffl MW, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity:BestKeeper--Excel-based tool using pair-wise correlations[J]. Biotechnol Lett,2004,26(6):509-515.
    [175]Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Res,2004, 64(15):5245-5250.
    [176]Warrington JA, Nair A, Mahadevappa M, et al. Comparison of human adult and fetal expression and identification of 535 housekeeping/maintenance genes[J]. Physiol Genomics,2000, 2(3):143-147.
    [177]Gao Q, Wang XY, Fan J, et al. Selection of reference genes for real-time PCR in human hepatocellular carcinoma tissues[J]. J Cancer Res Clin Oncol,2008,134(9):979-986.
    [178]Fu LY, Jia HL, Dong QZ, et al. Suitable reference genes for real-time PCR in human HBV-related hepatocellular carcinoma with different clinical prognoses[J]. BMC Cancer,2009,9:49.
    [179]Czechowski T, Stitt M, Altmann T, et al. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis[J]. Plant Physiol,2005,139(1):5-17.
    [180]Reid KE, Olsson N, Schlosser J, et al. An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development[J]. BMC Plant Biol,2006,6:27.
    [181]Gabrielsson BG, Olofsson LE, Sjogren A, et al. Evaluation of reference genes for studies of gene expression in human adipose tissue[J]. Obes Res,2005,13(4):649-652.
    [182]Robinson TL, Sutherland IA, Sutherland J. Validation of candidate bovine reference genes for use with real-time PCR[J]. Vet Immunol Immunopathol,2007,115(1-2):160-165.
    [183]Ohl F, Jung M, Radonic A, et al. Identification and validation of suitable endogenous reference genes for gene expression studies of human bladder cancer[J]. J Urol,2006,175(5):1915-1920.
    [184]Jung M, Ramankulov A, Roigas J, et al. In search of suitable reference genes for gene expression studies of human renal cell carcinoma by real-time PCR[J]. BMC Mol Biol,2007,8:47. [185] Saviozzi S, Cordero F, Lo lacono M, et al. Selection of suitable reference genes for accurate normalization of gene expression profile studies in non-small cell lung cancer[J]. BMC Cancer,2006, 6:200.
    [186]Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001,25(4):402-408.
    [187]Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method[J]. Nat Protoc,2008:3(6):1101-1108.
    [188]Klein D. Quantification using real-time PCR technology:applications and limitations[J]. Trends Mol Med,2002,8(6):257-260.
    [189]Bustin SA, Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction[J]. J Biomol Tech,2004,15(3):155-166.
    [190]Murphy J, Bustin SA. Reliability of real-time reverse-transcription PCR in clinical diagnostics: gold standard or substandard?[J]. Expert Rev Mol Diagn,2009,9(2):187-197.
    [191]Derveaux S, Vandesompele J, Hellemans J. How to do successful gene expression analysis using real-time PCR[J]. Methods,2010,50(4):227-230.
    [1]Jemal A SR, Ward E, Hao Y, Xu J, Murray T and Thun MJ. Cancer statistics[J]. CA Cancer J Clin, 2008,58:71-96.
    [2]Yang L, Li L, Chen Y, et al. [Mortality time trends and the incidence and mortality estimation and projection for lung cancer in China.][J]. Zhongguo Fei Ai Za Zhi,2005,8(4):274-278.
    [3]Herbst RS, Heymach JV, Lippman SM. Lung cancer[J]. N Engl J Med,2008,359(13):1367-1380.
    [4]Bai H, Mao L, Wang HS, et al. Epidermal growth factor receptor mutations in plasma DNA samples predict tumor response in Chinese patients with stages ⅢB to Ⅳ non-small-cell lung cancer[J]. J Clin Oncol,2009,27(16):2653-2659.
    [5]Haura EB. Treatment of advanced non-small-cell lung cancer:a review of current randomized clinical trials and an examination of emerging therapies[J]. Cancer Control,2001,8(4):326-336.
    [6]Schiller JH. Current standards of care in small-cell and non-small-cell lung cancer[J]. Oncology, 2001,61 Suppl1:3-13.
    [7]Reinmuth N, Brandt B, Kunze WP, et al. Ploidy, expression of erbBl, erbB2, P53 and amplification of erbB1, erbB2 and erbB3 in non-small cell lung cancer[J]. Eur Respir J,2000,16(5):991-996.
    [8]Ciardiello F, Tortora G. EGFR antagonists in cancer treatment[J]. N Engl J Med,2008, 358(11):1160-1174.
    [9]Haeder M, Rotsch M, Bepler G, et al. Epidermal growth factor receptor expression in human lung cancer cell lines[J]. Cancer Res,1988,48(5):1132-1136.
    [10]Rusch V, Baselga J, Cordon-Cardo C, et al. Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung[J]. Cancer Res, 1993,53(10 Suppl):2379-2385.
    [11]Ohsaki Y, Tanno S, Fujita Y, et al. Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression[J]. Oncol Rep,2000, 7(3):603-607.
    [12]Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis[J]. Eur J Cancer,2001,37 Suppl 4:S9-15.
    [13]Raben D HB, Chan D, et al. ZD1839, a selective epidermal growth factor receptor tyrosine kinase inhibitor, alone and in combination with radiation and chemotherapy as a new therapeutic strategy in non 2 small cell lung cancer[J]. Semin Oncol,2002 29 (Suppl 4) (37).
    [14]LoRusso PM, Herbst RS, Rischin D, et al. Improvements in quality of life and disease-related symptoms in phase I trials of the selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 in non-small cell lung cancer and other solid tumors[J]. Clin Cancer Res,2003, 9(6):2040-2048.
    [15]Ranson M, Hammond LA, Ferry D, et al. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial[J]. J Clin Oncol,2002,20(9):2240-2250.
    [16]Hidalgo M, Siu LL, Nemunaitis J, et al. Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies[J]. J Clin Oncol,2001,19(13):3267-3279.
    [17]Baselga J, Rischin D, Ranson M, et al. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types[J]. J Clin Oncol,2002,20(21):4292-4302.
    [18]Herbst RS, Maddox AM, Rothenberg ML, et al. Selective oral epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 is generally well-tolerated and has activity in non-small-cell lung cancer and other solid tumors:results of a phase I trial[J]. J Clin Oncol,2002,20(18):3815-3825.
    [19]Baselga J, Arteaga CL. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer[J]. J Clin Oncol,2005,23(11):2445-2459.
    [20]Comis RL. The current situation:erlotinib (Tarceva) and gefitinib (Iressa) in non-small cell lung cancer[J]. Oncologist,2005,10(7):467-470.
    [21]Janne PA, Engelman JA, Johnson BE. Epidermal growth factor receptor mutations in non-small-cell lung cancer:implications for treatment and tumor biology [J]. J Clin Oncol,2005, 23(14):3227-3234.
    [22]Van Cutsem E, Peeters M, Siena S, et al. Open-label phase IE trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer[J]. J Clin Oncol,2007,25(13):1658-1664.
    [23]Tabernero J, Van Cutsem E, Diaz-Rubio E, et al. Phase Ⅱ trial of cetuximab in combination with fluorouracil, leucovorin, and oxaliplatin in the first-line treatment of metastatic colorectal cancer[J]. J Clin Oncol,2007,25(33):5225-5232.
    [24]Jonker DJ, O'Callaghan CJ, Karapetis CS, et al. Cetuximab for the treatment of colorectal cancer[J]. N Engl J Med,2007,357(20):2040-2048.
    [25]Saltz LB, Meropol NJ, Loehrer PJ, Sr., et al. Phase 11 trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor[J]. J Clin Oncol,2004, 22(7):1201-1208.
    [26]Cunningham D, Humblet Y, Siena S, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer[J]. N Engl J Med,2004,351(4):337-345.
    [27]Lenz HJ, Van Cutsem E, Khambata-Ford S, et al. Multicenter phase Ⅱ and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines[J]. J Clin Oncol,2006,24(30):4914-4921.
    [28]Sharma SV, Bell DW, Settleman J, et al. Epidermal growth factor receptor mutations in lung cancer[J]. Nat Rev Cancer,2007,7(3):169-181.
    [29]Kim KS, Jeong JY, Kim YC, et al. Predictors of the response to gefitinib in refractory non-small cell lung cancer[J]. Clin Cancer Res,2005,11(6):2244-2251.
    [30]Park K, Goto K. A review of the benefit-risk profile of gefitinib in Asian patients with advanced non-small-cell lung cancer[J]. Curr Med Res Opin,2006,22(3):561-573.
    [31]Park J, Park BB, Kim JY, et al. Gefitinib (ZD1839) monotherapy as a salvage regimen for previously treated advanced non-small cell lung cancer[J]. Clin Cancer Res,2004,10(13):4383-4388.
    [32]Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer[J]. N Engl J Med,2005,353(2):123-132.
    [33]Fukuoka M, Yano S, Giaccone G, et al. Multi-institutional randomized phase Ⅱ trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected][J]. J Clin Oncol,2003,21(12):2237-2246.
    [34]Miller VA, Kris MG, Shah N, et al. Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer[J]. J Clin Oncol,2004, 22(6):1103-1109.
    [35]Janne PA, Gurubhagavatula S, Yeap BY, et al. Outcomes of patients with advanced non-small cell lung cancer treated with gefitinib (ZD1839, "Iressa") on an expanded access study[J]. Lung Cancer, 2004,44(2):221-230.
    [36]Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer:a randomized trial[J]. JAMA,2003,290(16):2149-2158.
    [37]Perez-Soler R, Chachoua A, Hammond LA, et al. Determinants of tumor response and survival with erlotinib in patients with non--small-cell lung cancer[J]. J Clin Oncol,2004,22(16):3238-3247.
    [38]Niho S, Kubota K, Goto K, et al. First-line single agent treatment with gefitinib in patients with advanced non-small-cell lung cancer:a phase Ⅱ study[J]. J Clin Oncol,2006,24(1):64-69.
    [39]Rosell R, Ichinose Y, Taron M, et al. Mutations in the tyrosine kinase domain of the EGFR gene associated with gefitinib response in non-small-cell lung cancer[J]. Lung Cancer,2005,50(1):25-33.
    [40]Mu XL, Li LY, Zhang XT, et al. Gefitinib-sensitive mutations of the epidermal growth factor receptor tyrosine kinase domain in chinese patients with non-small cell lung cancer[J]. Clin Cancer Res, 2005,11(12):4289-4294.
    [41]Mitsudomi T, Kosaka T, Endoh H, et al. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence[J]. J Clin Oncol,2005,23(11):2513-2520.
    [42]Kondo M, Yokoyama T, Fukui T, et al. Mutations of epidermal growth factor receptor of non-small cell lung cancer were associated with sensitivity to gefitinib in recurrence after surgery [J]. Lung Cancer, 2005,50(3):385-391.
    [43]Han SW, Kim TY, Hwang PG, et al. Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib[J]. J Clin Oncol,2005, 23(11):2493-2501.
    [44]Cortes-Funes H, Gomez C, Rosell R, et al. Epidermal growth factor receptor activating mutations in Spanish gefitinib-treated non-small-cell lung cancer patients[J]. Ann Oncol,2005,16(7):1081-1086.
    [45]Bell DW, Lynch TJ, Haserlat SM, et al. Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer:molecular analysis of the IDEAL/INTACT gefitinib trials[J]. J Clin Oncol,2005,23(31):8081-8092.
    [46]Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib[J]. N Engl J Med,2004, 350(21):2129-2139.
    [47]Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy [J]. SCIENCE,2004,304(5676):1497-1500.
    [48]Huang SF, Liu HP, Li LH, et al. High frequency of epidermal growth factor receptor mutations with complex patterns in non-small cell lung cancers related to gefitinib responsiveness in Taiwan[J]. Clin Cancer Res,2004,10(24):8195-8203.
    [49]Taron M, Ichinose Y, Rosell R, et al. Activating mutations in the tyrosine kinase domain of the epidermal growth factor receptor are associated with improved survival in gefitinib-treated chemorefractory lung adenocarcinomas[J]. Clin Cancer Res,2005, 11(16):5878-5885.
    [50]Riely GJ, Pao W, Pham D, et al. Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib[J]. Clin Cancer Res,2006,12(3 Pt 1):839-844.
    [51]Jackman DM, Yeap BY, Sequist LV, et al. Exon 19 deletion mutations of epidermal growth factor receptor are associated with prolonged survival in non-small cell lung cancer patients treated with gefitinib or erlotinib[J]. Clin Cancer Res,2006,12(13):3908-3914.
    [52]Shigematsu H, Lin L, Takahashi T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers[J]. J Natl Cancer Inst,2005,97(5):339-346.
    [53]Davies H, Hunter C, Smith R, et al. Somatic mutations of the protein kinase gene family in human lung cancer[J]. Cancer Res,2005,65(17):7591-7595.
    [54]Gazdar AF. Personalized medicine and inhibition of EGFR signaling in lung cancer[J]. N Engl J Med,2009,361(10):1018-1020.
    [55]Kobayashi S, Boggon TJ, Dayaram T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib[J]. N Engl J Med,2005,352(8):786-792.
    [56]Bell DW, Gore I, Okimoto RA, et al. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR[J]. Nat Genet,2005,37(12):1315-1316.
    [57]Pao W, Miller VA, Politi KA, et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain[J]. PLoS Med,2005, 2(3):e73.
    [58]Kwak EL, Sordella R, Bell DW, et al. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib[J]. Proc Natl Acad Sci U S A,2005,102(21):7665-7670.
    [59]Balak MN, Gong Y, Riely GJ, et al. Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors[J]. Clin Cancer Res,2006,12(21):6494-6501.
    [60]Tokumo M, Toyooka S, Ichihara S, et al. Double mutation and gene copy number of EGFR in gefitinib refractory non-small-cell lung cancer[J]. Lung Cancer,2006,53(1):117-121.
    [61]董强刚,黄进肃,黄建,et a1.肺癌靶向治疗研究进展与我国肺癌的EGFR基因突变概况[J].肿瘤,2005,25(6):325-634.
    [62]Suzuki R, Hasegawa Y, Baba K, et al. A phase II study of single-agent gefitinib as first-line therapy in patients with stage IV non-small-cell lung cancer[J]. Br J Cancer,2006,94(11):1599-1603.
    [63]Inoue A, Suzuki T, Fukuhara T, et al. Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small-cell lung cancer with epidermal growth factor receptor gene mutations[J]. J Clin Oncol,2006,24(21):3340-3346.
    [64]Cho BC, Im CK, Park MS, et al. Phase II study of erlotinib in advanced non-small-cell lung cancer after failure of gefitinib[J]. J Clin Oncol,2007,25(18):2528-2533.
    [65]Chin TM, Anuar D, Soo R, et al. Detection of epidermal growth factor receptor variations by partially denaturing HPLC[J], Clin Chem,2007,53(1):62-70.
    [66]Vogelstein B, Kinzler KW. Digital PCR[J]. Proc Natl Acad Sci U S A,1999,96(16):9236-9241.
    [67]Yung TK, Chan KC, Mok TS, et al. Single-molecule detection of epidermal growth factor receptor mutations in plasma by microfluidics digital PCR in non-small cell lung cancer patients[J]. Clin Cancer Res,2009,15(6):2076-2084.
    [68]Endo.K, Konishi A, Sasaki H, et al. Epidermal growth factor receptor gene mutation in non-small cell lung cancer using highly sensitive and fast TaqMan PCR assay[J]. Lung Cancer,2005, 50(3):375-384.
    [69]Haneda H, Sasaki H, Shimizu S, et al. Epidermal growth factor receptor gene mutation defines distinct subsets among small adenocarcinomas of the lung[J]. Lung Cancer,2006,52(1):47-52.
    [70]Zhou C, Ni J, Zhao Y, et al. Rapid detection of epidermal growth factor receptor mutations in non-small cell lung cancer using real-time polymerase chain reaction with TaqMan-MGB probes[J]. Cancer J,2006,12(1):33-39.
    [71]Nagai Y, Miyazawa H, Huqun, et al. Genetic heterogeneity of the epidermal growth factor receptor in non-small cell lung cancer cell lines revealed by a rapid and sensitive detection system, the peptide nucleic acid-locked nucleic acid PCR clamp[J]. Cancer Res,2005,65(16):7276-7282.
    [72]Tanaka T, Nagai Y, Miyazawa H, et al. Reliability of the peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp-based test for epidermal growth factor receptor mutations integrated into the clinical practice for non-small cell lung cancers[J]. Cancer Sci,2007,98(2):246-252.
    [73]Takano T, Ohe Y, Tsuta K, et al. Epidermal growth factor receptor mutation detection using high-resolution melting analysis predicts outcomes in patients with advanced non small cell lung cancer treated with gefitinib[J]. Clin Cancer Res,2007,13(18 Pt 1):5385-5390.
    [74]Dxs. EGFR29 Mutation Test Kit[J].2008.
    [75]Hoshi K, Takakura H, Mitani Y, et al. Rapid detection of epidermal growth factor receptor mutations in lung cancer by the SMart-Amplification Process[J]. Clin Cancer Res,2007, 13(17):4974-4983.
    [76]Heckman KL, Pease LR. Gene splicing and mutagenesis by PCR-driven overlap extension [J]. Nat Protoc,2007,2(4):924-932.
    [77]Higuchi R, Krummel B, Saiki RK. A general method of in vitro preparation and specific mutagenesis of DNA fragments:study of protein and DNA interactions[J]. Nucleic Acids Res,1988, 16(15):7351-7367.
    [78]Livak KJ FS, Marmaro J.Mullah KB. Self-quenching fluorescence probe[J]. US Patent No5723591,1998.
    [79]Tyagi S, Kramer FR. Molecular beacons:probes that fluoresce upon hybridization[J]. Nat Biotechnol,1996,14(3):303-308.
    [80]Shi XL, Hu QH, Zhang JF, et al. [Rapid simultaneous detection of Salmonella and Shigella using modified molecular beacons and real-time PCR][J]. Zhonghua Liu Xing Bing Xue Za Zhi,2006, 27(12):1053-1056.
    [1]Goldstein NS, Armin M. Epidermal growth factor receptor immunohistochemical reactivity in patients with American Joint Committee on Cancer Stage Ⅳ colon adenocarcinoma:implications for a standardized scoring system[J]. Cancer,2001,92(5):1331-1346.
    [2]Saltz LB, Meropol NJ, Loehrer PJ, Sr., et al. Phase Ⅱ trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor[J]. J Clin Oncol,2004, 22(7):1201-1208.
    [3]Lenz HJ, Van Cutsem E, Khambata-Ford S, et al. Multicenter phase Ⅱ and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines[J]. J Clin Oncol,2006,24(30):4914-4921.
    [4]Messersmith WA, Hidalgo M. Panitumumab, a monoclonal anti epidermal growth factor receptor antibody in colorectal cancer:another one or the one?[J]. Clin Cancer Res,2007,13(16):4664-4666.
    [5]Van Cutsem E, Peeters M, Siena S, et al. Open-label phase Ⅲ trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer[J]. J Clin Oncol,2007,25(13):1658-1664.
    [6]Stites EC, Trampont PC, Ma Z, et al. Network analysis of oncogenic Ras activation in cancer[J]. Science,2007,318(5849):463-467.
    [7]Rodenhuis S. ras and human tumors[J]. Semin Cancer Biol,1992,3(4):241-247.
    [8]Pao W, Wang TY, Riely GJ, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib[J]. PLoS Med,2005,2(1):e17.
    [9]Lievre A, Bachet JB, Le Corre D, et al. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer[J]. Cancer Res,2006,66(8):3992-3995.
    [10]Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, et al. Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies[J]. Cancer Res,2007,67(6):2643-2648.
    [11]Khambata-Ford S, Garrett CR, Meropol NJ, et al. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab[J]. J Clin Oncol,2007,25(22):3230-3237.
    [12]Eberhard DA, Johnson BE, Amler LC, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib[J]. J Clin Oncol,2005,23(25):5900-5909.
    [13]Massarelli E, Varella-Garcia M, Tang X, et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer[J]. Clin Cancer Res,2007,13(10):2890-2896.
    [14]Rodenhuis S, Slebos RJ, Boot AJ, et al. Incidence and possible clinical significance of K-ras oncogene activation in adenocarcinoma of the human lung[J]. Cancer Res,1988,48(20):5738-5741.
    [15]Ahrendt SA, Decker PA, Alawi EA, et al. Cigarette smoking is strongly associated with mutation of the K-ras gene in patients with primary adenocarcinoma of the lung[J]. Cancer,2001, 92(6):1525-1530.
    [16]Li J, Wang L, Mamon H, et al. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing[J]. Nat Med,2008,14(5):579-584.
    [17]Chen YL, Chang YS, Chang JG, et al. Genotyping of K-ras codons 12 and 13 mutations in colorectal cancer by capillary electrophoresis[J]. J Chromatogr A,2009,1216(26):5147-5154.
    [18]Zhang H, Wang X, Ma Q, et al. Rapid detection of low-abundance K-ras mutation in stools of colorectal cancer patients using chip-based temperature gradient capillary electrophoresis[J]. Lab Invest,2011,91(5):788-798.
    [19]Lanthaler AJ, Spizzo G, Mitterer M, et al. Interlaboratory comparison of K-ras testing by real-time PCR and RFLP in colorectal cancer samples[J]. Diagn Mol Pathol,2011,20(2):90-93.
    [20]Kristensen LS, Andersen GB, Hager H, et al. Competitive amplification of differentially melting amplicons (CADMA) enables sensitive and direct detection of all mutation types by high-resolution melting analysis[J]. Hum Mutat,2012,33(1):264-271.
    [21]Oh JE, Lim HS, An CH, et al. Detection of low-level KRAS mutations using PNA-mediated asymmetric PCR clamping and melting curve analysis with unlabeled probes[J]. J Mol Diagn,2010, 12(4):418-424.
    [22]Luo JD, Chan EC, Shih CL, et al. Detection of rare mutant K-ras DNA in a single-tube reaction using peptide nucleic acid as both PCR clamp and sensor probe[J]. Nucleic Acids Res,2006,34(2):e12.
    [23]Chow L, Lin PC, Chang JS, et al. Differences in the frequencies of K-ras c12-13 genotypes by gender and pathologic phenotypes in colorectal tumors measured using the allele discrimination method[J]. Environ Mol Mutagen,2012,53(1):22-31.
    [24]Liu Q, Sommer SS. Pyrophosphorolysis-activated polymerization (PAP):application to allele-specific amplification[J]. Biotechniques,2000,29(5):1072-1076,1078,1080 passim.
    [25]Liu Q, Sommer SS. Pyrophosphorolysis by Type Ⅱ DNA polymerases:implications for pyrophosphorolysis-activated polymerization[J]. Anal Biochem,2004,324(1):22-28.
    [26]Shi J, Liu Q, Sommer SS. Detection of ultrarare somatic mutation in the human TP53 gene by bidirectional pyrophosphorolysis-activated polymerization allele-specific amplification[J]. Hum Mutat, 2007,28(2):131-136.
    [27]LiuQ,Sommer SS.Detection of extremely rare alleles by bidirectional pyrophosphorolysis-activated polymerization allele-specific amplification (Bi-PAP-A):measurement of mutation load in mammalian tissues[J]. Biotechniques,2004,36(1):156-166.
    [1]Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002[J]. CA Cancer J Clin,2005, 55(2):74-108.
    [2]Ferlay J SH, Bray F, Forman D, Mathers C, Parkin DM. GLOBOCAN 2008, Cancer incidence and mortality worldwide:IARC CancerBase No.10 [Internet][J]. Lyon (France):IARC,2010.
    [3]Controlled trial of tamoxifen as adjuvant agent in management of early breast cancer. Interim analysis at four years by Nolvadex Adjuvant Trial Organisation[J]. Lancet,1983,1(8319):257-261.
    [4]Controlled trial of tamoxifen as single adjuvant agent in management of early breast cancer. Analysis at six years by Nolvadex Adjuvant Trial Organisation [J]. Lancet,1985,1(8433):836-840.
    [5]Adjuvant tamoxifen in the management of operable breast cancer:the Scottish Trial. Report from the Breast Cancer Trials Committee, Scottish Cancer Trials Office (MRC), Edinburgh[J]. Lancet,1987, 2(8552):171-175.
    [6]Polychemotherapy for early breast cancer:an overview of the randomised trials. Early Breast Cancer Trialists' Collaborative Group[J]. Lancet,1998,352(9132):930-942.
    [7]Fisher B, Costantino J, Redmond C, et al. A randomized clinical trial evaluating tamoxifen in the treatment of patients with node-negative breast cancer who have estrogen-receptor-positive tumors[J]. N Engl J Med 1989,320(8):479-484.
    [8]Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for prevention of breast cancer:report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study [J]. J Natl Cancer Inst,1998, 90(18):1371-1388.
    [9]Fisher B, Redmond C, Brown A, et al. Adjuvant chemotherapy with and without tamoxifen in the treatment of primary breast cancer:5-year results from the National Surgical Adjuvant Breast and Bowel Project Trial[J]. J Clin Oncol,1986,4(4):459-471.
    [10]Bast RC, Jr., Ravdin P, Hayes DF, et al.2000 update of recommendations for the use of tumor markers in breast and colorectal cancer:clinical practice guidelines of the American Society of Clinical Oncology[J]. J Clin Oncol,2001,19(6):1865-1878.
    [11]Carlson RW, Edge SB, Theriault RL. NCCN:Breast cancer[J]. Cancer Control,2001,8(6 Suppl 2):54-61.
    [12]Eifel P, Axelson JA, Costa J, et al. National Institutes of Health Consensus Development Conference Statement:adjuvant therapy for breast cancer, November 1-3,2000[J]. J Natl Cancer Inst,2001, 93(13):979-989.
    [13]Esteva FJ, Valero V, Booser D, et al. Phase Ⅱ study of weekly docetaxel and trastuzumab for patients with HER-2-overexpressing metastatic breast cancer[J]. J Clin Oncol,2002,20(7):1800-1808.
    [14]Goldhirsch A, Glick JH, Gelber RD, et al. Meeting highlights:International Consensus Panel on the Treatment of Primary Breast Cancer. Seventh International Conference on Adjuvant Therapy of Primary Breast Cancer[J]. J Clin Oncol,2001,19(18):3817-3827.
    [15]Harvey JM, Clark GM, Osborne CK, et al. Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer[J]. J Clin Oncol,1999,17(5):1474-1481.
    [16]Pauletti G, Dandekar S, Rong H, et al. Assessment of methods for tissue-based detection of the HER-2/neu alteration in human breast cancer:a direct comparison of fluorescence in situ hybridization and immunohistochemistry[J]. J Clin Oncol,2000,18(21):3651-3664.
    [17]Ravdin PM, Siminoff LA, Davis GJ, et al. Computer program to assist in making decisions about adjuvant therapy for women with early breast cancer[J]. J Clin Oncol,2001,19(4):980-991.
    [18]Olivotto IA, Bajdik CD, Ravdin PM, et al. Population-based validation of the prognostic model ADJUVANT! for early breast cancer[J]. J Clin Oncol,2005,23(12):2716-2725.
    [19]Sorlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications[J]. Proc Natl Acad Sci U S A,2001,98(19):10869-10874.
    [20]van de Vijver MJ, He YD, van't Veer LJ, et al. A gene-expression signature as a predictor of survival in breast cancer[J]. N Engl J Med,2002,347(25):1999-2009.
    [21]Chang J PT, Allred DC, et al. Biologic markers as predictors of clinical outcome from systemic therapy for primary operable breast cancer[J]. J Clin Oncol,1999,17:3058-3063.
    [22]Sotiriou C PT, Dowsett M, et al. Gene expression profiles derived from fine needle aspiration correlate with response to systemic chemotherapy in breast cancer[J]. Breast Cancer Res 2002,4.
    [23]Assersohn L, Gangi L, Zhao Y, et al. The feasibility of using fine needle aspiration from primary breast cancers for cDNA microarray analyses[J]. Clin Cancer Res,2002,8(3):794-801.
    [24]Ayers M, Symmans WF, Stec J, et al. Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer[J]. J Clin Oncol,2004,22(12):2284-2293.
    [25]Ellis M, Davis N, Coop A, et al. Development and validation of a method for using breast core needle biopsies for gene expression microarray analyses[J]. Clin Cancer Res,2002,8(5):1155-1166.
    [26]Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours[J]. Nature,2000, 406(6797):747-752.
    [27]Yu K, Lee CH, Tan PH, et al. Conservation of breast cancer molecular subtypes and transcriptional patterns of tumor progression across distinct ethnic populations[J]. Clin Cancer Res,2004,10(16):5508-5517.
    [28]Parker JS, Mullins M, Cheang MC, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes[J]. J Clin Oncol,2009,27(8):1160-1167.
    [29]Karsten SL, Van Deerlin VM, Sabatti C, et al. An evaluation of tyramide signal amplification and archived fixed and frozen tissue in microarray gene expression analysis[J]. Nucleic Acids Res,2002, 30(2):E4.
    [30]Ramaswamy S, Golub TR. DNA microarrays in clinical oncology[J]. J Clin Oncol,2002, 20(7):1932-1941.
    [31]Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays[J]. J Mol Endocrinol,2000,25(2):169-193.
    [32]Kubista M, Andrade JM, Bengtsson M, et al. The real-time polymerase chain reaction[J]. Mol Aspects Med,2006,27(2-3):95-125.
    [33]Bernard PS, Wittwer CT. Real-time PCR technology for cancer diagnostics[J]. Clin Chem,2002, 48(8):1178-1185.
    [34]Mackay IM, Arden KE, Nitsche A. Real-time PCR in virology [J]. Nucleic Acids Res,2002, 30(6):1292-1305.
    [35]Mackay IM. Real-time PCR in the microbiology laboratory[J]. Clin Microbiol Infect,2004, 10(3):190-212.
    [36]Bustin SA, Mueller R. Real-time reverse transcription PCR and the detection of occult disease in colorectal cancer[J]. Mol Aspects Med,2006,27(2-3):192-223.
    [37]Cronin M, Pho M, Dutta D, et al. Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay[J]. Am J Pathol,2004,164(1):35-42.
    [38]van't Veer LJ DH, van de Vijver MJ,. Gene expression profiling predicts clinical outcome of breast cancer[J]. Nature,2002,415:530-536.
    [39]Buyse M LS, van't Veer L, et al. Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer[J]. J Natl Cancer Inst,2006,98:1183-1192.
    [40]Bender RA KM, Rutgers EJ, et al. The 70-gene profile and chemotherapy benefit in 1600 breast cancer patients [abstract][J]. J Clin Oncol,2009,27(suppl):15s. Abstract 512.
    [41]Gianni L, Zambetti M, Clark K, et al. Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer[J]. J Clin Oncol,2005, 23(29):7265-7277.
    [42]Paik S, Shak S, Tang G, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer[J]. N Engl J Med,2004,351(27):2817-2826.
    [43]Carlson RW BE, Burstein HJ, Gradishar WJ, Hudis CA, Loprinzi C, et al. NCCN Task Force Report: Adjuvant Therapy for Breast Cancer.[J]. J Natl Compr Canc Netw 2006,4 Suppl 1:S1-26.
    [44]Hornberger J CL, Lyman GH. Economic analysis of targeting chemotherapy using a 21-gene RT-PCR assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer[J]. Am J Manag Care, 2005,11:313-324.
    [45]Harris L FH, Mennel R, Norton L, Ravdin P, Taube S, et al. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer[J]. J Clin Oncol,2007, 25:5287-5312.
    [46]Esteva FJ SA, Cristofanilli M, Coombes K, Lee SJ, Baker J, et al. Prognostic role of a multigene reverse transcriptase-PCR assay in patients with node-negative breast cancer not receiving adjuvant systemic therapy[J]. Clin Cancer Res,2005,11:3315-3319.
    [47]Trosman JR, Van Bebber SL, Phillips KA. Coverage policy development for personalized medicine: private payer perspectives on developing policy for the 21-gene assay[J]. J Oncol Pract,6(5):238-242.
    [48]Wang Y KJ, Sieuwerts AM, et al. Gene-expression profiles to predict distant metastasis of lymph node-negative primary breast cancer[J]. Lancet,2005,365:671-679.
    [49]Foekens JA, Atkins D, Zhang Y, et al. Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer[J]. J Clin Oncol,2006,24(11):1665-1671.
    [50]Ma XJ, Wang Z, Ryan PD, et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen[J]. Cancer Cell,2004,5(6):607-616.
    [51]Goetz MP, Suman VJ, Ingle JN, et al. A two-gene expression ratio of homeobox 13 and interleukin-17B receptor for prediction of recurrence and survival in women receiving adjuvant tamoxifen[J]. Clin Cancer Res, 2006,12(7 Pt 1):2080-2087.
    [52]Ma XJ, Hilsenbeck SG, Wang W, et al. The HOXB13:IL17BR expression index is a prognostic factor in early-stage breast cancer[J]. J Clin Oncol,2006,24(28):4611-4619.
    [53]Chang HY, Sneddon JB, Alizadeh AA, et al. Gene expression signature of fibroblast serum response predicts human cancer progression:similarities between tumors and wounds[J]. PLoS Biol,2004,2(2):E7.
    [54]Chang HY, Nuyten DS, Sneddon JB, et al. Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival[J]. Proc Natl Acad Sci U S A,2005, 102(10):3738-3743.
    [55]Fan C, Oh DS, Wessels L, et al. Concordance among gene-expression-based predictors for breast cancer[J]. N Engl J Med,2006,355(6):560-569.
    [56]van't Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profiling predicts clinical outcome of breast cancer[J]. Nature,2002,415(6871):530-536.
    [57]Lyman GH, Cosler LE, Kuderer NM, et al. Impact of a 21-gene RT-PCR assay on treatment decisions in early-stage breast cancer:an economic analysis based on prognostic and predictive validation studies[J]. Cancer,2007,109(6):1011-1018.
    [58]Chen E, Tong KB, Malin JL. Cost-effectiveness of 70-gene MammaPrint signature in node-negative breast cancer[J]. Am J Manag Care,2010,16(12):e333-342.
    [59]Pasloske BL, Walkerpeach CR, Obermoeller RD, et al. Armored RNA technology for production of ribonuclease-resistant viral RNA controls and standards[J]. J Clin Microbiol,1998,36(12):3590-3594.
    [60]WalkerPeach CR, Winkler M, DuBois DB, et al. Ribonuclease-resistant RNA controls (Armored RNA) for reverse transcription-PCR, branched DNA, and genotyping assays for hepatitis C virus[J], Clin Chem, 1999,45(12):2079-2085.
    [61]Beld M, Minnaar R, Weel J, et al. Highly sensitive assay for detection of enterovirus in clinical specimens by reverse transcription-PCR with an armored RNA internal control[J]. J Clin Microbiol,2004, 42(7):3059-3064.
    [62]Donia D, Divizia M, Pana A. Use of armored RNA as a standard to construct a calibration curve for real-time RT-PCR[J]. J Virol Methods,2005,126(1-2):157-163.
    [63]Stevenson J, Hymas W, Hillyard D. The use of Armored RNA as a multi-purpose internal control for RT-PCR[J]. J Virol Methods,2008,150(1-2):73-76.
    [64]Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time qRT-PCR performance[J]. Mol Aspects Med,2006,27(2-3):126-139.
    [65]Doma MK, Parker R. RNA quality control in eukaryotes[J]. Cell,2007,131(4):660-668.
    [66]Perez-Novo CA, Claeys C, Speleman F, et al. Impact of RNA quality on reference gene expression stability[J]. Biotechniques,2005,39(1):52,54,56.
    [67]Li Q, Luan G, Guo Q, et al. A new class of homogeneous nucleic acid probes based on specific displacement hybridization[J]. Nucleic Acids Res,2002,30(2):E5.
    [68]Canales RD, Luo Y, Willey JC, et al. Evaluation of DNA microarray results with quantitative gene expression platforms[J]. Nat Biotechnol,2006,24(9):1115-1122.
    [69]Schmid H, Cohen CD, Henger A, et al. Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies[J]. Kidney Int,2003,64(1):356-360.
    [70]Erickson HS, Albert PS, Gillespie JW, et al. Quantitative RT-PCR gene expression analysis of laser microdissected tissue samples[J]. Nat Protoc,2009,4(6):902-922.
    [71]Bustin SA, Benes V, Garson JA, et al. The MIQE guidelines:minimum information for publication of quantitative real-time PCR experiments[J]. Clin Chem,2009,55(4):611-622.
    [72]Bustin SA, Beaulieu JF, Huggett J, et al. MIQE precis:Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments[J]. BMC Mol Biol,2010,11:74.
    [73]Taylor S, Wakem M, Dijkman Q et al. A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines[J]. Methods,2010,50(4):S1-5.
    [74]Bustin SA. Why the need for qPCR publication guidelines?--The case for MIQE[J]. Methods,2010. 50(4):217-226.
    [75]Brownie J, Shawcross S, Theaker J, et al. The elimination of primer-dimer accumulation in PCR[J]. Nucleic Acids Res,1997,25(16):3235-3241.
    [76]Broude NE, Zhang L, Woodward K, et al. Multiplex allele-specific target amplification based on PCR suppression[J]. Proc Natl Acad Sci U S A,2001,98(1):206-211.
    [77]Whitcombe D, Brownie J, Gillard HL, et al. A homogeneous fluorescence assay for PCR amplicons:its application to real-time, single-tube genotyping[J]. Clin Chem,1998,44(5):918-923.
    [78]Iverson AA, Gillett C, Cane P, et al. A single-tube quantitative assay for mRNA levels of hormonal and growth factor receptors in breast cancer specimens[J]. J Mol Diagn,2009,11(2):117-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700