用户名: 密码: 验证码:
自身免疫性糖尿病患者NK细胞关键受体与配体基因及其表达的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨湖南汉族人群杀伤细胞免疫球蛋白样受体(Killer cell immunoglobin-like receptor, KIR)基因的多态性、单倍型和基因型及其配体HLA-C基因多态性、KIR/HLA-C基因组合的特点,为进一步研究KIR基因在疾病和移植免疫中的作用提供基础数据。
     设计:横断面研究。
     方法:采用聚合酶链反应-序列特异性引物技术(polymerase chain reaction-sequence specific primer, PCR-SSP),检测429例湖南汉族健康志愿者KIR基因和HLA-C基因的分布频率,并分析KIR基因的单倍型、基因型和KIR/HLA-C基因组合特点。
     结果:(1)在湖南汉族人群中共检出16种KIR基因,其中框架基因KIR2DL4、3DL2、3DL3和3DP1频率为100%;KIR 2DL1、2DL3、3DL1、2DS4、2DP1基因较为常见,频率均>90%,KIR2DS1、2DL5、3DS1、2DL2、2DS2、2DS3、2DS5频率均<40%;(2)湖南汉族人群KIR基因频率分布与日本人相似,而KIR2DL2、2DS2、2DS3和2DL5频率低于高加索人群,KIR2DL3频率高于高加索人群;(3)湖南汉族人群KIR基因以A单倍型为主,A、B单倍型频率分别为69.6%、30.4%,比例约为2:1;(4)在湖南汉族人群中共发现49种KIR基因型,其中4种未见报道;KIR基因型以AA型最为常见(44.5%);(5)湖南汉族人群HLA-C基因以HLA-C1为主,频率高达98.1%;(6)湖南汉族人群KIR2D/HLA-C基因组合以HLA-C1(+)/HLA-C2(-),KIR2DL1(+)/2DL2(-)/2DL3(+)/2DS 1(-)/2DS2(-)最为常见(23.9%)。
     结论:湖南汉族人群具有独特的KIR基因型,丰富的KIR、HLA-C基因多态性和KIR/HLA-C基因组合方式。
     目的:探讨KIR和HLA-C基因多态性与自身免疫性糖尿病的关系。
     设计:横断面、病例对照研究。
     方法:采用聚合酶链反应-序列特异性引物技术(polymerase chain reaction-sequence specific primer, PCR-SSP),检测387例湖南汉族自身免疫性糖尿病患者[180例急性起病自身免疫性糖尿病(T1ADM)患者和207例成人隐匿性自身免疫性糖尿病(LADA)患者]和性别、年龄、区域匹配的429例正常对照者(199例对照A组和230例对照组B)KIR基因和HLA-C基因的多态性,分析其与自身免疫性糖尿病遗传易感的关系。
     结果:(1)与相应的正常对照组比较,T1ADM组KIR2DL1 (98.9% vs.92.0%, OR=7.781,P<0.01)、3DL1(94.5% vs.86.4%, OR=2.669, P<0.01)和2DS4 (83.9% vs.70.9%,OR=2.142,P<0.01)频率增高;LADA组KIR2DL3 (99.5% vs.96.1%, OR=8.389, P<0.05)频率增高;KIR基因在湖南汉族自身免疫性糖尿病患者中的遗传易感性与其他种族的不同;(2)激活性KIR基因的总个数在T1ADM组高于其正常对照A组(2.02 vs.1.78,P<0.05);(3)KIR基因A、B单倍型在T1ADM组分别为69.7%、30.3%,在LADA组分别为75.4%、24.6%;A、B单倍型比例分别约为2:1,3:1;(4)T1ADM组、LADA组与相应的正常对照组比较,HLA-C(HLA-C1、HLA-C2)基因频率无差异;(5)与相应的正常对照组比较KIR/HLA-C基因组合,T1ADM组KIR2DL 1(-)/HLA-C2(-)(0.6%vs.6.0%,OR=0.087,P< 0.01).LADA组KIR2DL3(-)/HLA-C1(+)(0.5%vs.3.9%,OR=0.119,P <0.05)频率降低;(6)与正常对照A组比较KIR2D/HLA-C基因组合方式,T1ADM组HLA-C 1(+)/HLA-C2(-),KIR2DL 1(+)/2DL2(-)/2DL3 (+)/2DS 1(+)/2DS2(-)频率升高(24.4%vs.15.6%,OR=1.753,P<0.05)。
     结论:KIR基因多态性和KIR/HLA-C基因组合与自身免疫性糖尿病发病相关。
     目的:分析急性起病自身免疫性糖尿病(T1ADM)患者KIR基因与HLA-DQ或MICA基因的相互作用。
     设计:横断面、病例对照研究。
     方法:采用PCR-直接测序法(PCR-Sequencing Based Typing, PCR-SBT)对湖南汉族180例T1ADM患者和199例正常对照者的DNA样本进行HLA-DQ和MICA基因多态性检测,并分析T1ADM的HLA-DQ和MICA易感等位基因、单倍型或基因型。采用Svejgaard &Ryder检验分析KIR易感基因(KIR2DL1、3DL1或2DS4)与HLA-DQ易感单倍型或MICA易感等位基因在T1ADM中的相互作用。
     结果:(1)湖南汉族T1ADM患者HLA-DQ易感等位基因为DQA1*03、DQA1*0501/0503、DQB1* 0201、DQB1*0303和DQB1 *0401;保护性等位基因为DQA1*0101/0104、DQA1*0102、DQA1* 0103.DQ A1*0601、DQB1* 0301、DQB1*0502、DQB1*0601和DQB1*0602;易感单倍型为DQA1*03-DQB1*0303、DQA1*03-DQB1*0401、DQA1*05-DQB1*0201;保护性单倍型为DQA1*0601-DQB1*0301、DQA1*0102-DQB1*0601、DQA1*0102-DQB1*0602;(2)湖南汉族T1ADM患者MICA易感等位基因为MICA9,保护性等位基因为MICA5.1; MICA易感基因型为MICA4/9和MICA9/9;(3)同时携带KIR易感基因(KIR2DL1、3DL1或2DS4)和HLA-DQ易感单倍型或MICA9等位基因者T1ADM发病风险升高(OR=1.077-21.111); (4) HLA-DQ易感单倍型或MICA9等位基因在携带KIR2DL1或KIR3DL1基因者中增加T1ADM发病风险(OR=2.929-7.222); (5) HLA-DQ易感性单倍型对T1ADM的易感性强于KIR2DS4 (OR=3.750); (6) KIR3DL1或KIR2DS4基因在不携带MICA9等位基因者中可增加T1ADM发病风险(OR=3.792或2.424)。
     结论:KIR基因可协同增强HLA-DQ和MICA基因对T1ADM遗传易感性。
     目的:观察自身免疫性糖尿病患者NK细胞及其表面受体的变化,探讨NK细胞在自身免疫性糖尿病发病机制中的作用,为自身免疫性糖尿病的预测、病情监测和治疗提供思路和手段。
     设计:横断面、病例对照研究。
     方法:选择我院内分泌科收治的53例自身免疫性糖尿病患者(35例T1ADM患者和18例LADA患者),健康体查筛选的28例正常对照者,采用流式细胞仪技术检测T细胞亚群、NK细胞的比例和NK细胞表面受体(KIR和NKG2D)的表达,采用MTT方法检测IL-2孵育前后NK细胞的活性,比较、分析自身免疫性糖尿病患者NK细胞数目和活性及其表面受体表达的变化。
     结果:(1)与相应的正常对照组比较,T1ADM组CD3+T细胞比例升高(70.5%vs.64.6%,P<0.05),NK细胞比例下降(13.8%vs.20.1%,P<0.01);(2)T1ADM组和LADA组NK细胞活性低于相应的正常对照组(30.9%vs.47.1%,P<0.01;39.8%vs.49.2%,P<0.05),与相应的LADA组及其亚组比较,T1ADM组(30.9%vs.39.8%,P<0.01)、新发(33.2%vs.40.9%,P<0.05)和长病程T1ADM组(28.1%vs.38.6%,P<0.05)NK细胞活性降低;(3)IL-2孵育后T1ADM组和LADA组NK细胞活性均增强(43.2%vs.30.9%,47.4%vs.39.8%,P<0.05); T1ADM组和其新发组NK活性的增长差值分别大于LADA组和LADA新发组(9.9%vs.7.4%,P<0.05;12.9%vs.8.0%,P<0.05);(4)与正常对照A组比较,T1ADM组KIR2DL1(10.2%vs.6.2%,P<0.05)和NKG2D (96.9% vs.95.2%, P<0.05)表达升高。
     结论:(1)自身免疫性糖尿病患者外周血中CD3+T细胞比例升高,NK细胞的比例和活性下降,其中T1ADM患者较LADA患者存在更严重的NK细胞免疫异常;(2)IL-2可改善自身免疫性糖尿病患者NK细胞的活性,且其对早期T1ADM患者的改善能力高于LADA患者;(3)T1ADM患者NK细胞表面受体KIR2DL1和NKG2D表达升高,可能与T1ADM的发病机制相关。
Objective:To characterize the gene polymorphism, haplotypes, and genotypes of killer cell immunoglobin-like receptor (KIR), the gene polymorphism of HLA-C and the KIR/HLA-C gene compatibility in Hunan Han population. The obtained results will be used as basic data for further study in its linkage with disease and transplantation immunity.
     Design:Cross-sectional study.
     Methods:The method of polymerase chain reaction-sequence specific primer (PCR-SSP) was used to detect KIR and HLA-C genotypes in 429 healthy individuals of Hunan Han population. Then the distribution and characteristics of the haplotypes, genotypes of KIR genes and the KIR/HLA-C gene compatibility were analyzed.
     Results:(1)16 KIR genes were detected in Hunan Han population, of which the frequencies of framework genes KIR2DL4,3DL2,3DL3, and 3DP1 were 100%. KIR2DL1,2DL3,3DL1,2DS4 and 2DP1 genes were common with frequencies more than 90%, while the frequencies of KIR2DS1,2DL5,3DS1,2DL2,2DS2,2DS3,2DS5 were lower than 40%. (2) In Hunan Han population, the distribution of KIR genes frequencies were similar to Japanese, but the frequencies of KIR2DL2, 2DS2,2DS3 and 2DL5 were lower than Caucasian, the frequencies of KIR2DL3 was higher than Caucasian. (3) The KIR genes gave priority to A haplotype in Hunan Han population, the frequencies of A and B haplotype were 69.6% and 30.4% with a ratio of 2:1. (4) 49 KIR genotypes were found in the Hunan Han population,4 of which had not been reported. AA was the main genotype of KIR gene (44.8%) (5) HLA-C1 was dominant in Hunan Han population, with a frequency of 98.1%. (6)HLA-C1(+)/HLA-C2(-), KIR2DL1(+)/2DL2(-)/2DL3(+)/2DS1 (-)/2DS2(-) was the most common KIR2D/HLA-C gene compatibility in Hunan Han population (23.9%).
     Conclusion:Distrubution of KIR genes, HLA-C genes and KIR/ HLA-C gene compatibility show rich polymorphism, with distinctive KIR genotypes in Hunan Han population.
     Objective:To investigate the gene polymorphisms of Killer cell immunoglobin-like receptor (KIR) and HLA-C in autoimmune diabetes.
     Design:Cross-sectional and case control study.
     Methods:The method of polymerase chain reaction-sequence specific primer (PCR-SSP) was used to detect the gene polymorphisms of KIR and HLA-C in 387 T1ADM patients [180 acute onset autoimmune diabetes(T1ADM) patients and 207 latent autoimmune diabetes in adults (LADA)patients] and 429 healthy controls (199 control A group and 230 control B group) who matched for sex, age in Hunan Han population.
     Results:(1)Compared with the corresponding controls, the frequencies of KIR2DL1 (98.9% vs.92.0%,OR=7.781, P<0.01), 3DL1(94.5% vs.86.4%, OR=2.669, P<0.01) and 2DS4 (83.9% vs. 70.9%, OR=2.142, P<0.01) increased in T1ADM patients; the frequency of KIR2DL3 (99.5% vs.96.1%, OR= 8.389, P<0.05) increased in LADA patients; The genetic susceptibility of KIR genes in Hunan Han patients with autoimmune diabetes was different from other races. (2) The total number of activating KIR genes in T1ADM patients was higher than their controls (2.02 vs.1.78, P<0.05). (3) The frequencies of A and B haplotype of KIR gene were 69.7% and 30.3% in T1ADM patients, 75.4% and 24.6% in LADA patients. The ratio between A and B haplotype were about 2:1 and 3:1 respectively. (4)There are no differences in frequencies of HLA-C genes (HLA-C1, HLA-C2) between T1ADM or LADA patients and their corresponding controls. (5) The frequencies of KIR2DL1(-)/HLA-C2(-) (0.6% vs.6.0%, OR= 0.087, P< 0.01) in T1ADM patients and KIR2DL3(-)/HLA-C1(+) (0.5% vs.3.9%, OR=0.119,P<0.05) in LADA patients were lower than their corres-ponding controls. (6) Compared with the controls, the frequency of HLA-C1(+)/HLA-C2(-),KIR2DL1(+)/2DL2(-)/2DL3(+)/2DS1(+)/2DS2(-) (24.4% vs.15.6%, OR=1.753, P<0.05) increased in T1ADM patients.
     Conclusion:The KIR gene polymorphism and KIR/HLA-C gene compatibility are associated with the susceptivity of autoimmune diabetes.
     Objective:To analyze the interactive effects between KIR gene and HLA-DQ or MICA gene in acute onset autoimmune diabetes (T1ADM).
     Design:Cross-sectional and case control study.
     Methods:All DNA samples of 180 T1ADM patients and 199 healthy controls of Hunan Han were typed for the polymorphisms of HLA-DQ and MICA genes with PCR sequencing-base typing (PCR-SBT) method. After analyzed the susceptible alleles, haplotypes or genotypes of HLA-DQ and MICA gene, Svejgaard& Ryder test was performed to investigate the interactive effects between susceptible KIR gene (KIR 2DL1,3DL1 or 2DS4) and susceptible HLA-DQ haplotypes or suscep-tible MICA alleles.
     Results:(1) The susceptible alleles of HLA-DQ gene in Hunan Han were DQA1*03, DQA1*0501/0503, DQB1* 0201, DQB1*0303and DQB1*0401. The protective alleles were DQA1*0101/0104, DQA1 *0102, DQA1* 0103, DQ A1*0601, DQB1* 0301, DQB1*0502, DQB1 *0601 and DQB1*0602. The susceptible haplotypes were DQA1*03-DQB1*0303, DQA1*03-DQB1*0401 and DQA1*05-DQB1*0201. The protective haplotypes were DQA1*0601-DQB1*0301, DQA1*0102-DQB1*0601 and DQA1*0102-DQB1*0602. (2) The susceptible allele of MICA in Hunan Han was MICA9 and the protective was MICA5.1. The susceptible genotypes were MICA4/9 and MICA9/9. (3) The risk of T1ADM increased in ones who carried susceptible KIR gene (KIR2DL1, 3DL1 or 2DS4) and HLA-DQ haplotypes or MICA9 (OR=1.077-21.111). (4) Susceptible HLA-DQ haplotypes or MICA9 increased the risk of TIADM in ones who carried KIR2DL1 or KIR3DL1 (OR= 2.929-7.222). (5) The susceptible effects of HLA-DQ haplotypes was stronger than that of KIR2DS4 (OR=3.150). (6) KIR3DL1 or KIR2DS4 increased the risk of T1ADM in ones who without MICA9 (OR= 3.792 or 2.424).
     Conclusion:KIR genes have a synergistic action on the susceptible effects of HLA-DQ or MICA gene in T1ADM.
     Objective:To observe the variances of NK cells and its surface receptors in autoimmune diabetes patients, and to explore the role of NK cells in the pathogenesis of T1ADM, in order to offer some ideas and means for the forecast, monitor and therapy of autoimmune diabetes.
     Design:Cross-sectional and case control study.
     Methods:53 T1ADM patients (35T1ADM patients and 18 LADA patients) from the patients admitted to the department of endocrinology in our hospital,28 healthy controls from health-check screening were included in the study. The percentages of T cell subsets and NK cells and the expression of surface receptors (KIR and NKG2D) of NK cell were detected by flow cytometry. The activities of NK cells before and after incubated with IL-2 were detected by the assay of MTT. We compared and analyzed the variances of NK cells and its surface receptor in autoimmune patients.
     Results:(1) Compared with the corresponding controls, the propor-tion of CD3+ T cells increased (70.5% vs.64.6%, P<0.05), while the proportion of NK cell decreased (13.8% vs.20.1%, P<0.01) in T1ADM patients.(2)The NK cell activity of T1ADM patients and LADA patients was lower than the corresponding controls (30.9% vs.47.1%, P<0.01; 39.8% vs.49.2%, P<0.05). The NK cell activity of T1ADM patients (30.9% vs.39.8%, P<0.01), whose recent-onset subgroup patients (33.2% vs.40.9%, P<0.05) and long course subgroup patients (28.1% vs. 38.6%, P<0.05) were lower than the corresponding LADA patients; (3) After incubated with IL-2, the NK cell activities of T1ADM patients and LADA patients were enhanced (43.2% vs.30.9%,47.4% vs.39.8%, P< 0.05). The growth of NK cell activity in T1ADM patients and its recent-onset subgroup patients were higher than the corresponding LADA patients(9.9% vs.7.4%, P<0.05,12.9% vs.8.0%, P<0.05). (4) Compared with the control A group, the expression of KIR2DL1 (10.2% vs.6.2%, P <0.05), NKG2D(96.9% vs.95.2%, P<0.05) increased in T1ADM patients.
     Conclusion:(1) The proportion of CD3+ T cells increase, while the proportion and the activity of NK cells decrease in the peripheral blood of autoimmune diabetes patients. The NK cell-mediated immunity abnormality of T1ADM patients is more severe than LADA patients. (2)IL-2 can improve the NK cell activity of autoimmune diabetes patients, and the effect is more obvious in the early stage of T1ADM than LADA. (3)The expression of the surface receptors of NK cell (KIR2DL1 andNKG2D) increase in T1ADM, which may play a role in the patho-genesis of T1ADM.
引文
[1]Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care,1997,20:1183-1197.
    [2]Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1:diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med.1998,15:539-553.
    [3]Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet,2009, May 10. [Epub ahead of print]
    [4]Sanjeevi CB, DeWeese C, Landin-Olsson M, et al. Analysis of critical residues of HLA-DQ6 molecules in insulin-dependent diabetes mellitus. Tissue Antigens, 1997,50:61-65.
    [5]Sanjeevi CB, Hagopian WA, Landin-Olsson M, et al. Association between autoantibody markers and subtypes of DR4 and DR4-DQ in Swedish children with insulin-dependent diabetes reveals closer association of tyrosine pyrophosphatase autoimmunity with DR4 than DQ8. Tissue Antigens,1998,51: 281-286.
    [6]von Herrath M. Diabetes:A virus-gene collaboration. Nature,2009,459:518-519.
    [7]Hou YF, Zhang YC, Jiao YL, et al. Disparate distribution of activating and inhibitory killer cell immunoglobulin-like receptor genes in patients with systemic lupus erythematosus. Lupus,2010,19:20-26.
    [8]Lowe DP, Cook MA, Bowman SJ, et al. Association of killer cell immunoglobulin-like receptors with primary Sjogren's syndrome. Rheumatology (Oxford),2009,48:359-362.
    [9]Saruhan-Direskeneli G, Uyar FA, Cefle A, et al. Expression of KIR and C-type lectin receptors in Behcet's disease. Rheumatology (Oxford),2004,43:423-427.
    [10]Flodstrom M, Maday A, Balakrishna D, et al. Target cell defense prevents the development of diabetes after viral infection. Nat. Immunol,2002,3:373-382.
    [11]MacKay P, Jacobson J, Rabinovitch A. Spontaneous diabetes mellitus in the Biobreeding/Worcester rat:evidence in vitro for natural killer lysis of islet cells. J Clin Invest,1986,77:916-924.
    [12]Koevary SB. In vitro natural killer cell activity in the spontaneously diabetic BB/Wor rat:effects of serum on lysis of insulinoma cells. Diabetes Res,1988,8: 77-84.
    [13]Nakamura N, Woda BA, Tafuri A, et al. Intrinsic cytotoxicity of natural killer cells to pancreatic islets in vitro. Diabetes,1990,39:836-843.
    [14]Todd DJ, Forsberg EM, Greiner DL, et al. Deficiencies in gut NK cell number and function precede diabetes onset in BB rats. J Immunol,2004,172:5356-5362.
    [15]Maruyama T, Watanabe K, Yanagawa T, et al. The suppressive effect of anti-asialo GM1 antibody on low-dose streptozotocin-induced diabetes in CD-1 mice. Diabetes Res,1991,16:171-175.
    [16]Maruyama T, Watanabe K, Takei I, et al. Anti-asialo GM1 antibody suppression of cyclophosphamide-induced diabetes in NOD mice. Diabetes Res,1991,17: 37-41.
    [17]Gonzalez A, Katz JD, Mattei MG, et al. Genetic control of diabetes progression. Immunity,1997,7:873-883.
    [18]Poirot L, Benoist C, Mathis D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc Natl Acad Sci USA, 2004,101:8102-8107.
    [19]Alba A, Planas R, Clemente X, et al. Natural killer cells are required for accelerated type 1 diabetes driven by interferon-beta. Clin Exp Immunol,2008, 151:467-75.
    [20]Lee IF, Qin H, Trudeau J, et al. Regulation of autoimmune diabetes by complete Freund's adjuvant is mediated by NK cells. J Immunol,2004,172:937-942.
    [21]Lee IF, Qin H, Priatel JJ, et al. Critical role for IFN-gamma in natural killer
    cell-mediated protection from diabetes. Eur J Immunol,2008,38:82-89.
    [22]Zhou R, Wei H, Tian Z. NK3-like NK cells are involved in protective effect of polyinosinic-polycytidylic acid on type 1 diabetes in nonobese diabetic mice. J Immunol,2007,178:2141-2147.
    [23]Radaev S, Sun PD. Structure and function of natural killer cell surface receptors. Annu Rev Biophys Biomol Struct,2003,32:93-114.
    [24]Borrego F, Kabat J, Kim DK, et al. Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol Immunol,2002,38:637-660.
    [25]林健(导师:周智广).自身免疫性1型糖尿病HLA-DQ和MICA基因多态性分析.[博士学位论文].长沙:中南大学,2005.
    [26]van der Slik AR, Koeleman BP, Verduijn W, et al. KIR in type 1 diabetes: disparate distribution of activating and inhibitory natural killer cell receptors in patients versus HLA-matched control subjects. Diabetes,2003,52:2639-2642.
    [27]Nikitina-Zake L, Rajalingham R, Rumba I, et al. Killer cell immunoglobulin-like receptor genes in Latvian patients with type 1 diabetes mellitus and healthy controls. Ann N Y Acad Sci,2004,1037:161-169.
    [28]Park Y, Choi H, Park H, et al. Predominance of the group A killer Ig-like receptor haplotypes in Korean patients with T1D. Ann N Y Acad Sci,2006,1079:240-250.
    [29]Santin I, de Nanclares GP, Calvo B, et al. Killer cell immunoglobulin-like receptor (KIR) genes in the Basque population:association study of KIR gene contents with type 1 diabetes mellitus. Hum Immunol,2006,67:118-124.
    [30]Shastry A, Sedimbi SK, Rajalingam R, et al. Different KIRs confer susceptibility and protection to adults with latent autoimmune diabetes in Latvian and Asian Indian populations. Ann N Y Acad Sci,2008,1150:133-138.
    [1]Vilches C, Parham P. KIR:diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol,2002,20:217-251.
    [2]Vilches C, Pando MJ, Parham P. Genes encoding human killer-cell Ig-like receptors with D1 and D2 extracellular domains all contain untranslated pseudoexons encoding a third Ig-like domain. Immunogenetics,2000,51:639-646.
    [3]Selvakumar A, Steffens U, Dupont B. NK cell receptor gene of the KIR family with two IG domains but highest homology to KIR receptors with three IG domains. Tissue Antigens,1996,48:285-294.
    [4]Vilches C, Rajalingam R, Uhrberg M, et al. KIR2DL5:a novel killer-cell receptor with a D0-D2 configuration of Ig-like domains. J Immunol,2000,164:5797-5804.
    [5]Sawicki MW, Dimasi N, Natarajan K, et al. Structural basis of MHC class I recognition by natural killer cell receptors. Immunol Rev,2001,181:52-56.
    [6]Boyington JC, Sun PD. A structural perspective on MHC class I recognition by killer cell immunoglobulin-like receptors. Mol Immunol,2001,38:1007-1021.
    [7]Colonna M, Borsellino G, Falco M, et al. HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1-and NK2-specific natural killer cells. Proc Natl Acad Sci USA,1993,90:12000-12004.
    [8]Wagtmann N, Rajagopalan S, Winter CC, et al. Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity,1995,3:801-809.
    [9]Vilches C, Castano J, Gomez-Lozano N, et al. Facilitation of KIR genotyping by a PCR-SSP method that amplifies short DNA fragments. Tissue Antigens,2007, 70:415-422.
    [10]Frohn C, Schlenke P, Ebel B,et al. DNA typing for natural killer cell inhibiting HLA-Cw groups NK1 and NK2 by PCR-SSP. J Immunol Methods,1998,218: 155-160.
    [11]Uhrberg M, Parham P, Wernet P. Definition of gene content for nine common group B haplotypes of the Caucasoid population:KIR haplotypes contain between seven and eleven KIR genes. Immunogenetics,2002,54:221-229.
    [12]Hsu KC, Chida S, Geraghty DE, Dupont B. The killer cell immunoglobulin like
    receptor (KIR) genomic region:gene-order, haplotypes and allelic polymorphism. Immunol Rev,2002,190:40-52.
    [13]Colonna M, Borsellino G, Falco M,et al. HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1-and NK2-specific natural killer cells. Proc Natl Acad Sci USA,1993,90:12000-12004.
    [14]朱发明,姜侃,吕沁风,等.浙江汉族人群杀伤细胞免疫球蛋白样受体基因多态性研究.中国实验血液学杂志,2005,13:1109-1112.
    [15]张磊,Hsu KC, Liu XR,等.上海地区汉族人群杀伤细胞免疫球蛋白样受体基因多样性及单倍型组合研究.中华医学遗传学杂志,2003,20:396-399.
    [16]尹晓林,郭坤元,马红京,等.广东汉族人群杀伤细胞免疫球蛋白样受体基因的表达频率.第一军医大学学报,2004:1216-1418.
    [17]Wu GQ, Zhao YM, Lai XY, et al. Distribution of killer-cell immunoglobulin-like receptor genes in Eastern mainland Chinese Han and Taiwanese Han populations. Tissue Antigens,2009,74:499-507.
    [18]Yawata M, Yawata N, McQueen KL, et al. Predominance of group A KIR haplotypes in Japanese associated with diverse NK cell repertoires of KIR expression. Immunogenetics,2002,54:543-550.
    [19]Whang DH, Park H, Yoon JA, et al. Haplotype analysis of killer cell immunoglobulin-like receptor genes in 77 Korean families. Hum Immunol,2005, 66:146-154.
    [20]Du Z, Gjertson DW, Reed EF, et al. Receptor-ligand analyses define minimal killer cell Ig-like receptor (KIR) in humans. Immunogenetics,2007,59:1-15.
    [21]Norman PJ, Stephens HAF, Verity DH, et al. Distribution of natural killer cell immunoglobulin-like receptor sequences in three ethnic groups. Immunogenetics, 2001,52:195-205.
    [22]Flores AC, Marcos CY, Paladino N, et al. KIR genes polymorphism in Argentinean Caucasoid and Amerindian populations. Tissue Antigens,2007,69: 568-576.
    [23]Bontadini A, Testi M, Cuccia MC, et al. Distribution of killer cell immunoglobulin-like receptors genes in the Italian Caucasian population. J Transl Med,2006,4:44.
    [24]Rajalingam R, Krausa P, Shilling HG, et al. Distinctive KIR and HLA diversity in a panel of north Indian Hindus. Immunogenetics,2002:53:1009-1019.
    [25]Niokou D, Spyropoulou-Vlachou M, Darlamitsou A, et al. Distribution of killer cell immunoglobulin-like receptors in the Greek population. Hum Immunol,2003, 64:1167-1176.
    [26]Pavlova Y, Kolesar L, Striz I, et al. Distribution of KIR genes in the Czech population. Int J Immunogenet,2008:35:57-61.
    [27]Uhrberg M, Valiante NM, Shum BP, et al. Human diversity in killer cell inhibitory receptor genes. Immunity,1997,7:753-763.
    [28]Ashouri E, Ghaderi A, Reed EF, et al. A novel duplex SSP-PCR typing method for KIR gene profiling. Tissue Antigens,2009,74:62-67.
    [29]Crum KA, Logue SE, Curran MD, et al. Development of a PCR-SSOP approach capable of defining the natural killer cell inhibitory receptor (KIR) gene sequence repertoires. Tissue Antigens,2000,56:313-326.
    [30]Thompson A, van der Slik AR, Koning F, et al. An improved RT-PCR method for the detection of killer-cell immunoglobulin-like receptor (KIR) transcripts. Immunogenetics,2006,58:865-872.
    [31]Shastry A, Sedimbi SK, Rajalingam R, et al. Different KIRs confer susceptibility and protection to adults with latent autoimmune diabetes in Latvian and Asian Indian populations. Ann N Y Acad Sci,2008,1150:133-138.
    [32]Zuniga J, Romero V, Azocar J, et al. Protective KIR-HLA interactions for HCV infection in intravenous drug users. Mol Immunol,2009,46:2723-2727.
    [33]Zhang Y, Wang B, Ye S, et al. Killer cell immunoglobulin-like receptor gene polymorphisms in patients with leukemia:Possible association with susceptibility to the disease. Leuk Res,2010,34:55-58.
    [34]Giebel S, Nowak I, Wojnar J, et al. Association of KIR2DS4 and its variant KIR1D with leukemia. Leukemia,2008,22:2129-2131.
    [35]Yen JH, Lin CH, Tsai WC, et al. Killer cell immunoglobulin-like receptor gene's repertoire in rheumatoid arthritis. Scand J Rheumatol,2006,35:124-127.
    [36]Maxwell LD, Wallace A, Middleton D, et al. A common KIR2DS4 deletion variant in the human that predicts a soluble KIR molecule analogous to the KIR1D molecule observed in the rhesus monkey. Tissue Antigens,2002:60:254-258.
    [37]Middleton D, Gonzalez A, Gilmore PM. Studies on the expression of the deleted KIR2DS4*003 gene product and distribution of KIR2DS4 deleted and nondeleted versions in different populations. Hum Immunol,2007,68:128-134.
    [38]Yawata M, Yawata N, Abi-Rached L, et al. Variation within the human killer cell immunoglobulin-like receptor (KIR) gene family. Crit Rev Immunol,2002, 22:463-482.
    [39]Martin AM, Freitas EM, Witt CS, et al. The genomic organization and evolution of the natural killer immunoglobulin-like receptor (KIR) gene cluster. Immunogenetics,2000,51:268-280.
    [40]Steffens U, Vyas Y, Dupont B,et al. Nucleotide and amino acid sequence alignment for human killer cell inhibitory receptors (KIR),1998. Tissue Antigens,1998,51:398-413.
    [41]Hsu KC, Liu XR, Selvakumar A, et al. Killer Ig-like receptor haplotype analysis by gene content:evidence for genomic diversity with a minimum of six basic framework haplotypes, each with multiple subsets. J Immunol,2002,169:5118-5129.
    [42]Uhrberg M. The KIR gene family:life in the fast lane of evolution. Eur J Immunol,2005,35:10-15.
    [43]Djulejic E, Petlichkovski A, Trajkov D,et al.Distribution of killer cell immuno-globulinlike receptors in the Macedonian population.Hum Immunol,2010, 71:281-8.
    [44]Cox ST, McWhinnie AJ, Robinson J, et al. Cloning and sequencing full-length HLA-B and-C genes. Tissue Antigens,2003,61:20-48.
    [1]Rodacki M, Milech A, de Oliveira JE. NK cells and type 1 diabetes. Clin Dev
    Immunol,2006,13:101-107.
    [2]Vilches C, Parham P. KIR:diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol,2002,20:217-251.
    [3]Mogami S, Hasegawa G, Nakayama I, et al. Killer cell immunoglobulin-like receptor genotypes in Japanese patients with type 1 diabetes. Tissue Antigens, 2007,70:506-510.
    [4]Park Y, Choi H, Park H, et al. Predominance of the group A killer Ig-like receptor haplotypes in Korean patients with T1D. Ann N Y Acad Sci,2006,1079:240-250.
    [5]Middleton D, Halfpenny I, Meenagh A, et al. Investigation of KIR gene frequencies in type 1 diabetes mellitus. Hum Immunol,2006,67:986-990.
    [6]Nikitina-Zake L, Rajalingham R, Rumba I, et al. Killer cell immunoglobulin-like receptor genes in Latvian patients with type 1 diabetes mellitus and healthy controls. Ann N Y Acad Sci,2004,1037:161-169.
    [7]van der Slik AR, Koeleman BP, Verduijn W, et al. KIR in type 1 diabetes: disparate distribution of activating and inhibitory natural killer cell receptors in patients versus HLA-matched control subjects. Diabetes,2003,52:2639-2642.
    [8]Santin I, de Nanclares GP, Calvo B, et al. Killer cell immunoglobulin-like receptor (KIR) genes in the Basque population:association study of KIR gene contents with type 1 diabetes mellitus. Hum Immunol,2006,67:118-124.
    [9]Shastry A, Sedimbi SK, Rajalingam R, et al. Different KIRs confer susceptibility and protection to adults with latent autoimmune diabetes in Latvian and Asian Indian populations. Ann N Y Acad Sci,2008,1150:133-138.
    [10]Ramos-Lopez E, Scholten F, Aminkeng F, et al. Association of KIR2DL2 polymorphism rs2756923 with type 1 diabetes and preliminary evidence for lack of inhibition through HLA-C1 ligand binding. Tissue Antigens,2009,73:599-603.
    [11]李霞(导师:周智广).成人隐匿性自身免疫糖尿病亚型的诊断及罗格列酮治疗的研究.[博士学位论文].长沙:中南大学,2004.
    [12]Du Z, Gjertson DW, Reed EF, et al. Receptor-ligand analyses define minimal
    killer cell Ig-like receptor (KIR) in humans. Immunogenetics,2007,59:1-15.
    [13]黄干,周智广,彭健,等.35S标记重组人GAD65抗原检测糖尿病患者GAD-Ab指数.中华核医学杂志,2003,23:82-86.
    [14]黄干,周智广,王建平,等.蛋白酪氨酸磷酸酶自身抗体放射配体检测法的建立与临床应用.中华糖尿病杂志,2004,12:18-22.
    [15]Sanjeevi CB, DeWeese C, Landin-Olsson M, et al. Analysis of critical residues of HLA-DQ6 molecules in insulin-dependent diabetes mellitus. Tissue Antigens, 1997,50:61-65.
    [16]Sanjeevi CB, Hagopian WA, Landin-Olsson M, et al. Association between autoantibody markers and subtypes of DR4 and DR4-DQ in Swedish children with insulin-dependent diabetes reveals closer association of tyrosine pyrophosphatase autoimmunity with DR4 than DQ8. Tissue Antigens,1998,51: 281-286.
    [17]Hou YF, Zhang YC, Jiao YL, et al. Disparate distribution of activating and inhibitory killer cell immunoglobulin-like receptor genes in patients with systemic lupus erythematosus. Lupus,2010,19:20-26.
    [18]Lowe DP, Cook MA, Bowman SJ, et al. Association of killer cell immunoglobulin-like receptors with primary Sjogren's syndrome. Rheumatology (Oxford),2009,48:359-362.
    [19]Saruhan-Direskeneli G, Uyar FA, Cefle A, et al. Expression of KIR and C-type lectin receptors in Behcet's disease. Rheumatology (Oxford),2004,43:423-427.
    [20]Zhang HQ, Zhao JJ, Zhao YR, et al. Genotype analysis of killer cell immunoglobulin-like receptors in Graves' disease patients. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2009,25:699-701.
    [21]林健(导师:周智广).自身免疫性1型糖尿病HLA-DQ和MICA基因多态性分析.[博士学位论文].长沙:中南大学,2005.
    [22]Colonna M, Borsellino G, Falco M, et al. HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1-and NK2-specific natural killer cells. Proc Natl Acad Sci USA,1993,90:12000-12004.
    [23]Wagtmann N, Rajagopalan S, Winter CC, et al. Killer cell inhibitory receptors
    specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity,1995,3:801-809.
    [24]van der Slik AR, Alizadeh BZ, Koeleman BP, et al. Modelling KIR-HLA genotype disparities in type 1 diabetes. Tissue Antigens,2007,69:101-105.
    [1]Sanjeevi CB, DeWeese C, Landin-Olsson M, et al. Analysis of critical residues of HLA-DQ6 molecules in insulin-dependent diabetes mellitus. Tissue Antigens, 1997,50:61-65.
    [2]Sanjeevi CB, Hagopian WA, Landin-Olsson M, et al. Association between autoantibody markers and subtypes of DR4 and DR4-DQ in Swedish children with insulin-dependent diabetes reveals closer association of tyrosine pyrophosphatase autoimmunity with DR4 than DQ8. Tissue Antigens,1998,51: 281-286.
    [3]von Herrath M. Diabetes:A virus-gene collaboration. Nature,2009,459:518-519.
    [4]林健(导师:周智广).自身免疫性1型糖尿病HLA-DQ和MICA基因多态性分析.[博士学位论文].长沙:中南大学,2005.
    [5]Gupta M, Nikitina-Zake L, Landin-Olsson M, et al. Coxsackie virus B antibodies are increased in HLA DR3-MICA5.1 positive type 1 diabetes patients in the Linkoping region of Sweden. Hum Immunol,2003,64:874-879.
    [6]Boyce-Jacino MT, Santamaria P, Lindstrom AL, et al. HLA typing by direct sequencing analysis. In HLA 1991 (Volume 1). Tsuji K, Aizawa M, Sasazuki T, Eds. Oxford, U.K., Oxford University Press,1992,504-507.
    [7]Marsh SG, Bodmer JG HLA class II nucleotide sequences,1992. In:Tsuji K, Aizawa M, Sasazuki T, Eds. HLA 1991 (Volume 1). Oxford, U.K., Oxford University Press,1992,33-62.
    [8]Zake LN, Ghaderi M, Park YS, et al. MHC class I chain-related gene alleles 5 and 5.1 are transmitted more frequently to type 1 diabetes offspring in HBDI families. Ann N Y Acad Sci,2002,958:309-311.
    [9]Gambelunghe G, Ghaderi M, Cosentino A, et al. Association of MHC Class I chain-related A (MIC-A) gene polymorphism with Type Ⅰ diabetes. Diabetologia, 2000,43:507-514.
    [10]Yao Z, Volgger A, Helmberg W, et al. Definition of new alleles of MICA using sequencing-base typing. Eur J Immunogenet,1999,26:225-232.
    [11]Svejgaard A, Ryder LP. HLA and disease associations:detecting the strongest association. Tissue Antigens,1994,43:18-27.
    [12]Gambelunghe G, Falorni A, Ghaderi M, et al. Microsatellite polymorphism of the MHC class I chain-related (MIC-A and MIC-B) genes marks the risk for autoimmune Addison's disease. J Clin Endocrinol Metab,1999,84:3701-3707.
    [13]Zimmer J, Andres E, Hentges F. NK cells and Treg cells:a fascinating dance cheek to cheek. Eur J Immunol,2008,38:2942-2945.
    [14]Undlien DE, Kockum I, Ronningen KS, et al. HLA associations in type 1 diabetes among patients not carrying high-risk DR3-DQ2 or DR4-DQ8 haplotypes. Tissue Antigens,1999,54:543-551.
    [15]She JX. Susceptibility to type I diabetes:HLA-DQ and DR revisited. Immunol Today,1996,17:323-329.
    [16]Thomson G, Robinson WP, Kuhner MK, et al. Genetic heterogeneity, models of inheritance, and risk estimates for a joint study of Caucasians with insulin-dependent diabetes mellitus. Am J Hum Genet,1998,43:799-816.
    [17]Undlien DE, Kockum I, Ronningen KS, et al. HLA associations in type 1 diabetes among patients not carrying high-risk DR3-DQ2 or DR4-DQ8 haplotypes. Tissue Antigens,1999,54:543-551.
    [18]Cervin C, Lyssenko V, Bakhtadze E, et al. Genetic similarities between latent autoimmune diabetes in adults, type 1 diabetes, and type 2 diabetes. Diabetes, 2008,57:1433-1437.
    [19]薛付忠,王洁贞,胡平.中国人群1型糖尿病HLA-DQ基因多态性的Meta分析.中华内分泌代谢杂志,2005,21:39-42.
    [20]Greenbaum CJ, Schatz DA, Cuthbertson D, et al. Islet cell antibody-positive relatives with human leukocyte antigen DQA1*0102, DQB1*0602:identification by the Diabetes Prevention Trial-type 1. J Clin Endocrinol Metab,2002,87:2597-2605.
    [21]Murao S, Makino H, Kaino Y, et al. Differences in the contribution of HLA-DR and -DQ haplotypes to susceptibility to adult-and childhood-onset type 1 diabetes in Japanese patients. Diabetes,2004,53:2684-2690.
    [22]王建平(导师:周智广).1型糖尿病胰岛自身抗体与HLA-DQ基因型的关系.[博士学位论文].长沙:中南大学,2006.
    [23]Ota M, Katsuyama Y, Mizuki N, et al. Trinucleotide repeat polymorphism with in exon 5 of the MICA gene (MHC class I chain-related gene A):allel frequency data in the nine population groups Japanese, Northern Han, Hui, Uygur, Kazakhstan, Iranian, Saudi Arabian, Greek and Italian. Tissue Antigens,1997,49: 448-454.
    [24]Gambelunghe G, Ghaderi M, Cosentino A, et al. Association of MHC Class I chain-related A (MIC-A) gene polymorphism with Type 1 diabetes. Diabetologia. 2000,43:507-514
    [25]Gambelunghe G, Ghaderi M, Tortoioli C, et al. Two distinct MICA gene markers discriminate major autoimmune diabetes types. J Clin Endocrinol Metab,2001, 86:3754-3760.
    [26]Gupta M, Nikitina-Zake L, Zarghami M, et al. Association between the transmembrane region polymorphism of MHC class I chain related gene-A and type 1 diabetes mellitus in Sweden. Hum Immunol,2003,64:553-561.
    [27]Bilbao JR, Martin-Pagola A, Vitoria JC, et al. HLA-DRB1 and MHC class 1 chain-related A haplotypes in Basque families with celiac disease. Tissue Antigens,2002,60:71-76.
    [28]Tica V, Nikitina-Zake L, Donadi E, et al. MIC-A genotypes 4/5.1 and 9/9 are positively associated with type 1 diabetes mellitus in Brazilian population. Ann N Y Acad Sci,2003,1005:310-313.
    [29]Kawabata Y, Ikegami H, Kawaguchi Y, et al. Age-related association of MHC class Ⅰ chain-related gene A (MICA) with type 1 (insulin-dependent) diabetes mellitus. Hum Immunol,2000,61:624-629.
    [30]Park Y, Lee H, Sanjeevi CB, et al. MICA polymorphism is associated with type 1 diabetes in the Korean population. Diabetes Care,2001,24:33-38.
    [31]Groh V, Rhinehart R, Randolph-Habecker J,et al. Costimulation of CD8alphabeta T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol,2001,2:255-260.
    [1]Richer MJ, Horwitz MS. Coxsackievirus infection as an environmental factor in the etiology of type 1 diabetes. Autoimmun Rev,2009,8:611-615.
    [2]von Herrath M. Diabetes:A virus-gene collaboration. Nature,2009,459:518-519.
    [3]Lohmann T, Sessler J, Verlohren HJ, et al. Distinct genetic and immunological features in patients with onset of IDDM before and after age 40. Diabetes Care, 1997,20:524-529.
    [4]O'Neill SK, Liu E, Cambier JC. Change you can B(cell)eive in:recent progress confirms a critical role for B cells in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes,2009,16:293-298.
    [5]Rodacki M, Milech A, de Oliveira JE. NK cells and type 1 diabetes. Clin Dev Immunol,2006,13:101-107.
    [6]Novak J, Griseri T, Beaudoin L, et al. Regulation of type 1 diabetes by NKT cells. Int Rev Immunol,2007,26:49-72.
    [7]Pechhold K, Koczwara K. Immunomodulation of autoimmune diabetes by dendritic cells. Curr Diab Rep,2008,8:107-113.
    [8]Nikitina-Zake L, Rajalingham R, Rumba I, et al. Killer cell immunoglobulin-like receptor genes in Latvian patients with type 1 diabetes mellitus and healthy controls. Ann N Y Acad Sci,2004,1037:161-169.
    [9]Park Y, Choi H, Park H, et al. Predominance of the group A killer Ig-like receptor haplotypes in Korean patients with T1D. Ann N Y Acad Sci,2006,1079:240-250.
    [10]Shastry A, Sedimbi SK, Rajalingam R, et al. Different KIRs confer susceptibility
    and protection to adults with latent autoimmune diabetes in Latvian and Asian Indian populations. Ann N Y Acad Sci,2008,1150:133-138.
    [11]Ogasawara K, Hamerman JA, Hsin H, et al.Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity,2003,18:41-51.
    [12]Rodacki M, Svoren B, Butty V, et al. Altered natural killer cells in type 1 diabetic patients. Diabetes,2007,56:177-185.
    [13]Flodstrom M, Maday A, Balakrishna D, et al. Target cell defense prevents the development of diabetes after viral infection. Nat. Immunol,2002,3:373-382.
    [14]MacKay P, Jacobson J, Rabinovitch A. Spontaneous diabetes mellitus in the Biobreeding/Worcester rat:evidence in vitro for natural killer lysis of islet cells. J Clin Invest,1986,77:916-924.
    [15]Koevary SB. In vitro natural killer cell activity in the spontaneously diabetic BB/Wor rat:effects of serum on lysis of insulinoma cells. Diabetes Res,1988,8: 77-84.
    [16]Nakamura N, Woda BA, Tafuri A, et al. Intrinsic cytotoxicity of natural killer cells to pancreatic islets in vitro. Diabetes,1990,39:836-843.
    [17]Todd DJ, Forsberg EM, Greiner DL, et al. Deficiencies in gut NK cell number and function precede diabetes onset in BB rats. J Immunol,2004,172:5356-5362.
    [18]Maruyama T, Watanabe K, Yanagawa T, et al. The suppressive effect of anti-asialo GM1 antibody on low-dose streptozotocin-induced diabetes in CD-1 mice. Diabetes Res,1991,16:171-175.
    [19]Maruyama T, Watanabe K, Takei I, et al:Anti-asialo GM1 antibody suppression of cyclophosphamide-induced diabetes in NOD mice. Diabetes Res,1991,17: 37-41.
    [20]Gonzalez A, Katz JD, Mattei MG, et al. Genetic control of diabetes progression. Immunity,1997,7:873-883.
    [21]Poirot L, Benoist C, Mathis D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc Natl Acad Sci USA, 2004,101:8102-8107.
    [22]Alba A, Planas R, Clemente X, et al. Natural killer cells are required for
    accelerated type 1 diabetes driven by interferon-beta. Clin Exp Immunol,2008, 151:467-475.
    [23]Lee IF, Qin H, Trudeau J, et al. Regulation of autoimmune diabetes by complete Freund's adjuvant is mediated by NK cells. J Immunol,2004,172:937-942.
    [24]Lee IF, Qin H, Priatel JJ, et al. Critical role for IFN-gamma in natural killer cell-mediated protection from diabetes. Eur J Immunol,2008,38:82-89.
    [25]Zhou R, Wei H, Tian Z. NK3-like NK cells are involved in protective effect of polyinosinic-polycytidylic acid on type 1 diabetes in nonobese diabetic mice. J Immunol,2007,178:2141-2147.
    [26]Chandy KG, Charles MA, Buckingham B, et al. Deficiency of monoclonal antibody (Leu7) defined NK cells in newly diagnosed insulin-dependent diabetes mellitus. Immunol Lett,1984,8:89-91.
    [27]Park YW, Kee SJ, Cho YN, et al. Impaired differentiation and cytotoxicity of natural killer cells in systemic lupus erythematosus. Arthritis Rheum,2009 60: 1753-1763.
    [28]Yanagihara Y, Shiozawa K, Takai M, et al. Natural killer (NK) T cells are significantly decreased in the peripheral blood of patients with rheumatoid arthritis (RA). Clin Exp Immunol,1999,118:131-136.
    [29]Lowe DP, Cook MA, Bowman SJ, et al. Association of killer cell immunoglobulin-like receptors with primary Sjogren's syndrome. Rheumatology (Oxford),2009,48:359-362.
    [30]Ljunggren HG, Karre K. In search of the'missing self:MHC molecules and NK cell recognition. Immunol Today,1990,11:237-244.
    [31]Lanier LL. Natural killer cell receptor signaling. Curr Opin Immunol,2003,15: 308-314.
    [32]Lanier LL. The origin and functions of natural killer cells. Clin Immunol,2000, 95:S14-18.
    [33]Seaman WE. Natural killer and natural killer T cells. Arthritis Rheum,2000,43: 1204-1217.
    [34]Biron CA, Nguyen KB, Pien GC, et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol,1999,17:189- 220.
    [35]Yokoyama WM, Kim S, French AR. The dynamic life of natural killer cells. Annu Rev Immunol,2004,22:405-429.
    [36]Lucas M, Vonarbourg C, Aichele P, et al. Studying NK cell/dendritic cell interactions. Methods Mol Biol,2010,612:97-126.
    [37]Zimmer J, Andres E, Hentges F. NK cells and Treg cells:a fascinating dance cheek to cheek. Eur J Immunol,2008,38:2942-2945.
    [38]Johansson S, Berg L, Hall H, et al. NK cells:elusive players in autoimmunity. Trends Immunol,2005,26:613-618.
    [39]Dotta F, Censini S, van Halteren AG, et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA,2007,104:5115-5120.
    [40]Denise F, George EJ, John D, et al. abnormal T-lymphocyte subsets in type 1 diabetes. Diabetes,1989,38:1462-1468.
    [41]张胜兰,曼辉,王冠英,等.IDDM 11种免疫指标的观察。中华内分泌代谢杂志,1992,8:211-212.
    [42]Santourlidis S, Trompeter H I, Weinhold S, et al. C rucial role of DNA methylation in determ ination of clonally distributed killer cell Ig-like receptor expression patterns in N K cells. J Immunol,2002,169:4253-4261.
    [43]林健(导师:周智广).自身免疫性1型糖尿病HLA-DQ和MICA基因多态性分析.[博士学位论文].长沙:中南大学,2005.
    [44]Cerwenka A, Lanier LL. Ligands for natural killer cell receptors:redundancy or specificity. Immunol. Rev,2001,181:158-169.
    [45]Bernhardt MB, Hicks MJ, Pappo AS. Administration of high-dose interleukin-2 in a 2-year-old with metastatic melanoma. Pediatr Blood Cancer,2009,53: 1346-1348.
    [46]Yao HC, Liu SQ, Yu K, et al. Interleukin-2 enhances the cytotoxic activity of circulating natural killer cells in patients with chronic heart failure. Heart Vessels. 2009,24:283-286.
    [1]Ljunggren HG, Karre K. In search of the'missing self':MHC molecules and NK cell recognition. Immunol Today,1990,11:237-244.
    [2]Lanier LL. Natural killer cell receptor signaling. Curr Opin Immunol,2003,15: 308-314.
    [3]Lanier LL. The origin and functions of natural killer cells. Clin Immunol,2000, 95:S14-18.
    [4]Seaman WE. Natural killer and natural killer T cells. Arthritis Rheum,2000,43: 1204-1217.
    [5]Biron CA, Nguyen KB, Pien GC, et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol,1999,17: 189-220.
    [6]Yokoyama WM, Kim S, French AR. The dynamic life of natural killer cells. Annu Rev Immunol,2004,22:405-429.
    [7]Cooper, MA, Fehniger TA, Fuchs A, et al. NK cell and DC interactions. Trends Immunol,2004,25:47-52.
    [8]Sinkovics JG, Horvath JC. Human natural killer cells:A comprehensive review. Int J Oncol,2005,27:5-47.
    [9]Hoffman T. Natural killer function in systemic lupus erythematosus. Arthritis Rheum,1980,23:30-35.
    [10]Radaev S, Sun PD. Structure and function of natural killer cell surface receptors. Annu Rev Biophys Biomol Struct,2003,32:93-114.
    [11]Borrego F, Kabat J, Kim DK, et al. Structure and function of major histocompatibility complex (MHC) class Ⅰ specific receptors expressed on human natural killer (NK) cells. Mol Immunol,2002,38:637-660.
    [12]Kelly MA, Rayner ML, Mijovic CH, et al. Molecular aspects of type 1 diabetes. Mol Pathol,2003,56:1-10.
    [13]Delovitch TL, Singh B. The nonobese diabetic mouse as a model of autoimmune
    diabetes:immune dysregulation gets the NOD. Immunity,1997,7:727-738.
    [14]Paya CV, Patick AK, Leibson PJ, et al. Role of natural killer cells as immune effectors in encephalitis and demyelination induced by Theiler's virus. J Immunol, 1989,143:95-102.
    [15]Fairweather D, Kaya Z, Shellam GR, et al. From infection to autoimmunity. J Autoimmun,2001,16:175-186.
    [16]Flodstrom M, Shi FD, Sarvetnick N, et al. The natural killer cell-friend or foe in autoimmune disease? Scan J Immunol,2002,55:432-441.
    [17]Jaeckel E, Manns M, von Herrath M. Viruses and diabetes. Ann NY Acad Sci, 2002,958:7-25.
    [18]Jun HS, Yoon JW. A new look at viruses in type 1 diabetes. Diabetes Metab Res Rev,2003,19:8-31.
    [19]Chikazawa K, Okusa H, Minakami H, et al. Acute onset of insulin-dependent diabetes mellitus caused by Epstein-Barr virus infection. Nippon Sanka Fujinka Gakkai Zasshi,1985,37:453-456.
    [20]Honeyman MC, Coulson BS, Stone NL, et al. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes,2000,49:1319-1324.
    [21]Ginsberg-Fellner F, Witt ME, Yagihashi S, et al. Congenital rubella syndrome as a model for type 1 (insulin-dependent) diabetes mellitus:increased prevalence of islet cell surface antibodies. Diabetologia,1984,27(Suppl):87-89.
    [22]Hiltunen M, Hyoty H, Karjalainen J, et al. Serological evaluation of the role of cytomegalovirus in the pathogenesis of IDDM:a prospective study. The Childhood Diabetes in Finland study group. Diabetologia,1995,38:705-710.
    [23]Pak CY, Eun HM, McArthur RG, et al. Association of cytomegalovirus infection with autoimmune type 1 diabetes. Lancet,1988,2:1-4.
    [24]Dotta F, Censini S, van Halteren AG, et al. Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA,2007,104:5115-5120.
    [25]Flodstrom M, Maday A, Balakrishna D, et al. Target cell defense prevents the development of diabetes after viral infection. Nat. Immunol,2002,3:373-382.
    [26]MacKay P, Jacobson J, Rabinovitch A. Spontaneous diabetes mellitus in the Biobreeding/Worcester rat:evidence in vitro for natural killer lysis of islet cells. J Clin Invest,1986,77:916-924.
    [27]Koevary SB. In vitro natural killer cell activity in the spontaneously diabetic BB/Wor rat:effects of serum on lysis of insulinoma cells. Diabetes Res,1988,8: 77-84.
    [28]Nakamura N, Woda BA, Tafuri A, et al. Intrinsic cytotoxicity of natural killer cells to pancreatic islets in vitro. Diabetes,1990,39:836-843.
    [29]Todd DJ, Forsberg EM, Greiner DL, et al. Deficiencies in gut NK cell number and function precede diabetes onset in BB rats. J Immunol,2004,172: 5356-5362.
    [30]Maruyama T, Watanabe K, Yanagawa T, et al. The suppressive effect of anti-asialo GM1 antibody on low-dose streptozotocin-induced diabetes in CD-1 mice. Diabetes Res,1991,16:171-175.
    [31]Maruyama T, Watanabe K, Takei I, et al. Anti-asialo GM1 antibody suppression of cyclophosphamide-induced diabetes in NOD mice. Diabetes Res,1991,17: 37-41.
    [32]Gonzalez A, Katz JD, Mattei MG, et al. Genetic control of diabetes progression. Immunity,1997,7:873-883.
    [33]Poirot L, Benoist C, Mathis D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc Natl Acad Sci USA, 2004,101:8102-8107.
    [34]Alba A, Planas R, Clemente X, et al. Natural killer cells are required for accelerated type 1 diabetes driven by interferon-beta. Clin Exp Immunol,2008, 151:467-475.
    [35]杨竹林,伍汉文,周智广,等.GAD预防NOD雌鼠胰岛炎机理研究一胰岛内NK细胞计数及其意义.现代康复,2000,4:706-707.
    [36]Christen U, von Herrath MG, et al. Manipulating the type 1 vs type 2 balance in type 1 diabetes. Immunol Res,2004,30:309-325.
    [37]Colucci F, Di-Santo JP, Leibson PJ. Natural killer cell activation in mice and men: different triggers for similar weapons? Nat Immunol,2002,3:807-813.
    [38]Sadelain MW, Qin HY, Lauzon J, et al. Prevention of type 1 diabetes in NOD mice by adjuvant immunotherapy. Diabetes,1990,39:583-589.
    [39]McInerney MF, Pek SB, Thomas DW. Prevention of insulitis and diabetes onset by treatment with complete Freund's adjuvant in NOD mice. Diabetes,1991,40: 715-725.
    [40]Lakey JR, Wang T, Warnock GL, et al. Prevention of recurrence of insulin-dependent diabetes mellitus in islet cell-transplanted diabetic NOD mice using adjuvant therapy. Transplant Proc,1992,24:2848.
    [41]Qin HY, Sadelain MW, Hitchon C, et al. Complete Freund's adjuvant-induced T cells prevent the development and adoptive transfer of diabetes in nonobese diabetic mice. J Immunol,1993,150:2072-2080.
    [42]Serreze DV, Hamaguchi K, Leiter EH. Immunostimulation circumvents diabetes in NOD/Lt mice. J Autoimmun,1989,2:759-776.
    [43]Tian J, Atkinoson MA, Clare-salzler M, et al. Nasal administration of glutamate decarboxylase (GAD) petides induce Th2 response and prevents murine insulin-dependent diabetes. J Exp Med,1996,183:1561-1567.
    [44]Elliot GF, Qin HY, Bhatti S, et al. Immunization with the larger isoform of mouse glutamic acid decarboxylase(GAD67)prevents autoimmune diabetes is NOD mice. Diabetes,1994,43:1494-1499.
    [45]Lee IF, Qin H, Trudeau J, et al. Regulation of autoimmune diabetes by complete Freund's adjuvant is mediated by NK cells. J Immunol,2004,172:937-942.
    [46]Lee IF, Qin H, Priatel JJ, et al. Critical role for IFN-gamma in natural killer cell-mediated protection from diabetes. Eur J Immunol,2008,38:82-89.
    [47]Zhou R, Wei H, Tian Z. NK3-like NK cells are involved in protective effect of polyinosinic-polycytidylic acid on type 1 diabetes in nonobese diabetic mice. J Immunol,2007,178:2141-2147.
    [48]Chandy KG, Charles MA, Buckingham B, et al. Deficiency of monoclonal antibody (Leu7) defined NK cells in newly diagnosed insulin-dependent diabetes mellitus. Immunol Lett,1984,8:89-91.
    [49]Herold KC, Huen A, Goud L, et al. Alterations in lymphocyte subpopulations in type 1 (insulin-dependent) diabetes mellitus:Exploration of possible mechanisms and relationships to autoimmune phenomena. Diabetologia,1984,27(Suppl 1): 102-105.
    [50]Pozzilli P, Sensi M, Al-Sakkaf L, et al. Prospective study of lymphocyte subsets in subjects genetically susceptible to type 1 (insulin-dependent) diabetes. Diabetologia,1984,27(Suppl):132-135.
    [51]Gupta S, Charles MA, Waldeck N, et al. Multiparameter immunologic studies in patients with newly diagnosed type 1 insulin-dependent diabetes mellitus. Diabetes Res,1986,3:225-229.
    [52]Wilson RG, Anderson J, Shenton BK, et al. Natural killer cells in insulin-dependent diabetes mellitus. Br Med J,1986,293:244.
    [53]Hussain MJ, Alviggi L, Millward BA, et al. Evidence that the reduced number of natural killer cells in type 1 diabetes may be genetically determined. Diabetologia, 1987,30:907-911.
    [54]Negishi K, Waldeck N, Chandy G, et al. Natural killer cell and islet killer cell activities in type 1 (insulin-dependent) diabetes. Diabetologia,1986,29:352-357.
    [55]Lorini R, Moretta A, Valtorta A, et al. Cytotoxic activity in children with insulin-dependent diabetes mellitus. Diabetes Res Clin Pract,1994,23:37-42.
    [56]Scheinin T, Maenpaa J, Kontiainen S. Immune responses to insulin and lymphocyte subclasses at diagnosis of insulin dependent diabetes and one year later. Immunobiology,1990,180:431-440.
    [57]Rodacki M, Laffel L, Butty V. et al. Frequency and activation state of natural killer cells in patients with type 1 diabetes. Diabetes,2006,55(Suppl 1):Al 198.
    [58]Rodacki M, Svoren B, Butty V, et al. Altered natural killer cells in type 1 diabetic patients. Diabetes,2007,56:177-185.
    [59]Vilches C, Parham P. KIR:diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol,2002,20:217-251.
    [60]Lanier LL, Bakker AB. The ITAM-bearing transmembrane adaptor DAP 12 in
    lymphoid and myeloid cell function. Immunol Today,2000,21:611-614.
    [61]Vilches C, Pando MJ, Parham P. Genes encoding human killer-cell Ig-like receptors with D1 and D2 extracellular domains all contain untranslated pseudoexons encoding a third Ig-like domain. Immunogenetics,2000,51: 639-646.
    [62]Selvakumar A, Steffens U, Dupont B.NK cell receptor gene of the KIR family with two IG domains but highest homology to KIR receptors with three IG domains. Tissue Antigens,1996,48:285-294.
    [63]Vilches C, Rajalingam R, Uhrberg M, et al. KIR2DL5:a novel killer-cell receptor with a D0-D2 configuration of Ig-like domains. J Immunol,2000,164: 5797-5804.
    [64]Sawicki MW, Dimasi N, Natarajan K, et al. Structural basis of MHC class Ⅰ recognition by natural killer cell receptors. Immunol Rev,2001,181:52-56.
    [65]Boyington JC, Sun PD. A structural perspective on MHC class I recognition by killer cell immunoglobulin-like receptors. Mol Immunol,2001,38:1007-1021.
    [66]Colonna M, Borsellino G, Falco M, et al. HLA-C is the inhibitory ligand that determines dominant resistance to lysis by NK1-and NK2-specific natural killer cells. Proc Natl Acad Sci USA,1993,90:12000-12004.
    [67]Wagtmann N, Rajagopalan S, Winter CC, et al. Killer cell inhibitory receptors specific for HLA-C and HLA-B identified by direct binding and by functional transfer. Immunity,1995,3:801-809.
    [68]Marsh SG, Parham P, Dupont B, et al. Killer-cell immunoglobulin-like receptor (KIR) nomenclature report,2002. Hum Immunol,2003,64:648-654.
    [69]Uhrberg M, Parham P, Wernet P.Definition of gene content for nine common group B haplotypes of the Caucasoid population:KIR haplotypes contain between seven and eleven KIR genes. Immunogenetics,2002,54:221-229.
    [70]Hsu KC, Chida S, Geraghty DE, et al. The killer cell immunoglobulin like receptor (KIR) genomic region:gene-order, haplotypes and allelic polymorphism. Immunol Rev,2002,190:40-52.
    [71]Wilson MJ, Torkar M, Haude A, et al. Plasticity in the organization and sequences of human KIR/ILT gene families. Proc Natl Acad Sci USA,2000,97: 4778-4783.
    [72]Shilling HG, Guethlein LA, Cheng NW, et al. Allelic polymorphism synergizes with variable gene content to individualize human KIR genotype. J Immunol, 2002,168:2307-2315.
    [73]Hsu KC, Liu XR, Selvakumar A, et al. Killer Ig-like receptor haplotype analysis by gene content:evidence for genomic diversity with a minimum of six basic.framework haplotypes, each with multiple subsets. J Immunol,2002,169: 5118-5129.
    [74]Yawata M, Yawata N, Abi-Rached L, et al. Variation within the human killer cell immunoglobulin-like receptor (KIR) gene family. Crit Rev Immunol,2002, 22:463-482.
    [75]Martin AM, Freitas EM, Witt CS, et al. The genomic organization and evolution of the natural killer immunoglobulin-like receptor (KIR) gene cluster. Immunogenetics,2000,51:268-280.
    [76]Steffens U, Vyas Y, Dupont B,et al. Nucleotide and amino acid sequence alignment for human killer cell inhibitory receptors (KIR),1998. Tissue Antigens,1998,51:398-413.
    [77]Santourlidis S, Trompeter H I, Weinhold S, et al. C rucial role of DNA methylation in determ ination of clonally distributed killer cell Ig-like receptor expression patterns in N K cells. J Immunol,2002,169:4253-4261.
    [78]Chen AM, Liu QP, Cui XY, et al. Study on the polymorphism of killer cell immunoglobulin like receptor (KIR) gene with systemic lupus erythematosus of North population in China. Xi BaoYu Fen Zi Mian Yi Xue Za Zhi,2008,24: 811-813.
    [79]张海清,赵家军,赵跃然,等.杀伤细胞免疫球蛋白样受体基因多态性与Graves病相关.中华内分泌代谢杂志,2006,22:130-131.
    [80]Martin MP, Nelson G, Lee JH, et al. Cutting edge:susceptibility to psoriatic arthritis:influence of activating killer Ig-like recep tor genes in the absence of specific HLA-C alleles. J Immunol,2002,169:2818-2822.
    [81]Momot T, Koch S, Hunzelmann N, et al. Association of killer cell immunoglobulin-like receptors with scleroderma. Arthritis Rheum,2004,50: 1561-1565.
    [82]Alter G, Martin MP, Teigen N, et al. Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes.J Exp Med, 2007,204:3027-3036.
    [83]van der Meer A, Schaap NP, Schattenberg AV, et al. KIR2DS5 is associated with leukemia free survival after HLA identical stem cell transplantation in chronic myeloid leukemia patients. Mol Immunol,2008,45:3631-3638.
    [84]van der Slik AR, Koeleman BP, Verduijn W et al. KIR in type 1 diabetes: disparate distribution of activating and inhibitory natural killer cell receptors in patients versus HLA-matched control subjects. Diabetes,2003,52:2639-2642.
    [85]Nikitina-Zake L, Rajalingham R, Rumba I, et al. Killer cell immunoglobulin-like receptor genes in Latvian patients with type 1 diabetes mellitus and healthy controls.Ann N Y Acad Sci,2004,1037:161-169.
    [86]Ramos-Lopez E, Scholten F, Aminkeng F,et al. Association of KIR2DL2 polymorphism rs2756923 with type 1 diabetes and preliminary evidence for lack of inhibition through HLA-C1 ligand binding. Tissue Antigens,2009 Apr 8. [Epub ahead of print]
    [87]Middleton D, Halfpenny I, Meenagh A, et al. Investigation of KIR gene frequencies in type 1 diabetes mellitus. Hum Immunol,2006,67:986-990.
    [88]Park Y, Choi H, Park H, et al. Predominance of the group A killer Ig-like receptor haplotypes in Korean patients with T1D. Ann N Y Acad Sci,2006,1079: 240-250.
    [89]Shastry A, Sedimbi SK, Rajalingam R, et al. Different KIRs confer susceptibility and protection to adults with latent autoimmune diabetes in Latvian and Asian Indian populations. Ann N Y Acad Sci,2008,1150:133-138.
    [90]GrohV, Rhinehart R, Seerist H, et al. Broad tumor-assosiated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA,1999,96:6879-6884.
    [91]Cerwenka A, Lanier LL. Ligands for natural killer cell receptors:redundancy or specificity. Immunol. Rev,2001,181:158-169.
    [92]Diefenbach A, Tomasello E, Lucas M, et al. Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol,2002,3:1142-1149.
    [93]Wu J, SongY, Bakker AB, et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science,1999,285:730-732.
    [94]Diefenbach A, Tomasello E, Lucas M, et al. Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol,2002,3:1142-1149.
    [95]Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol,2003,3:781-790.
    [96]Andre P, Castriconi R, Espeli M, et al. Comparative analysis of human NK cell activation induced by NKG2D and natural cytotoxicity receptors. Eur J Immunol, 2004,34:961-971.
    [97]Cerwenka A, Bakker AB, McClanahan T, et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity,2000,12:721-727.
    [98]Diefenbach A, Jamieson AM, Liu SD, et al. Ligands for the murine NKG2D receptor:expression by tumor cells and activation of NK cells and macrophages. Nat Immunol,2000,1:119-126.
    [99]Holmes MA, Li P, Petersdorf EW, et al. Structural studies of allelic diversity of the MHC class I homolog MIC-B, a stress-inducible ligand for the activating immunoreceptor NKG2D. J Immunol,2002,169:1395-1400.
    [100]Diefenbach A, Raulet DH. Innate immune recognition by stimulatory immunoreceptors. Curr Opin Immunol,2003,15:37-44.
    [101]Vivier E, Tomasello E, Paul P. Lymphocyte activation via NKG2D:towards a new paradigm in immune recognition? Curr Opin Immunol,2002,14:306-311.
    [102]Long EO. Versatile signaling through NKG2D.Nat Immunol,2002,3:1119
    -1120.
    [103]Jamieson AM, Diefenbach A, McMahon CW, et al. The role of the NKG2D immunoreceptor in immune cell activation and natural killing.Immunity,2002,17: 19-29.
    [104]Ogasawara K, Hamerman JA, Hsin H, et al.Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity,2003,18:41-51.
    [105]Ogasawara K, Hamerman JA, Ehrlich LR, et al. NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity,2004,20:757-767.
    [106]Hultcrantz M, Jacobson S, Hill NJ, et al. The target cell response to cytokines governs the autoreactive T cell repertoire in the pancreas of NOD mice. Diabetologia,2009,52:299-305.
    [107]Kawabata Y, Ikegami H, Kawaguchi Y, et al. Age-related association of MHC class I chain-related gene A (MICA) with type 1 (insulin-dependent) diabetes mellitus. Hum Immunol,2000,61:624-629.
    [108]Park Y, Lee H, Sanjeevi CB, et al. MICA polymorphism is associated with type 1 diabetes in the Korean population. Diabetes Care,2001,24:33-38.
    [109]Lee YJ, Huang FY, Wang CH, et al. Polymorphism in the transmembrane region of the MICA gene and type 1 diabetes. J Pediatr Endocrinol Metab,2000,13:489-496.
    [110]Gambelunghe G, Ghaderi M, Tortoioli C, et al. Two distinct MICA gene markers discriminate major autoimmune diabetes types. J Clin Endocrinol Metab,2001, 86:3754-3760.
    [111]Sanjeevi CB, Kanungo A, Berzina L, et al. MHC class Ⅰ chain-related gene a alleles distinguish malnutrition-modulated diabetes, insulin-dependent diabetes, and non-insulin-dependent diabetes mellitus patients from eastern India. Ann N Y Acad Sci,2002,958:341-344.
    [112]Gupta M, Nikitina-Zake L, Zarghami M, et al. Association between the transmembrane region polymorphism of MHC class I chain related gene-A and type 1 diabetes mellitus in Sweden. Hum Immunol,2003,64:553-561.
    [113]Shtauvere-Brameus A, Ghaderi M, Rumba I, et al. Microsatellite allele 5 of MHC class Ⅰ chain-related gene a increases the risk for insulin-dependent diabetes mellitus in latvians. Ann N Y Acad Sci,2002,958:349-352.
    [114][114]林健(导师:周智广).自身免疫性1型糖尿病HLA-DQ和MICA基因多态性分析.[博士学位论文].长沙:中南大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700