用户名: 密码: 验证码:
p57~(kip2)与cyclinD1在贲门癌及癌前病变中表达及意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨p57~(kip2)蛋白、cyclinD1蛋白在贲门癌组织及贲门各级病变组织中的表达与贲门癌发生发展的关系及临床意义。
     方法收集河南科技大学第一附属医院胃镜活检贲门组织以及贲门癌手术标本共计130例。分为4组:贲门炎组织24例、贲门不典型增生组织26例、贲门癌组织60例及对照组正常贲门黏膜组织20例。采用免疫组织化学SP法,分别检测各组组织中p57~(kip2)、cyclinD 1蛋白的表达情况;利用SPSS软件分析各组间p57~(kip2)、cyclinD1蛋白表达的差异。分析其与贲门癌之间的相关性。并将免疫组化结果与临床病理参数进行比较分析。
     结果p57~(kip2)蛋白在贲门粘膜各病变组织中的表达分别为:在贲门炎组中阳性表达率87.5% (21/24),显著高于贲门不典型增生组53.8% (14/26) (P<0.05),不典型增生组与贲门癌组43.4% (26/60)之间无显著性差异(P>0.05),随着病变进展,其阳性表达率逐渐降低。经统计学分析p57~(kip2)蛋白表达在各组间的表达差异具有统计学意义。p57~(kip2)蛋白在正常贲门上皮组织中的表达水平为90% (18/20),p57~(kip2)蛋白在贲门癌组织中的表达水平为43.4% (26/60),两者差异具有显著性(P<0.05)。p57~(kip2)蛋白在Ⅰ期贲门癌中的表达率是71.4% (10/14),在Ⅱ期贲门癌组织中的表达率是41.4% (12/29),在Ⅲ期贲门癌组织中的表达率是23.5% (4/17),该结果有统计学意义(P<0.05)。p57~(kip2)蛋白在高、中分化贲门癌组织中的表达率分别是66.7% (8/12)、57.1% (12/21),显著高于其在低分化贲门癌组织中的表达率22.2% (6/27),该结果有统计学意义(P<0.05);有淋巴结转移组患者p57~(kip2)蛋白阳性表达率为44.1% (15/34),无淋巴结转移组患者p57~(kip2)蛋白阳性表达率为42.3% (11/26),两者差异不具有显著性。cyclinD1蛋白在贲门粘膜各病变组织中的表达分别为:cyclinD1蛋白在贲门癌组中阳性表达率53.3% (32/60),显著高于不典型增生组30.8% (8/26) (P<0.05),不典型增生组与贲门炎组29.2% (7/24)之间无显著性差异(P>0.05),随着病变进展,其阳性表达率逐渐升高。经统计学分析cyclinD1蛋白表达在各组间的表达差异具有统计学意义。cyclinD1蛋白在正常贲门上皮组织中的表达水平为25% (5/20),其在贲门癌组织中的表达水平为53.3% (32/60),两者相比差异具有统计学意义(P<0.05)。cyclinD1蛋白在Ⅰ期贲门癌中的表达率是28.6% (4/14),在Ⅱ期贲门癌组织中的表达率是51.7% (15/29),在Ⅲ期贲门癌组织中的表达率是76.5% (13/17),该结果有统计学意义(P<0.05)。cyclinD1蛋白在高、中、低分化贲门癌组织中的表达率分别是58.3% (7/12)、52.4% (11/21)和51.9% (14/27),该结果不具有统计学意义;有淋巴结转移组患者cyclinD1蛋白阳性表达率为70.6% (24/34),无淋巴结转移组患者cyclinD1蛋白阳性表达率为30.8%(8/26),两者差异具有显著性(P<0.05)。p57~(kip2)与cyclinD1表达的相关性:p57~(kip2)阳性表达的26例贲门癌中,cyclinD1阳性表达者5例(19.2%),在p57~(kip2)阴性表达的34例贲门癌中,cyclinD1阳性表达者29例(85.3%),提示p57~(kip2)和cyclinD1在贲门癌组织中的表达呈负相关(r=-0.661, P<0.01)。
     结论1、p57~(kip2)蛋白在贲门炎、不典型增生组织及癌变组织中的表达差异具有统计学意义,并与贲门癌分期和分化程度相关。提示p57~(kip2)基因表达缺失与贲门癌发生、发展有关。p57~(kip2)蛋白表达的水平可以作为判定贲门癌恶性程度高低的标记,对临床的诊断具有一定的指导意义。2、cyclinD1蛋白在贲门炎、不典型增生组织及癌变组织中的表达差异具有统计学意义,并与贲门癌分期和有无淋巴结转移相关。提示:对cyclinD1蛋白的检测可能对于贲门癌前病变及早期贲门癌的诊断有参考价值并且在贲门癌的恶性演进过程中可能发挥重要作用。3、p57~(kip2)、cyclinD1均为重要的细胞周期调控基因,p57~(kip2)失表达与cyclinD1高表达在贲门癌的发生上可能具有协同作用,联合检测p57~(kip2)与cyclinD1蛋白可能为临床检测和诊断贲门癌提供更多的生物学信息。
Objective Clinical significance and relation of the p57~(kip2)、cyclinD1 expression in gastric cardia cancer and different grade lesions of gastric cardia tissue.
     Methods One hundred and thirty case of gastroscope biopsies and surgical specimens of gastric cardia were collected at The first affiliated hospital of Henan university of science and technology. All specimens was divided into 4 groups: gastric cardia hilitis 24 case; gastric cardiac atypical hyperplasia 26 case;gastric cardia cancer 60 case and The control group: normal gastic cardia mucosa 20 case.The expression of p57~(kip2),cyclinD1 were detected in every group by immunohistochemical S-P methods; The difference of the expression of p57~(kip2),cyclinD1 were analyzed during every group by SPSS. Analyzed the correlation between gastric cardia cancer. The results of immunohistochemistry and clinicopathological parameters were analyzed.
     Result The expression of p57~(kip2) in different gastric cardia tissue:the positive expression rate in gastric cardia hilitis group 87.5% (21/24) is significant higher than gastric cardia atypical hyperplasia group 53.8% (14/26) (P<0.05),there is no significant difference between gastric cardia atypical hyperplasia group and gastric cardia cancer group 43.4% (26/60) (P>0.05) ,with the advancing of disease,the positive expression rate decreased gradually. By the statistic analyzed,the expression of p57~(kip2) were different among 4 groups.The expression rate of p57~(kip2) in normal mucosa is 90% (18/20),and in gastric cardia cancer tissue is 43.4% (26/60),the different between them were obviously.The expression of p57~(kip2) protin rate is 71.4% (10/14) in stage I gastric cardia cancer,41.4% (12/29) in stage II and 23.5% (4/17) in stage III,There are statistic significant in this results (P<0.05).The expression of p57~(kip2) in well differerntiated and moderately differentiated 66.7% (8/12),57.1% (12/21) were significantly higher than poorly diffierentiated 22.2% (4/17) (P<0.05). The positive expression of p57~(kip2)in the group with lymph node metastasis is 44.1% (15/34) and not significant different than the group without lymph node metastasis 42.3% (11/26). The expression of cyclinD1 in different gastric cardia tissue:the positive expression rate in gastric cardia cancer group 53.3% (32/60) is significant higher than gastric cardiac atypical hyperplasia group 30.8% (8/26) (P<0.05),there is no significant difference between gastric cardia atypical hyperplasia group and gastric cardia hilitis group 29.2% (7/24) (P>0.05) ,with advancing of disease,the positive expression rate increased gradually. By the statistic analyzed,the expression of cyclinD1 is different among 4 groups. The expression rate of cyclinD1 in normal mucosa is 25% (5/20),and in gastric cardia cancer is 53.3% (32/60),the differences between them are obviously.The expression of cyclinD1 protin rate is 28.6% (4/14) in stage I gastric cardia cancer, 51.7% (15/29) in stage II and 76.5% (13/17) in stage III, There are statistic significant in this results (P<0.05).The expression of cyclinD1 in well differerntiated , moderately differentiated and poorly diffierentiated is 58.3% (7/12)、52.4% (11/21) and 51.9% (14/27) respectively,there is no statistical sense among the three groups.The positive expression of cyclinD1 in the group with lymph node metastasis is 70.6% (24/34) and it is significant higher than the group without lymph node metastasis 30.8% (8/26). The relation between p57~(kip2) and cyclinD1:There is 5 specimens expressed cyclinD1 (19.2%) in the 26 p57~(kip2) positive gastric cardia cancer specimens,and 29 specimens expressed cyclinD1 (85.3%) in 34 p57~(kip2) negative gastric cardia cancer specimens,suggest that p57~(kip2) and cyclinD1 has negative correlation in gastric cardia cancer tissue (r=-0.661,P<0.01).
     Conclusion 1.The difference of the expression of p57~(kip2) protin in gastric cardia hilitis; gastric cardiac atypical hyperplasia and gastric cardia cancer has statistic sense,and correlate wih gastric cardia cancer stages and differentiation grade.Suggest that loss of p57~(kip2) gene expression has relation with the occurrence and progression of gastric cardia cancer.The expression level of p57~(kip2) protin maybe a mark to determine the malignancy grade of gastric cardia cancer,and may guide the clinical diagnose. 2. The difference of the expression of cyclinD1 protin in gastric cardia hilitis; gastric cardiac atypical hyperplasia and gastric cardia cancer has statistical sense,and correlate wih gastric cardia cancer stages with or without lymph node metastasis.Suggest that the detection of cyclinD1 may helpful to the diagnose of gastric cardia precancerous lesion and earlier gastric cardia cancer and this protin may an important role in the progression in gastric cardia cancer. 3.Both p57~(kip2) and cyclinD1 are importment cell cycle control genes, Loss of p57~(kip2) expression and high cyclinD1 expression may have synergistic action in the occurrence of gastric cardia cancer, joint detection about p57~(kip2) and cyclinD1 may provided more biological information for the clinical detection and diagnosis of gastric cardia cancer.
引文
[1] Serrano M, Hannon GJ, Beach D A new regulatory motif in cell-cycle control causing specific inhibition of cyclinD/CDK4 [J]. Nature,1993,366(6456):704-7.
    [2] Lundberg AS, Weinberg RA Control of the cell cycle and apoptosis [J]. Eur J Cancer ,1999,35(14):1886-94
    [3] Hannon GJ, Beach D p15INK4B is a potential effector of TGF-β-induced cell cycle arrest [J]. Nature, 1994,371(6494):257-61.
    [4] Guan KL, Jenkins CW, Li Y, et al. Growth suppression by p18,a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function [J]. Genes Dev ,1994,8(24):2939-52.
    [5] Chan FK, Zhang J, Cheng L, et al .Identification of human and mouse p19, a novel CDK4 and CDK6 inhibitor with homology to p16ink4 [J]. Mol Cell Biol, 1995,15(5):2682-8.
    [6] Harper JW, Adami GR, Wei N, et al .The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases [J]. Cell, 1993,75(4):805-16.
    [7] Hirai H, Roussel MF, Kato JY, et al .Novel INK4 proteins, p19 and p18, are specific inhibitors of the cyclin D-dependent kinases CDK4 and CDK6 [J]. Mol Cell Biol, 1995,15(5):2672-81.
    [8] Xiong Y, Hannon GJ, Zhang H, et al .p21 is a universal inhibitor of cyclin kinases [J]. Nature ,1993,366(6456):701-4.
    [9] Polyak K, Lee MH, Erdjument-Bromage H, et al .Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals [J].Cell, 1994,78(1):59-66.
    [10] Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21 [J]. Cell, 1994,78(1):67-74.
    [11] Lee MH, Reynisdottir I,Massague J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution [J]. Genes Dev ,1995,9(6):639-49.
    [12] Matsuoka S, Edwards MC, Bai C, et al .p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene[J].Genes Dev,1995,9(6):650-62.
    [13] Hatada I, Mukai T .Genomic imprinting of p57KIP2, a cyclin-dependent kinase inhibitor, in mouse [J]. Nat Genet ,1995,11(2):204-6.
    [14] Potikha T, Kassem S, Haber EP, et al. p57Kip2 (cdkn1c): sequence, splice variants and unique temporal and spatial expression pattern in the rat pancreas [J]. Lab Invest,2005,85(3):364–75.
    [15] Tokino T, Urano T, Furuhata T, et al. Characterization of the human p57KIP2 gene: alternative splicing, insertion/deletion polymorphisms in VNTR sequences in the coding region, and mutational analysis [J]. Hum Genet, 1996,97(5):625-31.
    [16] Kikuchi T, Toyota M, Itoh F, et al .Inactivation of p57KIP2 by regional promoter hypermethylation and histone deacetylation in human tumors [J]. Oncogene,2002,21(17):2741-9.
    [17] Reid LH, Crider-miller SJ, West A, et al. Genomic organization of the human p57kip2 gene and its analysis in the G401 wilms tumor assay [J]. Cancer Res,1996,56(6):1214-1218.
    [18] Adkins JN, Lumb KJ.Intrinsic structural disorder and sequence features of the cell cycle inhibitor p57Kip2 [J]. Proteins ,2002,46(1):1-7.
    [19] Kriwacki RW, Hengst L, Tennant L, et al.Structural studies of p21Waf1/Cip1/Sdi1 in the free and Cdk2-bound state: conformational disorder mediates binding diversity [J]. Proc Natl Acad Sci U.S.A.,1996,93:(21)504-9.
    [20] Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm [J]. J Mol Biol, 1999,293(2):321-31.
    [21] Dunker AK, Brown CJ, Lawson JD, et al.Intrinsic disorder and protein function [J]. Biochemistry ,2002,41(21):6573-82.
    [22] Reynaud EG, Guillier M, Leibovitch MP, et al.Dimerization of the amino terminal domain of p57Kip2 inhibits cyclin D1-4 kinase activity [J]. Oncogene ,2000,19(9):1147-52.
    [23] Hashimoto Y, Kohri K, Kaneko Y, et al.Critical role for the 310 helix region of p57(Kip2) in cyclin-dependent kinase 2 inhibition and growth suppression [J]. J Biol Chem ,1998,273(26):16544-50.
    [24] Xiao Q, Li L, Xie Y, et al. Transcription factor E2F1 is up-regulated in human gastric cancer tissues and its overexpression suppresses gastric tumor cell proliferation [J].Cellular Oncology, 2007,29(4):335-349.
    [25] Vorburger SA, Hetrakul N, Xia W, et al. Gene therapy with E2F1 up-regulates the protein kinase PKR and inhibits growth of leiomyosarcoma in vivo [J]. Mol Cancer Ther, 2005,4(11): 1710-1716.
    [26] Yamasaki L.Role of RB tumor supressor in cancer [J].Cancer Treat Res,2003,5(9):209-239.
    [27] Smith AC, Choufani S, Ferreira JC, et al.Growth regulation, imprinted genes, and chromosome 11p15.5 [J]. Pediatr Res, 2007,61(5Pt2):43R-47R.
    [28] Ben-Porath I, Cedar H. Imprinting: focusing on the center [J]. Curr Opin Genet Dev, 2000,10:(5)550-4.
    [29] Obata Y, Kono T.Maternal primary imprinting is established at a specific time for each gene throughout oocyte growth [J]. J Biol Chem, 2002,277(7):5285-9.
    [30] Reid LH, Davies C, Cooper PR, et al.A 1-Mb physical map and PAC contig of the imprinted domain in 11p15.5 that contains TAPA1 and the BWSCR1/WT2 region [J].Genomics, 1997,43(3):366-75.
    [31] Caspary T, Cleary MA, Baker CC, et al.Multiple mechanisms regulate imprinting of the mouse distal chromosome 7 gene cluster [J]. Mol Cell Biol ,1998,18(6):3466-74.
    [32] Onyango P, Miller W, Lehoczky J, et al.Sequence and comparative analysis of the mouse 1-megabase region orthologous to the human 11p15 imprinted domain [J].Genome Res, 2000,10(11):1697-710.
    [33] Hark AT, Schoenherr CJ, Katz DJ, et al.CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus [J]. Nature ,2000,405(6785):486-9.
    [34] Lee MP, DeBaun MR, Mitsuya K, et al.Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting [J]. Proc Natl Acad Sci U.S.A., 1999,96(9):5203-8.
    [35] Mitsuya K, Meguro M, Lee MP, et al.LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids [J]. Hum Mol Genet ,1999,8(7):1209-17.
    [36] Smilinich NJ, Day CD, Fitzpatrick GV, et al.A maternally methylated CpG island in KvLQT1 is associated with an antisense paternal transcript and loss of imprinting in Beckwith-Wiedemann syndrome [J]. Proc Natl Acad Sci U.S,A., 1999,96(14):8064-9.
    [37] Engemann S, Str?dicke M, Paulsen M, et al.Sequence and functional comparison in the Beckwith-Wiedemann region: implications for a novel imprinting centre and extended imprinting [J]. Hum Mol Genet, 2000,9(18):2691-706.
    [38] Matsuoka S, Thompson JS, Edwards MC, et al.Imprinting of the gene encoding a human cyclin-dependent kinase inhibitor, p57KIP2, on chromosome 11p15 [J]. Proc Natl Acad Sci U. S.A., 1996,93(7):3026-30.
    [39] Chung WY, Yuan L, Feng L, et al.Chromosome 11p15.5 regional imprinting: comparative analysis of KIP2 and H19 in human tissues and Wilms' tumors [J]. Hum Mol Genet, 1996,5(8):1101-8.
    [40] Pateras IS, Apostolopoulou K, Koutsami M, et al.Downregulation of the KIP family membersp27(KIP1) and p57(KIP2) by SKP2 and the role of methylation in p57(KIP2) inactivation in nonsmall cell lung cancer [J]. Int J Cancer ,2006,119(11):2546-56.
    [41] El Kharroubi A, Piras G, Stewart CL.DNA demethylation reactivates a subset of imprinted genes in uniparental mouse embryonic fibroblasts [J]. J Biol Chem, 2001,276(12):8674-80.
    [42] Niemitz EL, DeBaun MR, Fallon J, et al.Microdeletion of LIT1 in familial Beckwith-Wiedemann syndrome [J]. Am J Hum Genet ,2004,75(5):844-9.
    [43] Du M, Beatty LG, Zhou W, et al.Insulator and silencer sequences in the imprinted region of human chromosome 11p15.5 [J]. Hum Mol Genet, 2003,12(15):1927-39.
    [44] Kanduri C, Fitzpatrick G, Mukhopadhyay R, et al.A differentially methylated imprinting control region within the Kcnq1 locus harbors a methylation-sensitive chromatin insulator [J]. J Biol Chem, 2002,277(20):18106-10.
    [45] Fitzpatrick GV, Soloway PD, Higgins MJ.Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1 [J]. Nat Genet, 2002,32(3):426-31.
    [46] Cleary MA, van Raamsdonk CD, Levorse J, et al.Disruption of an imprinted gene cluster by a targeted chromosomal translocation in mice [J]. Nat Genet, 2001,29(1):78-82.
    [47] Horike S, Mitsuya K, Meguro M, et al.Targeted disruption of the human LIT1 locus defines a putative imprinting control element playing an essential role in Beckwith-Wiedemann syndrome [J]. Hum Mol Genet, 2000,9(14):2075-83.
    [48] Umlauf D, Goto Y, Cao R, et al.Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes [J]. Nat Genet, 2004,36(12):1296-300.
    [49] Lewis A, Mitsuya K, Umlauf D, et al.Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation [J]. Nat Genet, 2004,36(12):1291-5.
    [50] Higashimoto K, Urano T, Sugiura K, et al.Loss of CpG methylation is strongly correlated with loss of histone H3 lysine 9 methylation at DMR-LIT1 in patients with Beckwith-Wiedemann syndrome [J]. Am J Hum Genet, 2003,73(4):948-56.
    [51] Murakami K, Oshimura M, Kugoh H.Suggestive evidence for chromosomal localization of non-coding RNA from imprinted LIT1 [J]. J Hum Genet ,2007,52(11):926-33.
    [52] Mancini-Dinardo D, Steele SJ, Levorse JM, et al.Elongation of the Kcnq1ot1 transcript is required for genomic imprinting of neighboring genes [J]. Genes Dev, 2006,20(10):1268-82.
    [53] Thakur N,Tiwari VK,Thomassin H,et al.An antisense RNA regulates the bidirectional silencing property of the Kcnq1 imprinting control region [J]. Mol Cell Biol, 2004,24(18):7855-62.
    [54] Chen H, Qian K, Tang ZP, et al.Bioinformatics and microarray analysis of microRNA expression profiles of murine embryonic stem cells, neural stem cells induced from ESCs and isolated from E8.5 mouse neural tube [J]. Neurol Res,2010,32(6):603-13.
    [55] Sengupta S, Nie J, Wagner RJ, et al.MicroRNA 92b controls the G1/S checkpoint gene p57 in human embryonic stem cells [J]. Stem Cells ,2009,27(7):1524-8.
    [56] Qian K, Hu L, Chen H, et al.Has-miR-222 is involved in differentiation of endometrial stromal cells in vitro [J]. Endocrinology ,2009,150(10):4734-43.
    [57] Medina R, Zaidi SK, Liu CG, et al.MicroRNAs 221 and 222 bypass quiescence and compromise cell survival [J]. Cancer Res ,2008,68(8):2773-80.
    [58] Kim YK, Yu J, Han TS, et al.Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer [J]. Nucleic Acids Res, 2009,37(5):1672-81.
    [59] Fornari F,Gramantieri L,Ferracin M, et al.MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma [J]. Oncogene, 2008,27(43):5651-61.
    [60] Yang X, Karaturi RK, Sun F, et al.CDKN1C (p57KIP2) is adirect target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells [J]. PLoS One, 2009,4:(4)e5011.
    [61] Cucciolla V, Borriello A, Criscuolo M, et al.Histone deacetylase inhibitors upregulate p57Kip2 level by enhancing its expression through Sp1 transcription factor [J]. Carcinogenesis, 2008,29(3):560-7.
    [62] Blint E, Phillips AC, Kozlov S, et al.Induction of p57(KIP2) expression by p73β[J]. Proc Natl Acad Sci U.S.A., 2002,99(6):3529-34.
    [63] Beretta C, Chiarelli A, Testoni B, et al .Regulation of the cyclin-dependent kinase inhibitor p57Kip2 expression by p63 [J]. Cell Cycle ,2005,4(11):1625-31.
    [64] Chen Z, Li DQ, Tong L, et al.Targeted inhibition of p57 and p15 blocks transforming growth factorβ-inhibited proliferation of primary cultured human limbal epithelial cells [J]. Mol Vis, 2006,12:983-94.
    [65] Scandura JM, Boccuni P, Massague J, et al.Transforming growth factorβ-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation [J]. Proc Natl Acad Sci U. S.A., 2004,101(42):15231–6.
    [66] Ma Y, Cress WD.Transcriptional upregulation of p57 (Kip2) by the cyclin-dependent kinase inhibitor BMS-387032 is E2F dependent and serves as a negative feedback loop limiting cytotoxicity [J]. Oncogene, 2007,26(24):3532-40.
    [67] Grandjean V, Smith J, Schofield PN, et al.Increased IGF-II protein affects p57kip2 expressionin vivo and in vitro: implications for Beckwith-Wiedemann syndrome [J]. Proc Natl Acad Sci U. S.A., 2000,97(10):5279-84.
    [68] Kamura T, Hara T, Kotoshiba S, et al.Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation [J]. Proc Natl Acad Sci U.S.A.,2003,100(18):10231-6.
    [69] Lu L,Qiu J, Liu S, et al.Vitamin D3 analogue EB1089 inhibits the proliferation of human laryngeal squamous carcinoma cells via p57 [J]. Mol Cancer Ther, 2008,7(5):1268-74.
    [70] Hall JG. Genomic imprinting: review and relevance to human diseases [J]. Am J Hum Genet, 1990,46(5):857-73.
    [71] Takahashi K, Nakayama K, Nakayama K.Mice lacking a CDK inhibitor, p57Kip2, exhibit skeletal abnormalities and growth retardation [J]. J Biochem, 2000,127(1):73-83.
    [72] Tsugu A, Sakai K, Dirks PB, et al.Expression of p57(KIP2) potently blocks the growth of human astrocytomas and induces cell senescence [J]. Am J Pathol ,2000,157(3):919-32.
    [73] Hatada I, Inazawa J, Abe T, et al.Genomic imprinting of human p57KIP2 and its reduced expression in Wilms' tumors [J]. Hum Mol Genet, 1996,5(6):783-8.
    [74] Kondo M, Matsuoka S,Uchida K, et al. Selective maternal-allele loss in human lung cancers of the maternally expressed p57kip2 gene at 11p15.5 [J].Oncogene, 1996,12(6):1365-8.
    [75] Li JQ, Wu F, Usuki H, et al. Loss of p57KIP2 is associated with colorectal carcinogenesis [J]. Int J Oncol, 2003,23(6):1537-43.
    [76] Ito Y, Takeda T, Wakasa K, et al.Expression of p57/Kip2 protein in pancreatic adenocarcinoma [J]. Pancreas ,2001,23(3):246-50.
    [77] Ito Y, Takeda T, Sakon M, et al.Expression of p57/Kip2 protein in hepatocellular carcinoma [J]. Oncology, 2001,61(3):221-5.
    [78] Ito Y, Takeda T, Sasaki Y, et al.Expression of p57/Kip2 protein in extrahepatic bile duct carcinoma and intrahepatic cholangiocellular carcinoma [J]. Liver ,2002,22(2):145–9.
    [79] Chilosi M,Piazzola Z, Lestani M, et al. Differential expression of p57kip2, a maternally imprinted cdk inhibitor, in normal human placenta and gestational trophoblastic disease [J]. Lab Invest, 1998,78(3):269-76.
    [80] Nijjar T, Wigington D, Garbe JC, et al.p57KIP2 expression and loss of heterozygosity during immortal conversion of cultured human mammary epithelial cells [J]. Cancer Res, 1999,59(20):5112-8.
    [81] Liontos M, Niforou K, Velimezi G, et al.Modulation of the E2F1-driven cancer cell fate by the DNA damage response machinery and potential novel E2F1 targets in osteosarcomas [J]. Am J Pathol, 2009,175(1):376-91.
    [82] Halazonetis TD, Gorgoulis VG, Bartek J.An oncogene-induced DNA damage model for cancer development [J]. Science, 2008,319(5868):1352-5.
    [83] Gorgoulis VG, Vassiliou LV, Karakaidos P, et al.Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions [J]. Nature, 2005,434(7035):907-13.
    [84] Bartkova J, Rezaei N, Liontos M, et al.Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints [J]. Nature, 2006,444(7119):633-7.
    [85] Roninson IB.Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts [J]. Cancer Lett, 2002,179(1):1-14.
    [86] Chu IM, Hengst L, Slingerland JM.The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy [J]. Nat Rev Cancer, 2008,8(4):253-67.
    [87] Lemaire M, Chabot GG, Raynal NJ, et al.Importance of dose-schedule of 5-aza-2′-deoxycytidine for epigenetic therapy of cancer [J]. BMC Cancer, 2008,8:128.
    [88] Shin JY, Kim HS, Park J, et al. Mechanism for inactivation of the KIP family cyclin-dependent kinase inhibitor genes in gastric cancer cells [J]. Cancer Res, 2000,60(2):262-5.
    [89] Gray SG, Ekstrom TJ.Effects of cell density and trichostatin A on the expression of HDAC1 and p57Kip2 in Hep 3B cells [J]. Biochem Biophys Res Commun, 1998,245(2):423-7.
    [90] Matsumoto M, Farihata M, Ohsuki Y, et al.Immunohistochemical characterization of p57kip2 expression in human esophageal squamous cell carcinoma [J]. Anticancer Res, 2000,20(3):1947-1952.
    [91] Shin JY, Kim H S, Lee KS, et al. Mutation and expression of the p27kip1and p57kip2gene in human gastric cancer [J]. Exp Mol Med, 2000,32 (2):79-83.
    [92]曹守强,邹小明,李福军,等p57kip2蛋白在进展期胃癌中的表达及临床意义[J].哈尔滨医科大学学报,2004,38(6):561-563.
    [93] Fan GK, Xu F, Yang B, et al.p57(kip2) expression is related to carcinogenesis and tumor progression in laryngeal tissues [J]. Acta Otolaryngol ,2006,126(3):301-5.
    [94] Fan GK, Chen J, Ping F, et al.Immunohistochemical analysis of P57(kip2), p53 and hsp60 expressions in premalignant and malignant oral tissues [J]. Oral Oncol ,2006,42(2):147-53.
    [95] Nakai S, Masaki T, Shiratori Y, et al.Expression of p57(KIP2) in hepatocellular carcinoma: relationship between tumor differentiation and patient survival [J]. Int J Oncol, 2002,20(4):769-75.
    [96] Sui L, Dong Y, Ohno M, et al.Expression of p57kip2 and its clinical relevance in epithelialovarian tumors [J]. Anticancer Res, 2002,22(6A):3191-6.
    [97] Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma [J].Nat Genet, 2002,31(4):339-346.
    [98] Oliver Gautschia, Barbara Huglia, Annemarie Ziegler, et al. CyclinD1 (CCND1) A870G gene polymorphism modulates smoking-induced lung cancer risk and response to platinum-based chemotherapy in non-small cell lung cancer (NSCLC) patients [J]. Lung Cancer, 2006,51(3):303-11.
    [99] Sherr, C J. D-type cyclins [J]. Trends Biochem. Sci, 1995, 20 (5):187-190.
    [100] Frolov MV, Dyson NJ. Molecular mechanisms of E2F-dependent activation and pRB-mediated repression [J]. J Cell Sci., 2004, 117:2173–81.
    [101] Holley SL, Heighway J, Hoban PR. Induced expression of human CCND1 alternative transcripts in mouse Cyl-1 knockout fibroblasts highlights functionaldifferences [J]. Int JCancer, 2005,114 (3):364-70.
    [102] Holley S L, Matthias C, Jahnke V, et al. Association of cyclin D1 polymorphism with increased susceptibility to oral squamous cell carcinoma [J]. OralOncol, 2005, 41 (2):156-160.
    [103] Udhayakumar G, Jayanthi V, Devaraj N, et al Interaction of MUC1 with beta-cateninmodulates theWnt targetgene cyclinD1 in H.pylori-induced gastric cancer [J]. Mol Carcinog, 2007, 46 (9):807-817.
    [104] Zhou JX, Niehans GA, Shar A, et al. Mechanisms of G1 checkpoint loss in resected early stage non-small cell lung cancer [J]. Lung Cancer, 2001, 32 (1):27-38.
    [105] Moghaddam SJ, Haghighi EN, Samiee S, et al.Immunohistochemical analysis of p53, cyclinD1, RB1, c-fos and N-ras gene expression in hepatocellular carcinoma in Iran [J]. World J Gastroenterol, 2007, 13 (4):588-93.
    [106] Rose SL, Buller RE. The role of p53 mutation in BRCA1-associated ovarian cancer [J].Minerva Ginecol, 2002, 54 (3):201-209.
    [107] Motokura T, Bloom T, Kim HG, et al A novel cyclin encoded by a bcl1 - linked candidate oncogene [J]. Nature, 1991,350 (6318):462-463.
    [108]刘文斌,李建生.生长抑素抗肿瘤机制研究进展[J].安徽医药, 2005, 9 (1):7-9.
    [109] Dubus P, Young P, Beylot Barry M, et al. Value of interphase FISH for the diagnosis of t(11: 14)(q13; q32) on skin lesions of mantle cell lymphoma[J].Am J Clin Pathol, 2002, 118 (6): 832-841.
    [110] Zheng Y, Shen H,Sturgis EM,et al.CyclinD1 polymorphism and risk for squamous cell carcinoma of the head and neck:a case control study [J].Carcinogenesis,2001,22(8):1195-1199.
    [111] Holley SL, Parkes G, Matthias C, et al Cyclin D1 polymorphism and expression in patients with squamous cell carcinoma of the head and neck [J]. Am J Pathol, 2001,159 (5):1917-1924.
    [112] Simpson JF, Quen DE, O'Malley F, et al. Amplification of CCND1 and expession of its protein product,cyclin,inductal carcinoma in situ of the breast [J]. Am J Pathol, 1997, 151 (1):161-168.
    [113] Fu ZJ, Ma ZY, Wang QR,et al.Overexpression of CyclinD1 and underexpression of p16 correlate with lymph node metastases in laryngeal squamous cell carcinoma in Chinese patients.[J] Clin Exp Metastasis.2008, 25 (8):887-92.
    [114]田冬艳,王德华,刘永红,等.Surivivn和CyclinD1在卵巢癌中的表达和相关性[J].天津医科大学学报,2009, 15 (1):81-87.
    [115]黄汉兴,张金添.食管鳞状细胞癌CyclinD1的表达及其与CyclinE的相关性研究[J].华西医学,2010, 25 (11):1944-46.
    [116] Shao J, Teraishi F, Katsuda K, et al. p53 inhibits adriamycin-induced down-regulation of cyclin D1 expression in human cancer cells [J]. Biochem Biophys Res Commun, 2002, 290 (3): 1101-7.
    [117] Ikehara M, Oshita F, Ito H, et al. Expression of CyclinD1 but not of CyclinE is an indicator of poor prognosis in small adenocarinomas of the lung[J].Oncol Rep, 2003,10(1):137-139.
    [118] Umekita Y, Ohi Y, Sagara Y, et al. Over expression of CyclinD1 redicts for poor prognosis in estrogen receptor negative breast cancer patients [J].Int J Cancer, 2002,98(3):415-418.
    [119] Sallinen SL, Sallinen PK, Kononen JT, et al.Cyclin D1 expression in asrocytomas is associated with cell proliferation activitand patient prognosis [J]. Pathology, 1999,188 (3):289-293.
    [120] Schwandner O, Bruch HP, Broll R. p21, p27, cyclin D1, and p53 in rectal cancer: immunohistology with prognostic significance [J]. Int J Colorectal Dis, 2005, 17 (1):11-19.
    [121] Yu J, Miehlke S, Ebert MP, et al Expression of cyclin genes inhuman gastric cancer and in firstdegree relatives [J]. Chin Med J (Engl), 2002, 115 (5):710-715.
    [122]周琦,王立东.贲门癌的生物学特征[J].华人消化杂志, 1998,6(7):636-637.
    [123] Guanrei Y, Sunglian Q. Incidence rate of adenocarcinoma of the gastric cardia, and endoscopic classification of early cardial carcinoma in Henan Province, the People,s Republic of China [J]. Endoscopy, 1987, 19 (1):7-10.
    [124]孙秀娣,范金虎,陈汶,等.林州营养干预试验人群恶性肿瘤发病前瞻纵向研究[J].中国医学科学院学报,2007,29(1):87-92.
    [125]王立东,高文俊,杨万才,等.林州市人民医院9年间食管癌,贲门癌3933例分析[J].河南医科大学学报,1997,32(1):9-11.
    [126] Devesa SS, Blot WJ, Fraumeni JF Jr.Changing patterns in the incidence of esophageal and gastric carcinoma in the United States [J]. Cancer, 1998, 83 (10):2049-2053.
    [127] Botterweck Aa, Schouten LJ, Volovics A, et al.Trends in incidence of adenocarcinoma of the oesophagus and gastric cardia in ten European countries [J]. Int J Epidemiol, 2000, 29(4):645-654.
    [128] Rapp UR, Ceteci F, Schreck R. Oncogene-induced plasticity and cancer stem cells [J]. Cell Cycle. 2008, 7 (1):45-51.
    [129] Port RV, Arnold J, Kerr D, et al. Cultural enhancement of a clinical service to meet the needs of indigenous people; genetic service development in response to issues for New Zealand Maori [J]. Clin Genet, 2008, 73(2):132-138.
    [130] Rice KL, Hormaeche I, Licht JD. Epigenetic regulation of normal and malignant hematopoiesis[J]. Oncogene, 2007,26(47):6697-6714.
    [131] Weinberg RA. How cancer arises [J]. Sci Am,1996,275(3):62-70.
    [132] Dreyling MH,Bullinger L,Ott G,et al.Alterations of the cyclinD1/p16-pRb pathway in mantle cell lymphoma [J].Cancer Res,1997,57(20):4608-4614
    [133] Pesutic-Pisac V, Punda A, Gluncic I, Bedekovic V, Pranic-Kragic A, Kunac N. Cyclin D1 and p27 expression as prognostic factor in papillary carcinoma of thyroid: association with clinicopathological parameters [J]. Croat Med J, 2008, 49 (5):643–649.
    [134] Aaltonen K, Amini RM, Landberg G, et al. Cyclin D1 expression is associated with poor prognostic features in estrogen receptor positive breast cancer [J]. Breast Cancer Res Treat, 2009,113 (1):75–82.
    [135] Han S, Kim HY, Park K, et al.Expression of p27kip1 and cyclin D1 proteins is inversely correlated and is associated with poor clinical outcome in human gastric cancer [J].Surg Oncol, 1999, 71(3):147-154.
    [136] Lan Bin, Xu Dongpi,LinYongku.Expression of cyclinD1 and p53 in gastric carcinoma [J].The practical journal of cancer,2002,17(1):26-28
    [137]郭炜,杨植彬,董稚明,等.贲门腺癌中RASSF1A基因甲基化与cyclinD1表达的关系。肿瘤,2009,29(2):164-167.
    [138] Pateras IS, Apostolopoulou K, Niforou K, et al. p57KIP2: "Kip"ing the cell under control [J]. Mol Cancer Res.2009,7(12):1902-19.
    [139] Tahara T, Shibata T, Nakamura M, et al. Association between cyclin D1 polymorphism with CpG island promoter methylation status of tumor suppressor genes in gastric cancer [J]. Dig Dis Sci. 2010, 55 (12):3449-57.
    [140] Lehrbach DM, Cecconello I, Ribeiro Jr U, et al.Adenocarcinoma of the esophagogastricjunction: relationship between clinicopathological data and p53, cyclin D1 and Bcl-2 immunoexpressions [J]. Arq Gastroenterol. 2009, 46 (4):315-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700