用户名: 密码: 验证码:
猪传染性胃肠炎病毒纤突蛋白基因体外克隆表达及鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪传染性胃肠炎(Porcine transmissible gastroenteritis,TGE),是由猪传染性胃肠炎病毒(TGEV)引起的一种急性、高度接触性肠道传染病。临床特征主要表现为呕吐、脱水和腹泻。不同品种和不同年龄的猪对该病均易感,2周龄以内的仔猪具有高度感染性,致死率可达到100%。目前该病广泛存在于世界各养猪国家,我国作为世界养猪大国也不断有该病发生和流行的报道,该病常常由于混合感染和细菌继发感染,难以确诊,缺乏有效疫苗,给养猪业带来严重危害。
     本研究首先对长春市郊养猪户饲养猪群中一起疑似猪传染性胃肠炎病例进行分析,利用PK-15细胞从临床上表现为腹泻症状的病死仔猪肠系膜淋巴结材料中分离获得1株病毒,对该病毒进行病毒形态学、PCR检测与动物回归试验等系统鉴定后,证实该分离株为猪传染性胃肠炎病毒(TGEV),被命名为TGEV JL。对TGEV JL分离株的分离鉴定为进行针对猪传染性胃肠炎病毒的体外克隆表达及转植物疫苗研制提供基本条件。
     已有报道,TGEV具有4种结构蛋白,分别为:纤突糖蛋白(S蛋白)、膜内在蛋白(M蛋白)、小膜蛋白(sM蛋白)和核衣壳蛋白(N蛋白)。而其中编码S蛋白的S基因全长约为4300bp,决定宿主的亲嗜性、血凝性和致病性,同时也是诱导机体产生中和抗体的最主要结构蛋白。本研究在获得TGEV JL株的基础上,应用RT-PCR技术扩增获得该病毒株的主要免疫原性基因TGEV S基因全序列,将其连接到pMD18-T载体,进行测序及序列分析,将该基因序列和推导的氨基酸序列与8个不同来源的TGEV毒株进行同源性比较分析,表明该分离株的TGEV S基因高度保守,可作为转植物疫苗研制的目的基因。然后将该基因插入植物表达载体pBI121的CaMV35S启动子下游,成功构建了高效植物表达载体pBI121-S。
     玉米是我国主要的粮食及饲料作物之一。饲料消费是玉米最重要的消费渠道,约占消费总量的70%左右。玉米作为饲料消费在我国有两种情况。一是加工生产成配合饲料。二是传统的把玉米直接用于饲料的消费。本研究在获得pBI121-S的基础上,以玉米自交系“丹598”、“H99”和“丹988”的胚性愈伤组织为材料,通过愈伤组织对卡那霉素的敏感性试验,确定了卡那霉素40-56mg/L为愈伤组织适宜选择压。利用基因枪法将猪传染性胃肠炎病毒TGEV JL株S基因的植物表达载体pBI121-S导入玉米自交系中,并对基因枪法转化的条件进行了研究,对转化的愈伤组织进行分化诱导出苗后进行PCR和RT-PCR检测。PCR结果表明,外源目的基因已转入到玉米基因组中;通过RT-PCR试验证明,目的基因能在转基因玉米植株中获得转录。
     同时将pBI121-S转入根癌农杆菌EHA101中,成功获得含有重组植物表达载体pBI121-S的农杆菌工程菌。利用农杆菌介导法将TGEV S基因导入玉米自交系中,并对农杆菌转化系统的条件进行了研究。结果表明,根癌农杆菌EHA101的菌液OD600nm值为0.5-0.6时,侵染20min为农杆菌转化的最适条件。对转化的愈伤组织进行分化诱导出苗后进行PCR、Southern blot和Northern杂交检测,证明外源目的基因S已转入到玉米基因组中。以上研究结果为进一步研究猪传染性胃肠炎病毒的转基因植物疫苗及其在兽医临床的应用提供了依据。
Porcine transmissible gastroenteritis(TGE)is an acute, highly contact intestinal infection,caused by porcine transmissible gastroenteritis virus (TGEV). Main clinical features are vomiting, diarrhea and dehydration. Different ages and different varieties pigs are susceptible with highly infectious, especiallly less than two week old piglets, and its mortality rate could reach 100%. Currently the disease spread in each country which raise pigs. China, being as the biggest pig breeding country, constantly had reports about happening and epidemic of the disease. Owing to the mixed infection and bacteria secondary infection, it is usually hard to diagnose,and lack of the effective vaccine .It brings a seriously harmful effect to the swine industry
     The study firstly analyzed a suspected case of porcine transmissible gastroenteritis in changchun suburb. A TGE virus strain (TGEV JL) was successfully isolated from mesenteric lymphnodes of died piglets with clinical diarrhea symptom from a pig farm by passaging in PK-15 cells. The virus was identified as TGEV based on morphology, PCR results and animal regression test. The isolation of TGEV JL strain provide basic conditions for gene cloning of contagion enterogastrtisetc virus in vitro and plants vaccine development.
     It’s reported that,TGEV had four types of structural proteins: the Spike glycoprotein (S), the inner membrane protein (M), small membrane protein (sM) and nucleocapsid protein (N). The length of S gene, which encoded S protein, was about 4300bp. It decided the host’s tropism, hemagglutination and pathogenicity, while it is the most important structure protein which induced the organism to produce the neutralizing antibody. On the basis of getting TGEV JL strain, the whole sequences of S gene (main immunogenicity gene) TGEV was obtained by RT-PCR amplification technology, which connected to the pMD18 - T vector.And sequenced and analyzed sequential in this research. Through compared the gene sequence and the amino acid sequence to seven different sources TGEV strains,and done some homology analysis, it showed that S gene of the isolate strain TGEV was highly conservative. It could be used as the purpose gene for the transfer of plant vaccines. Inserted this gene into plant expression vector pBI121, downstream of CaMV35S promoter , building high efficient plant expression vector pBI121-S.
     Corn is the main food for human beings and animals. Feed consumption is the most important channel of corn consumption, accounts for about 70 percentages. Corn as feed consumption has two kinds of cases in China . One as compound feed and the other one is use to feed consumption. This research is in basis of acquired pBI121– S of Agrobacterium tumefaciens Corn and use the embryogenic calli of "Dan 598" and "H99" to make the experiment for kanamycin sensitive test. This study makes sure that 40-56mg/L is the best selection pressure. The pBI121-S ,TGEV S gene’s plant expression vector, was transferred into corn inbred line by using gene gun method. Conversion condition of the gene gun method had been studied. After being induced differentiation emergence, inversive callus was detected by PCR and RT-PCR.The result of PCR showed that exogenous gene had been transfered into the maize genome,while RT- PCR showed that the target gene could transcribe in the transgenic maize plants .
     At the same time, through the means of mediated transferred the TGEVS gene of Agrobacterium tumefaciens into the maize inbred line, and studied its mediated condition. The research showed that when the value of the EHA101 Agrobacterium bacteria at 600nm OD was from 0.5 to 0.6 and 20min infection was the optimum condition for Agrobacterium tumefaciens transformation. The inversive callus, induced differentiation emergence, detected by PCR amplification, Sorthern and Nouthern blot.It turned out that the target gene had already been diverted to the maize genome.The research results provides a basis for further studying, not only the transgenic plant vaccine of transmissible gastroenteritis virus of swine,but also using it in veterinary clinic.
引文
[1] Sirinarumitr T, Siddle S, Grahare F, et al. Porcine transmissible gastroenteritis virus induced apoptosis in swine testes cell culture [J]. Archives of virology, 1998, 143 (12): 2471-2485.
    [2] Jones T, Shenk T. Transmissible gastroenieristis virus of pigs[J]. Veterinary Record , 1997, 141(16): 427-428.
    [3]黄海龙,胡桂学,陶淑霞,等.猪传染性胃肠炎和猪流行性腹泻诊断方法研究进展[J].动物医学进展, 2002, 25(3): 43-46.
    [4]殷震,刘景华.动物病毒学[M].北京:科学出版社, 1997, 671-703.
    [5] Sasahara J, Harada K, Hayashi S, et al. Studies on transmissible gastroenteritis in pigs in Japan [J]. J Vet Sci, 1958, 20: l-6.
    [6] Goodwin R. F W, Jennings A.R. A highly infeetious gastroenteritis of pigs[J]. Vet Rec, 1958, 70: 271-272.
    [7]何孔旺,林继煌,还红华,等.猪传染性胃肠炎病毒弱毒株ST细胞培养特性及致病性研究[J].中国兽医科技, 2001, 31(8): 8-9.
    [8] Enjuanes L, vander Zeijst B A Molecular Basis of Transmissible Gastroenteritis Coronavirus Epidemiology. In S G Sidell(ed), the CopDnaviridae[M]. NewYork: Plenum Press. 1995, 337-376.
    [9] Pensaert. M,Callebaut P,Vergote J. Isolation of a porcine respiratory coronavirus, non-enteric coronavirus related to transmissible gastroenteritis [J]. Vet Quarterly, 1986(8): 257-260.
    [10] Straw.B.E, Dallaire.S.D, Mengeling.W.L, et al. Diseasea of swine[M]. 8th edition:Ames lowastate [M]. University Press, 1997: 295-325.
    [11] Lowings.P, Laude H,Charley B. Discrimination between transmissible gastroenteritis virus isolates [J]. Arehives of Virology, 1997, 142(8): 1703-1711.
    [12] wesley R, Woods R, Cheung A.K. Genetiebasis of the Pathogenesis of transmissible Gastroenteritis virus [J]. J Virol, 1990, 64(10): 4761-4766.
    [13]王继科,刘常明,马思奇,等.猪传染性胃肠炎和猪流行性腹泻病毒免疫电镜的诊断研究[J].动物传染病, 1991, 2: 22-25.
    [14]王树成,赵样平,刘宏,等.猪传染性胃肠炎病毒在组织细胞上增殖的研究[J].中国畜禽传染病, 1998, (1): 21-22.
    [15]马思奇,王明,王玉春,等.猪传染性胃肠炎弱毒株的培育[J].家畜传染病, 1985, 2: 4-10.
    [16] Laviada.M.D, Videgain.S.P, Moreno.L,et al.Expression of swine transmissible gastroenteritis virus envelope antigens on the surface of infected cells:Epitopes extemally exposed [J]. Virus Res, 1990, 16: 247-254.
    [17] Wenhtwcrth D E, Honller K V. Molecular detrmninat of species specificity in the Coronavrius receptor aminopeptidaes N (CD31) influence of N-linked glyocsylation [J]. JVoril, 2001, 75(20): 9741-9752.
    [18] Wenigartl HM, Debrysheri JB. Bniding of porcine transmissible gastroenteritis virus by enterocytes from weaned piglets [J].Vet Micro Biol, 1993, 35: 23-32.
    [19] Young G A, Hinz R W,Undevdahl N R. Some characterizations of transmissible gastroenieritis virus in disease-free antibody-devoid Pigs [J]. Am.Joumal of Vet.Res, 1955, 16: 529-535.
    [20] Hess R G, Bachlnaim P A. In vitro differentiation and PH sensitivity of field and cell culture attenuated strains of transmissible gastroenieritis[J]. Infect Immun, 1976, 13(6): 1642-1646.
    [21] Laude H, Gelfi J,Aynaud J M. In vitro properties of low-and-high-Passaged strains of transmissible gastroenteritis coronavirus of swine[J]. AmJ Vet Res, 1981, 42(3): 447-449.
    [22] Siddell S G. The Coronaviridae:An introduction in the Coronaviridae.E d. S.G siddell [M]. New York: plenum press, 1995, l-10.
    [23] Gebauer F, Posthumus W P, Correa 1, Sune C,et al. Residues Involved in the Antigenic Sites of Transmissible Gastroenteritis Coronavirus S glycoprotein[J]. Virology, 1991, 83(1): 225-238.
    [24] Chen C M, Cavanagh D, Britton P. Cloning and Sequencing of a 8.4kb Regionfrom the 3'End of a Taiwanese Virulent Isolate of the Coronavirus Transmissible Gastroenteritis Virus[J]. Virus Res, 1995, 38(1): 83-89.
    [25] Eleouet J F, Rassehaert D, Lambert P et al. ComPlete sequenee(20 kilobases)of the Poly Protein-eneoding gene I of transmissible gastroenteritis[J]. Virus Virol, 1995, 206: 817-822.
    [26] Sanehez C M, Gebauer F, Sune C, et al. Genetic evolution and tropism of transmissible gastroenteritis coronaviuse [J]. Vird, 1992, 190: 92-105.
    [27] Godet M, L‘Haridon R, Vantherot J F, et al. TGEV coronavirus ORF4 eneodes a membrane protein that is incorporated into virions [J]. J Vird, 1992, 188: 666-675.
    [28] Cavanagh D, Brian D A, Brinton M A et al. Revison of the taxonomy of the coronaviruses, Throvirus and Arterivirus genera [J]. Arch Vird, 1994, 135(l/2): 227-237.
    [29] Black J W. Diagnosis of TGE by FA Evaluation of Accuracy on Field Specimens[J]. Proc US Anim Health Assoc, 1971, 75: 492-498.
    [30] Britton P and Page D W. Sequence of the S Gene from a Virulent British Field Isolate of Transmissible Gastroenteritis Virus [J]. Journal of Virus Res, 1990, 18: 71-80.
    [31]刘高强,章克昌,王晓玲,等.昆虫杆状病毒表达系统的研究与应用进展[J].中国生物工程杂志, 2004, 24(7): 40-44.
    [32] Gebauer F, Willem P A, et al. Resiues involved in the antigenic sites of TGEV S glycoprotein [J]. Virology, 1991, (183): 225-238.
    [33] Ericm V, Partick D, Lmabert P.Three New isolates of RPCV with various- Phatogenieities and spike (S)gene deletions[J]. J Clin Microbiol, 1994, (32): 1809-1812.
    [34]冉智光,王玉春.猪传染性胃肠炎病毒分子生物学研究新进展[J].天津畜牧兽医, 1998, 15 (4): 4-6.
    [35] Pual P S, vaughn E M. et al. Phatogenicity and sequence analysis studies suggest Potential role of gene 3 in vurilence of swine enteric and respiratorycoronaviruses[J]. Adv ExP Med Biol, 1997, 412: 317-321.
    [36] Gebauer F, Willem P A, et al. Resiues involved in the antigenic sites of TGEV S glycoprotein [J]. Virology, 1991, (183): 225-238.
    [37] O’Connor J B, Brian D A. et al. Downstream ribosomal entry for transmissible gastroenteritis coronavirus TGEV gene 3b [J]. Virology, 2000, 269(l): 172-182.
    [38] Ortego J. Sola I. et al.Trnasmissible gasortenieritis coronavirus gene7 is not essential but infliuences in vivo vuris replication and viurlence[J]. Virology, 2003, 308(1): 13-22.
    [39] Kevin W, Paul P, Britton, Michael E G.. Sequence Analysis of the Leader RNA of Transmissible Gastroenteritis Virus[J]. Virus Gene, 1990, 4: 289-303.
    [40] Hiscox J A.Characterization of the Transmissible Gastroenteritis Vinis (TGEV)Transcription Initiation Sequence[J]. Adv Exp Med Biol, 1995, 380: 529-535.
    [41] Wesley R, Woods R and Cheuny A. Nucleotide Sequence of the E2-peplomer Protein Gene and Partial Nucleotide Sequence of Upstream Polymerase Gene of Transmissible Gastroenteritis Virus[J]. Adv Exp Med Biol, 1990, 276: 301-306.
    [42] Paul B, Kevin W. The Cloning and Sequencing of the Virion Protein Genes from a British Isolate of PRCV Comparison with TGEV[J]. Journal of Virus Research, 1991, 21: 181-198.
    [43] Julian A, Hiscox,David C,et al. Quantification of Individual Subgenomic mRNA Species during Replication of the Transmissible Gastroenteritis Virus[J]. Virus Res, 1995, 36: 119-130.
    [44] Curtis K M, Yount B, Baric R S. Heterologous Gene Expression from Transmissible Gastroenteritis Virus Replicon Particles[J]. Journal of Virol, 2002, 76(3): 1422-1434.
    [45] Anton I M, Gonzalez S, Bullido M J, et al. Cooperation Between Transmissible Gastroenteritis Coronavirus(TGEV)Structural Proteins in the in vitro Induction of Virus-specific Antibodies [J]. Virus Res, 1996, 46: 111-124.
    [46]任玲,李广兴.猪传染性胃肠炎病毒分子生物学研究进展[J].黑龙江畜牧兽医职业学院学报, 2006, 5(1): 27-28.
    [47] Godet G, Haridon R L, Vauterot J F, et al. TGEV ORF4 encodes a membrane protein that is incoprorated into virus [J]. Virol, 1992, 188: 666-675.
    [48] Spaan W, Cavanagh D, Horzinek M.C. Coronaviruses:Strueture and genomie Expression[J]. J Gen Virol, 1988, 69: 2939-2952.
    [49] Jimenez G, Correa I,Melgosa M P. Critical Epitopes in Transmissible Gastroenteritis Virus Neutralization[J]. Journal of Virol, 1986, 60: 131-139.
    [50] Jones T, Shenk T. Transmissible Gastroenteritis Virus of pigs[J]. Vet Rec, 1997, 41(16): 427-428.
    [51] Jacobs L, Van Der Zeust B A M, Horzined M C. Characterization and Translation of Transmissible Gastroenteritis Virus RNAs[J]. Journal of Virol, 1986, 57: 1010-1015.
    [52] Carlos M, Sanchez,Izeta A, Jose M.Targeted Recombination Demonstrates that the Spike Gene of Transmissible Gastroenteritis Coronavirus is a Determinant of Its Enteric Tropism and Virulence[J]. Journal of Virol, 1999, 73: 7607-7618.
    [53] Taguchi F, Fleming J O. Comparison of Six Different Murine Coronavius JHM Variants by Monoclonal Antibodies against the E2 Glycoprotein[J]. Virology, 1989, 169: 223-235
    [54] Collins A R, Knobler R L, Powell H. Monoclonal Antibodies to Murine Hepatitis Virus-4(strain JHM)Define the Viral Glycoprotein Responsible for46 Attachment and Cell-cell Fusion[J]. Virology, 1982, 119: 358-371.
    [55] Sturman L S, Richard C S, Murine K V. Proteolytic Cleavage of the E2 Glycoprotein of Murine Coronavirus by Trysin and Separation of Two Different 90K Cleavage Fragments[J]. Journal of Virol, 1985, 56: 904-911.
    [56] Ballesteros L, Sanchez C, Enjuanes L. Two Amino Acid Changes at the N-terminus of TGEV Spike Protein Result in the Loss of EntericTropism[J]. Journal of Virol, 1997, 227(2): 378-388.
    [57] Christine K, Graham D, Yolken R et al. Point Mutations in the S Protein Connect the Sialic Acid Binding Activity with the Enteropathogenicity of TGEV[J].Journal of Virol, 1997, 71(4): 3285-3287.
    [58] Chen C M, Cavanagh D,Britton P. Cloning and Sequencing of a 8.4kb Region from the 3'End of a Taiwanese Virulent Isolate of the Coronaviru Transmissible Gastroenteritis Virus[J]. Virus Res, 1995, 38(1): 83-89.
    [59] Sanchez C, Ballesteros L, Enjuanes L. Two Amino Acid Changes at the N-terminus of TGEV Spike Protein Result in the Loss of Enteric Tropism[J].Journal of Virol, 1997, 227(2): 378-388.
    [60] Christine K, Graham D, Yolken R et al. Point Mutations in the S Protein Connect the Sialic Acid Binding Activity with the Enteropathogenicity of TGEV[J]. Journal of Virol, 1997, 71(4): 3285-3287.
    [61] Krempl C, Schultze B, Laude H, Healer G. Point Mutations in the S Protein Connect the Sialic Acid Binding Activity with Enteropathogenicity of Transmissibl GastroenteritisVirus[J]. JournalofVirol, 1997, 71(4): 3285-3287.
    [62] Delmas B, Gelfi J. Antigenic Structure of Transmissible Gastroenteritis Virus Domains in the Peplomer Glycoprotein[H]. Journal of Virol, 1986, 67: 1405- 1418.
    [63] Laude H, Rasschaert D,Delmas B, et al. Molecular Biology of Transmissible Gastroenteritis Virus[J]. Vet Virol, 1990, 23: 147-154.
    [64] Noda M, Yamashita H, Koide F, et al. Hemagglutination with transmissible Gastroenteritis Virus[J]. Arch Virol, 1987, 96: 109-115.
    [65] Gallagher T M, Bucllllleier M J.Coronaviurs spike proteins in viral entry and Pahtogenesis [J]. Virology, 2001, 279(2): 371-374.
    [66] Matsuyama S, Taguehi.F. Conununieation bewteens s1 N330 and a region in s2 of routine coronaviurs spike Protein is important of virus entry into cells expressing CEACAMI b receptor[J]. Virology, 2002, 295(l): 160-171.
    [67] Maenuahgton M R, Dvaies H A. Human enteric eoronaviurses[J]. Arch Virol 1991, 70: 301-313.
    [68] Rottier P J. The molecular dynamics of feline eoronaviurses[J]. Vet Microbiol, 1999, 69(l-2): 117-125.
    [69] Gebauer F, Posthumus W P, Correa 1, Sune C, Smerdou C. Residues Involved in the Antigenic Sites of Transmissible Gastroenteritis Coronavirus S Glycoprotein[J]. Virology, 1991, 83(1): 225-238.
    [70] Correa l, Gebuaer F, Bullido M J, et al.Loealization of antigenic sites of the E2 gyleoprotein of transmissible gastroenteritis coronaviurs [J]. J GenVirol, 1990, 71(2): 271-279.
    [71] Demlas B, Rasseharet D, Murielle Godet, et al. Fou rmajor antigenic sites of the coronavirus transmissible gasrtoenteriitis virus are located on the amine-temrinl half of spike gylcoportein S [J]. J GenVirol, 1990, 71: 1313-1323.
    [72] Delmas B, Luade H. Assembly of coronavirus spike Protein into trimers and its role in epitope expression[J]. J Vird, 1990, 64(11): 5367-5375.
    [73] Silnkins R A, Weilnua PA, Van Cott J, et al. Competition ELISA, using monoelonal antibodies to the transmissible gastroenteritis virus (TGEV) S Protein, for serologic differentiation of Pigs Infected with TGEV or porcine respiratory coronavirus [J]. Am J Vet Res, 1993, 54(2): 254-259.
    [74] Tuboly T, Nagy E. Immunogenicity of the S Protein of Transmissible Gastroenteritis Virus Expressed in Baculo virus[J]. Arch Virol, 1994, 137(2): 55-67.
    [75] Christine K, Graham D, Yolken R, et al. Point mutations in the S Protein cornect the sialic acid binding aetivity with the entero pathogenieity of TGEV [J]. Joumal Virology, 1997, 71(4): 3285-3287.
    [76] Bernard S, Laude H. Site-speeific alteration of TGEV S Protein results in markedly redueed pathogenieity[J]. J Gen Vir, 1995(76): 2235-2241.
    [77] Laviada M D, Videgain S P, Moreno L M. Expression of Swine Transmissible Gastroenteritis Virus Envelope Antigens on the Surface of Infected Cell: Epitopes externally exposed[J]. Virus Res, 1990, 16: 247-254.
    [78] Sune C, Jimenez G, Correa I. Mechanisms of Transmissible Gastroenteritis Virus Coronavirus Neutralization[J]. Virology, 1990, 177: 559-569.
    [79] Simpkins R A, Weilnau P A. Antigenic Variation among TransmissibleGastroenteritis Virus(TGEV)and Porcine Respiratory Coronavirus Strains Detected with Monoclonal Antibodies to the S Protein of TGEV[J]. Am.J. Vet.Res, 1992, 53: 1253-1258.
    [80] Nagy E. Tuboly T, Immunogenicity of the S Protein of Transmissible Gastroenteritis Virus Expressed in Baculo virus[J]. Arch Virol, 1994, 137(2): 55-67.
    [81] Have P. Infection with a New Porcine Respiratory Coronavirus in Denmark: Serologic Differentiation from Transmissible Gastroenteritis Virus Using Monoclonal Antibodies[M]. In Coronaviruses and Their Diseases Plenum Press, New York ,1990, 435-439.
    [82] Sanchez C, Jimenez G,Laviada M D. Antigenic Homology among Coronavirus Related to Transmissible Gastroenteriti Virus [J]. Virology, 1990, 174:414.
    [83] Kim L, Hayes J. Molecular Characterization and Pathogenesis of Transmissible Gastroenteritis Coronavirus(TGEV)and Respiratory Coronavirus RC Field IsolatesCo-circulatingina Swine Herd [J]. Arch Virology, 2000, 145: 1133-1147.
    [84] Motokawa K. Comparison of the Amino Acid Sequence and Phylogenetic Analysis of the Peplomer Integral Membrane and Nucleocapsid Protein of Feline Canine Porcine Corona virus[J]. Journal of Microbiology and immunology, 1996, 40(6): 425-433.
    [85] Rasschaert D, Laude H. The Predicted Primary Structure of the Peplomer Protein E2 of the Porcine Coronavirus Transmissible Gastroenteritis Virus [J]. Journal of Gen Virol, 1987, 68: 1883-1890.
    [86] Riffault S, Groselaude J, Vayssier M, et al. Reeonstitued Coronavirus TGEV Virosomes lose the Virus Ability to Induce Poreine Interfer-on-alpha produetion[J]. VetRes, 1997, 28(2): 105-114.
    [87] Simpkins R A, Weilnau P A. Antigenic Variation among Transmissible Gastroenteritis Virus(TGEV)and Porcine Respiratory Coronavirus Strains Detected with Monoclonal Antibodies to the S Protein of TGEV[J]. Am. J. Vet. Res, 1992, 53: 1253-1258.
    [88] Niemann H, Boschek B, Evans D. Post-translational Glycosylation of Coronavirus Glycoprotein E1 Inhibition by Monensin[J]. Eur Mol Biol Organ, 1982, 1: 1499-1504.
    [89] Garwes D, Pocock D H, Wllaszka T M. The Polypeptide Structure of Transmissible Gastroenteritis Virus[J]. Journal of Gen Vrol, 1975, 29: 25-34.
    [90] Motokawa K. Comparison of the Amino Acid Sequence and Phylogenetic Analysisof the Peplomer Integral Membrane and Nucleocapsid Protein of Feline Canine and Porcine Coronavirus[J]. Journal of Microbiology and Immunology, 1996, 40(6): 425-433.
    [91] Charley B, Laude H. Induction of Alpha Interferon by Transmissible Gastroenteritis is Coronavirus: Role of Transmembrane Glycoprotein E1[J]. Journal of Virol, 1988, 62: 8-11.
    [92] Laude H, Rasschaert D, Delmas B, et al. Molecular Biology of Transmissible Gastroenteritis Virus[J]. Vet Virol, 1990, 23: 147-154.
    [93] Nakange K, Yamanouchi K, Fujiwara K. Protective Effect of Monoclonal Antibodies on Lethal Mouse Hepatitis Infection in Mice[J]. Journal of Virol, 1986, 59: 168-171.
    [94] Compton J, Rogers D B, Holmes K V,Fersch D. In vitro Replication of Mouse Hepatitis Virus Strain A59[J]. Journal of Virol, 1987, 61: 1814-1820.
    [95] Baric R S, Nelson G W J O, Deans R J. Interaction Between Coronavirus Nucleocapsid Protein and Viral RNA Implications for Viral Transcription[J]. Journal of Virol, 1988, 62: 4280-4287.
    [96] Stohlman L M, Baric R,Nelson G N, Welter L M. Specific Interaction between Coronavirus Leader RNA and Nucleocapsid Protein[J]. Journal of Virol, 1988, 62: 4288-4295.
    [97] Godet M, Gros Claude J. Major Receptor-binding and Neutralization Determinants are Located with in the Same Domain of the transmissible Gastroenteritis Virus(coronavirus) Spike Protein [J]. J Virol. 1994, 68(12): 8008-8016.
    [98] Godet M, L‘Haridon R, Vantherot J F, et al. TGEV coronavirus ORF4 eneodes a membrane protein that is incorporated into virions [J]. J Vird, 1992, 188: 666-675.
    [99] Hegyi A, Ziebuhr J. Conservation of Substrate Spceifieities among Coronavirus Main Proteases[J]. J Gen Virol, 2002, 83(3): 595-599.
    [100] Boursnell M E G, Brown T D K, Foulds I J, Green P F. Completion of the Sequence of the Genome of the Coronavirus Avian Infectious Bronchitis Virus[J]. Journal of Gen Virol, 1987, 68: 53-77.
    [101] Wesley R D, Woods R, Cheuny A. Genetic Basis of the Pathogenesis of Transmissible Gastroenteritis Virus[J]. Journal of Virol, 1990, 64(10): 4761-4766.
    [102] Taniguchi R, Takahashi A, Hayashidani H, et al. Sequence Comparison of the ORF7 Region of Transmissible Gastroenteritis Viruses Isolated in JaPan[J]. Vet Med Sci. 2004, 66(6): 717-719.
    [103] Wesley R D, Woods R D, Cheung A K.Genetic Analysis of Porcine Respiratory Coronavirus an Attenuated Variant of Transmissible Gastroenteritis Coronaviurs [J]. Journal of Virol, 1991, 65: 3369-3373.
    [104] Julian A, Hiscox,David C, et al. Quantification of Individual Subgenomic mRNA Species during Replication of the Transmissible Gastroenteritis Virus[J]. Virus Res, 1995, 36: 119-130.
    [105] Leman A D, Straw B, Glock R D, et al. Disease of Swine[M]. Ames Iowa state university press, 1992: 362-386.
    [106]阮力,汪垣,强伯勤.新型疫苗研究的现状与展望[M].学苑出版社, 1992, 56-89.
    [107] Aurtna B, Careelain G Li T S, et al. Positive effects of combined antrietroviral therapy on CD4 T cell homeostasis and function in advanced HIV disease[J]. Seienee, 1997, 277(5322): 112-116.
    [108] Sutter G Staib C. Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery [J]. Arch Virol, 1998, 143:467-474.
    [109] Britton P, Page KW, et al. Sequence of the S gene from a virulent British field isolate of transmissible gastroenteritis virus[J]. Virus Res, 1990, 18(1): 71-80.
    [110] Luckow V A, Summers M D. High level expression of nonfused foreign genes with Autographa californica nuclear polyhedrosis virus expression vectors [J]. Virology, 1989, 170(1): 31-39.
    [111] Dai X, Hajos J P, Joosten N N, et al. Isolation of a Spodoptera exigua baculovirus recombinant with a 10.6kbp genome deletion that retains biological activity [J]. J Gen Virol, 2000, 81: 2545-2554.
    [112] Sandoval C, Curtis H,Congote L F. Enhanced Proliferative effects of a baculovirus Produced fusion Protein of insulin-like growth factor and alpha-proteinsae inhibitor and improved anti-elastase activity of the inhibitor with glutamateat at position [J]. protein Eng, 2002, 15(5): 413-418.
    [113] O’rellyDR. Baculo virus Expression Veetors: A Laboratory Manual[M]. NewYork: W H Freeman and Company, 1992, l-137.
    [114] KingL A. The Baeulovirus Expression Systerm: A Laboratory Guide[M]. Cha Pman&Hall, 1992, PP:11-229.
    [115] Kang C Y, Bishop D H, Seo J S, Mastuuar, Y Choe M. Secretion of Particles of hepatitis B surface antigen from insect cells using a baculovirus vector [J]. J Cen Virol, 1997, 68: 2607-2613.
    [116] Kidd M, Emery V C. The ues of baculoviruses as expression vector[J]. Appl Biochem Biotech, 1993, 42: 137-139.
    [117] Smith GE, Ju G,Ericson BL, Moschaer J, Lahm HW, Summers MD. Modification and secretion of interleukin produced in insect cells by a baculovirus experssion vector[J]. Proc Natl Acid Sci USA, 1985, 82: 8404-8408.
    [118]朱帮福,王鑫,邓乐,等.昆虫杆状病毒表达系统的研究进展[J].细胞与分子免疫学杂志, 2002, 18(6): 681-684.
    [119] Godet M, Rasschaert D, et al. Processing and antigenicity of entire and anchor-free spike lycoprotein S of coronavirus TGEV expressed by re-combinant aculovirus[J].Virology, 1991, 185(2): 732-740.
    [120] Tuboly T, Nagy E, et al. Immunogenicity of the S protein of transmissible gastroenteritis virus expressed inbaculovirus[J]. Arch Virol, 1994, 137(1-2): 55-67.
    [121]黎皓.人腺病毒载体的研究进展[J].国外医学病毒学分册, 1998, 5(2): 53-57.
    [122] Lusky M, Chist M, Rittner K, et al. In vitor and in vivo biology of recombinant adenovirus vectors with EI, E1/E2 or E1/E4 deleted [J]. J Virol, 1998, 72: 2022-2032.
    [123] Moorhead J W, Clayton G H, Smith R L, et al. A replication-incompetent adenovirus vector with the preterminal Protein gene deleted efficiently transduces mouse ears [J]. J Virol, 1993, 73: 1046-1053.
    [124] Amalfitano A, Hauser M A, Hu H,Serra, et al. Production and characterization of improved adenovirus vectors with the EI, E2,and E3 genes deleted[J]. J Virol, 1998, 72: 926-933.
    [125]徐学武,俞卫锋.第三代腺病毒载体的研究进展[J].生物技术, 2005, 15(3) : 79-83.
    [126] Torres J M, Alonso C, Ortega A, et al. Tropism of human adenovuris type-based vectors in swine and their ability to Protect against transmissible gastroenteritis coronavirus[J]. J Virol, 1996, 70(6): 3770-3780.
    [127] Tuboly T, Nagy E, et al. Consturction and characterization of recombinant porcine adenovirus serotype epxerssing the transmissible gastroenteritis virus spike gene[J]. J GenVirol, 2001, 82(1): 183-190.
    [128] Helen L B, Kate F G, Steven M J, et al. Antibody responses to Yersinia Pesos Flantigen expressed in Slmonella typhimurium aorA from in vivo-inducible promoters [J]. Vaeeine, 2000, (18): 2668-2676.
    [129]梁雪芽.减毒沙门氏菌作为鸡新城疫口服DNA疫苗载体的基因免疫研究[D].浙江大学硕士学位论文. 2002.
    [130] Nakayama A. Sturction of delta asd stain of salmonella typhi [J]. Vaccine, 1994, 12: 1499-1508.
    [131] Smerdou C Anton IME. et al. Acotinuous epitope from transmissible gastroenteritis virus S protein fused to E.coli heat-labile toxin B subunit expressed by attenuated Salmonella induces serum and secretory immunity[J]. Virus Res, 1996, 41(l): 1-9.
    [132] Semrduo C, Urniza A, et al. Characterization of transmissible gastroenteritis coronavirus S Protein expression products in avirulent S typhimurium delta cya delta crp:persistence Stability and immune response in swing[J]. Vet Microbiol, 1996, 48(1-2): 87-100.
    [133]董伟,易自力,蒋建雄,等.转基因植物口服疫苗研究进展[J].动物医学进展[J]. 2005, 26(6): 6-8.
    [134] Walmsley A M, Amtzen C J. Plant cell factories and mucosal vaccines [J]. Curr Opin Biotechh, 2003, 14: 145-150.
    [135] Artnzen C J. Edible vaccines [M]. Public Health ReP, 1997, 112(3): 190-197.
    [136] Arakawa T. Efficacy of a food Plant-based oral cholera toxin B subunit vaccine [J]. Nat Biotechmol, 1998, 16: 292-297.
    [137] Walmsley A M, Anrtzen C J. Plants for delivery of edible vaccines[J]. Biotechniques, 2000, 11(2): 126-129.
    [138] Tacket C O, Mason H S. A review of oral vaccination with transgenic vegetables [J]. Microbes Infect, 1999, (l): 777-783.
    [139] Gomez N, Carrillo J. et al. Expression of immunogenic glycoprotein Polypeptides f rom TGEV in transgenic plants [J]. Virology, 1998, 249(2): 352-358.
    [140] Gomez N, Wigdorovizt A, et al. Oral immunogenicity of the Plant derived spike protein from swine-transmissible gastroenteritis coronavirus[J]. Acrh Viorl 2000, 145(8): 1725-1732.
    [141] Tuboly T, Yu W,Bailey A, et al. Inununogenicity of porcine transmissible gastroenteritis vrius spike protein expressed in Plants[J]. Vaeeine, 2000, 18(19): 2023-2028.
    [142] Izeta A, Smerdou C, Sanchez C M, et al.Replication, packaging,and expressionof foreign genes using synthetic minigenomes derived from transmissible gastroenteritis coronavirus defective interfering RNA[J]. Abst 7th Int Symp on Coronavirus and Arterivituses, 1997, 12: 10-15.
    [143]师东方.猪轮状病毒和传染性胃肠炎病毒核酸免疫的研究[D].哈尔滨:东北农业大学, 2002.
    [144]任晓峰,尹杰超,李一经,等.猪传染性胃肠炎病毒TH-98株S基因核酸疫苗的构建及其免疫效力[J].中国兽医科学, 2006, 36(3): 203-206.
    [145] Carolo, Tacket, Hugh S, et al. Immunogenicity in humans of a recombinant bacterial antigen delivered in a transgenic potato[J]. Nature Medicine, 1998, 4: 607-609.
    [146]张占路,刘建利,冯利,等.猪传染性胃肠炎(TGE)基因工程疫苗的研究进展[J].中国预防兽医学报, 2006, 28(5): 509-602.
    [147] Smerdou Cristian, Izeta Ander, Alonso Sara, et al. Replication and Packaging of Transmissible Gastroenteritis Coronavirus-Derived Synthetic Minigenomes [J]. J.Virol, 1999, 73: 1535-1545.
    [148] Mechin M C, Der Vartanian. The major subunit CpG of Escherichia coli CS31A fibrillae as an expression vector for different combination of two TGEV coronavirus epitope [J]. Gene, 1996, 179(2): 211-218.
    [149] Isabel Sola, Joaquín Castilla, Belén Pintado, et al.Transgenic Mice Secreting Coronaviru Neutralizing Antibodies into the Milk[J]. J.Virol, 1998, 72: 3762-3772.
    [150]谭振波,刘昕,曹鸣庆.玉米遗传转化的研究进展[J].生物技术通报, 2000, 6: 9-13.
    [151]王关林,方宏筠.植物基因工程[M].科学出版社, 2002.
    [152]于艳波,李景鹏.玉米遗传转化系统的研究进展[J].生物技术, 2002, 06: 42-43.
    [153]程焉平.抗除草剂转基因作物的研究及其安全性[J].吉林农业科学, 2003, 4: 23-28.
    [154]张元昶,张首国,李振科,等.转基因玉米遗传转化的研究进展[J].重庆工商大学学报(自然科学版)2006, 05: 473-477.
    [155] Ishida Y, Saito H, Chta S, et al. High efficency transformation of maize (Zea mays L)mediated by Agrobacterium tumefaciens[J]. Nature Biotechnology, 1996, 14: 745-751.
    [156] Fromm M E, Morrish F, Armstrong C, et al. Inheritance and expression of chamacric genes in the progeny of transgenic maize plants[J]. Bio. thechnology, 1990, 8: 833-819.
    [157] Omirulleh S, Abraham M, Golovkin M, et al. High efficency transformation of maize and expression by Agrobacterium tumefaciens[J]. Plant Mol. Biol. 1993. 21: 415-428.
    [158] Armstrong C L, Green C E. Establishment and maintenance of friable, embryo genetic maize callus and the involvement of proline [J]. Planta, 1985, 164: 207-214.
    [159]黄璐,卫志明.农杆菌介导的玉米遗传转化[J].实验生物学报, 1999, 32(4): 381-389.
    [160]杜何为.玉米组织培养体系的研究[J].湖北农业科学, 2003, 4: 22-24.
    [161]马莲菊,高峰,于翠梅,等.玉米悬浮细胞系的建立和单细胞培养的效[J].沈阳农业大学学报, 2002, 33(6): 449-451.
    [162]董云洲,段胜军,赵连元,等.用基因枪转化花粉获得转基因谷子和玉[J].中国农业科学, 1999, 32(2): 9-13.
    [163]丁群星,谢友菊,戴景瑞,等.用子房注射法将Bt毒蛋白基因导入玉米的研究[J].中国科学, 1993, 23(7): 707-713.
    [164]沈世华,张秀君,郭奕明,等.玉米基因转化的离体子房注射及其转基因植株的鉴定[J].植物学报, 2001, 43(10): 1055-1057.
    [165]付凤玲,张莉萍,朱祯.玉米优良自交系转基因受体系统建立及转化后的筛选与再生[J].四川农业大学学报, 2000, 2: 97-108.
    [166]张莉萍,李晚忱,朱祯,等.玉米优良自交系基因枪转化受体系统的建[J].四川大学学报(自然科学版) , 2000, 37: 56-61.
    [167]郭丽红,陈善娜,龚明,等玉米根尖和成熟胚的愈伤组织培养及悬浮系的建立[J].云南大学学报(自然科学版) , 1999, 21 (1) : 141-144.
    [168]张艳贞,王罡,胡汉桥,等.农杆菌介导将Bt杀虫蛋白基因导入优良玉米自交系的研究[J].遗传, 2002, 24 (1) : 35-39.
    [169]黄璐,卫志明.不同基因型玉米的再生能力和胚性与非胚性愈伤组织DNA的差异[J].植物生理学报, 1999, 25(4) : 332-338.
    [170]肖莉杰,苍晶,徐仲,等.黑龙江省骨干玉米自交系愈伤组织的诱导及植株再生[J].东北农业大学学报, 2003, 34 (1) : 63-67.
    [171]杜何为,张祖新,郑用琏.玉米组织培养体系的研究[J].湖北农业科学, 2003, 4: 22-24.
    [172]李学红,李冬玲,张举仁,等.玉米芽尖培养中的高频率体细胞胚胎发生与植株再生[J].植物生理学通讯, 2000, 36(5) : 430-433.
    [173]王昌涛,杨爱国,高树仁,等.玉米不同外植体愈伤组织的诱导及植株再生的研究[J].沈阳农业大学学报, 2005, 36(5) : 515-518.
    [174] Gould J, Devey M, Hasegawa O, et al. Transformation of Zea mays L. using A- grobacterium tumefaciens and the shoot apex[J]. Plant Physiol ,1991, 95: 426- 434.
    [175] Ishida Y, Saito H, Ohta S, et al. High efficency transformation of maize (Zeamays L.) mediated by Agrobacterium tumefaciens[J]. Nature Biotechnology, 1996 ,14: 745-751.
    [176]黄璐,卫志明.农杆菌介导的玉米遗传转化[J].实验生物学报, 1999, 32(4): 381-387.
    [177]张荣,王国英,张晓红,等.根癌农杆菌介导的玉米遗传转化体系的建[J].农业生物技术学报, 2001, 9(1): 45-48.
    [178] Klein TM, Wolf E D, Wu R, et al. High velocity microprojectiles for delivering nucleid acids into living cells[J]. Nature, 1987, 327: 70-73.
    [179] Weeks J T, Anderson O D, Blechi A E. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum L)[J]. Plant Physiol, 1993, 102: 1077-1084.
    [180] Philippe V, HorthY, Pascal F. Enhancement of production and regeneration ofembryogenic typeⅡcallus in Zeamays by AgNO3[J]. Plant Cell Tissue and Organ Culture, 1989, 18: 143-151.
    [181] Wan Y C, Widholm J M, Lemaux P G. TypeⅠcallus as a bombardement target for generating fertile transgenic maize (Zeamays L)[J]. Planta, 995: 7-14.
    [182]原亚萍,母秋华,付荣昭,等.用基因枪法将防御素基因转入玉米并再生植株初报[J].吉林农业大学学报, 1997, 19(4): 113-115.
    [183]张秀君,刘俊起,赵倩,等.用基因枪将高赖氨酸基因导入玉米及转基因植株的检测[J].生物技术学报, 1999, 7(4): 1-6.
    [184]杨景成,齐延芳,于元杰,等.外源DNA导入植物技术的发展及其在作物育种中的应用[J].核农学报, 2002, 17(l): 79-84.
    [185]王景雪,孙毅,崔贵梅,等.花粉介导法获得玉米转基因植株[J]. Acta Botanica Sinica, 2001, (3): 398-402.
    [186]郭光沁,许智宏.用PEG法向小麦原生质体导入外源基因获得转基因植[J].科学通报, 1993, 38(13): 227-231.
    [187] Wang A S, Evans R A, Altendorf PR, et al. Amamos selection system for production of fertile transgenic maize plants from protoplasts[J]. Plant Cell Reports, 2000, 19: 654-660.
    [188]李宝健,许新萍,石和平,等.应用电注射法将外源基因导入水稻种胚及获得转基因水稻植株的研究[J].中国科学(B辑), 1991, 3: 270-275.
    [189] Fromm M E, Taylorlp W, Albotv E. Report of the committee on genetic engineering[J]. Nature, 1986, 319: 791-793.
    [190] Chowrira GM, Akella V, Lurquin P F. Electroporation-mediated gene transfer into intact nodal meristems planta[J]. Molec. Biotech, 1995, (3): 17-23.
    [191] Sheen J. Signal transduction in maize and Arabidopsis mesophyll protoplasts[J]. Plant Physiol, 2001, 127: 1466-1475.
    [192]梁雪莲,郭平毅,孙毅,等.玉米3种非组培转基因方法转化外源bar基因研究[J].作物学报, 2005, 31(12): 1648-1653.
    [193]张宏,王国英,谢友菊,等.超声波介导法转化玉米愈伤组织及可育转基因植物的获得[J].中国科学(C辑) , 1997, 27(2) : 162-167.
    [194] Frame BR, Drayton PR, Bagnall SV, et al. Production of fertile transgenic maize plants by siliconcarbide whisker-mediated transformation[J]. Plant J. 1994, 6: 941-948.
    [195] Anklam E,Gadani F. Analytical methods for detection and determination of genetically modified organisms in agrieultural crops and Plant-derived food Produers[J]. Eur Food Res Technol, 2002, 214: 3-26
    [196]金芜军,郝旸,程红梅,等.用复合PCR方法检测6种转基因玉米中外源DNA的特异性[J].农业生物技术学报, 2005, 13(5) : 562-567.
    [197] Gaehet E,MartinG G,Vigneau F,et al. Deteetion of genetically modified organisms (GMOs) by PCR: a brief of methodologies available. Trend in Food[J]. Seience and Technology, 1999, 9: 380-388.
    [198]常灵竹,贺文琦,陆慧君,等.猪血凝性脑脊髓炎病毒RT-PCR方法的建立及初步应用[J].中国农学通报, 2007, 23(9): 15-18.
    [199]贾赟,胡传伟,刘文斌等.猪流行性腹泻病毒套式RT-PCR检测方法的建立及初步应用[J].检验检疫科学, 2005, 15(3): 7-9.
    [200]Schledrewski K, Mendel RR. Quantitative transient gene expression:comparison of the promoters for maize polyubiquitinⅠ, rice actinⅠ, maize-derived Emu and CaMV35S in cells of barlery, maize and tobacco[J]. Trangen Res, 1994, 15(3): 249-255.
    [201] Zhao Z Y, Gu W, Cai T, et al. MolecμLarpm analysis of T0 plants trpmansforpmmed by Agrpmobacterpmium and comparpmison of Agrpmobacterpmium mediated trpmansforpmmation with bombarpmdment trpmansforpmmation in maize[J]. Maize Genet Coop Newslett, 1998, 72(1): 34-37.
    [202] Gordon-Kamm W J, Spencer T M, Mangano M L. Transformation of maize cells and regeneration of fertile transgenic plants [J]. The plant cell, 1990, 2: 60-65.
    [203]岳建雄,张慧军,张炼辉.以对潮霉素抗性为筛选标记的遗传转化[J].棉花学报, 2002, 14(4): 195-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700