用户名: 密码: 验证码:
矿山地下水害防治工程可视化及地表塌陷预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿山水害及其衍生的地表塌陷灾害是困扰矿山安全生产的一个非常棘手且又必须面对的问题,它严重威胁着矿山的安全生产、矿区地质环境和生态环境。因此,开展地下水数值模拟、帷幕注浆工程可视化以及岩溶地表塌陷预测技术研究,可为矿山实现地下水害及其衍生的地表塌陷灾害的有效治理提供强有力的技术支持,具有重要意义。
     本文针对中金岭南凡口铅锌矿地下水害防治帷幕注浆工程的实际,综合运用数值模拟、计算机三维建模和人工神经网络等技术,采用Visual Modflow、Surpac和Matlab等数字化工具,结合“注浆帷幕三维可视化及地下水数值模拟技术研究"科研课题,主要开展以下研究:
     (1)在概化水文地质条件的基础上,构建凡口铅锌矿数值模拟水文地质概念模型,以此为基础,运用三维地下水流模拟专业软件Visual Modflow,构建凡口铅锌矿地下水数值模拟模型,并实现对所建数值模拟模型的校正与验证。
     (2)运用凡口铅锌矿地下水数值模拟模型分析地下水流场的变化和区域水均衡情况,从而揭示研究区内地下水动态特征;模拟对比多种帷幕墙渗透系数和合理作用厚度方案下二期工程完成后地下水流场的变化,试算验证帷幕墙渗透系数和合理作用厚度;预测帷幕注浆三期工程完成后研究区的地下水流场变化,并评价帷幕注浆工程堵水的效果,为后续帷幕注浆工程三维可视化及地表塌陷预测奠定基础。
     (3)运用三维可视化软件Surpac建立帷幕注浆钻孔数据库,实现对帷幕注浆钻孔数据的有效管理和帷幕注浆钻孔三维可视化;建立帷幕墙的三维概念示意模型,涵盖帷幕注浆区域的地表三维模型,疏干巷道及水仓的三维模型,实现帷幕注浆工程的三维可视化,对指导矿山后续帷幕注浆工程的开展,提高工程施工管理水平具有重要现实意义。
     (4)结合凡口铅锌矿实际,分析研究区岩溶地表的塌陷机理,确定影响岩溶地表塌陷的主要因素,并依据各因素对岩溶地表塌陷的影响程度,实现岩溶地表塌陷主要因素的定量分级。
     (5)综合分析凡口铅锌矿地面塌陷历史资料,总结提出研究区的塌陷规律;构建岩溶地表塌陷区预测BP神经网络模型,并运用该模型预测帷幕注浆三期工程完成后研究区内塌陷区域的空间分布,为地表塌陷灾害提供预警支持,提出塌陷防治的技术措施。
Groundwater disaster and its derived ground collapse have undermined safety in mine. It's a threat to mine safety, geological environment and ecological balance. Therefore, research on groundwater numerical simulation, visualization of curtain grouting and ground collapse prediction is of great significance. The research will strongly support the effective management of groundwater disaster and ground collapse.
     Based on the research project——visualization of curtain grouting and numerical simulation for groundwater, the paper integrated use of groundwater simulation, three-dimensional computer modeling and artificial neural network, researches on Fankou lead-zinc mine with Visual Modflow, Surpac and Matlab. The main contents are as follows:
     (1) Conceptual model for hydrogeology numerical simulation of Fankou lead-zinc mine was built based on generalizing hydrogeological conditions in research area. According to this model, with the use of 3D groundwater simulation software——Visual Modflow, hydrogeology numerical simulation model of Fankou lead-zinc mine was built. By testing and verifying model parameters, the model was consistent with the actual situation of engineering.
     (2) With numerical simulation model of Fankou lead-zinc mine, the paper analyzed the law of groundwater flow field and the situation of regional water equilibrium, and then got the dynamic characteristics of groundwater. Though simulated and compared the change of groundwater flow field under various permeability coefficients and thickness of curtain wall after the second phase of curtain grouting, a set of correct permeability coefficients and thickness of curtain wall was determined. Then the groundwater flow field after the third phase of the curtain grouting was predicted, and the effect of curtain grouting in groundwater controlling was evaluated. It's the basis of visualization of curtain grouting and ground collapse prediction.
     (3) With three-dimensional visualization software Surpac, curtain grouting drilling database was established, which could realize the effective management and visualization of curtain grouting borehole data. The concept model of curtain wall, surface 3D model, dewatering and water storage 3D model were built. Therefore,3D visualization of curtain grouting was achieved. It's of great practical significance to carry out curtain grouting and greatly improve the ability of construction management.
     (4) Coupling with the actual situation of Fankou lead-zinc mine, the paper analyzed the mechanism of ground collapse, and identified main factors of ground collapse. These factors were quantified according to the extent of ground collapse.
     (5) Comprehensively analyzing historical data of ground collapse in Fankou lead-zinc mine, and summarizing the distribution-law of ground collapse in the research area. In order to provide early ground-collapse warning, ground collapse which occurred after the third phase of the curtain grouting was predicted by construct BP artificial neural network ground-collapse model. Then, the paper gave the measures to prevent and control ground collapse.
引文
[1]罗秋德.白山坪井帷幕注浆法防治水方法[J].湖南安全与防灾,2009(7):46-47.
    [2]白建业,贺可强.高阳铁矿矿床突水的防治[J].金属矿山,2005(7):23-26.
    [3]刁心宏,远洋,张传信.金属矿地质灾害及其研究发展趋势[J].金属矿山,2006(6):1-4.
    [4]邓红卫.典型矿山地下水防治与资源化调控及工程应用研究[D]:[博士学位论文].湖南:中南大学,2008.
    [5]张新社.广东省凡口铅锌矿矿区地下水害防治方案研究[D]:[硕士学位论文].北京:中国地质大学,2010.
    [6]郭晓东,田辉,张梅桂,等.我国地下水数值模拟软件应用进展[J].地下水,2010,32(4):5-7.
    [7]丁继红.国外地下水模拟软件的发展现状与趋势[J].勘察科学与技术,2002,20(1):37-42.
    [8]朱奎.大区域地下水数值模拟:[硕士学位论文].武汉:武汉大学,2004.
    [9]Berkowitz B, Scher H, Silliman S E.Anomalous transport in laboratory-scale, heterogeneous porous media [J]. Water ResourcesResearch,2000,36(1): 149-158.
    [10]薛禹群,谢春红.地下水数值模拟[M].北京:科学出版社,2007:2-5.
    [11]Barry D A, Prommer H, Miller C T, et al. Modeling the fate of oxidisable organic contaminents in groundwater [J]. Advances in Water Resources (25th Anniversary Edition),2002,25(8-12):945-983.
    [12]Hill M C, Tiedeman C R. Effective Groundwater Mode Calibration:With Analysis of Data, Sensitivities, Prediction, an Uncertainty [M]. New York: Wiley,2007:456-457.
    [13]Zhang D. Stochastic Methods for Flow in Porous Media:Coping with Uncertainties [M].San Diego, CA:Academic Press Inc.2002.
    [14]Zheng C, Gorelick S M. Analysis of the effect of decimeter scale preferential flow paths on solute transport [J]. Ground Water,2003,41(2):142-155.
    [15]Chen B, Li Y F, Huang G H, et al. PELM:An Integrated Pesticide Losses Model for Simulating Pesticide Pollution Watershed System [J]. Journal of Environmental Science and Health-Part B,2003,39(4):122-125.
    [16]Chen B, Li Y F, Huang G H, et al. Estimation of Atrazine Loss through the Surface Runoff from Agricultural Landin Auglaize-Blanehard Watershed the United States [J]. Water Quality Researeh Journal of Canada,2003,38(4): 585-606.
    [17]Desbarats A J, Logan C E, et al. On the kriging of water table elevations using collateral information from a digital elevation model [J]. Hydrol,2002(255): 25-38.
    [18]Zhang J C. Stress-dependent Permeability variation and mine subsidenee[C]. Pacific Rock 2000. Girard, Liebman, Breeds, Doe (Eds). Balkema,2000: 812-816.
    [19]Wang Tao. Progress in sandy desertification researeh of China [J]. Journal of Geographical seienees,2004,14(4):387-400.
    [20]Facchia, Ortuani B. Coupled SVAT2 ground water model for water resources Simulation in irrigated alluvial plains [J]. Environmental Modeling & Software,2004,19:153-163.
    [21]Fan H R, Zhai M G, Xie Y H, et al. Ore-forming fluids associated with Granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold Province [J]. Mine Deposit,2003,38:739-750.
    [22]王明华.工程岩体三维地质建模与可视化研究[D]:[博士学位论文].武汉:中科院武汉岩土力学研究所,2004.
    [23]Turner A K (Ed), Three-Dimensional Modeling with Geoscientific Information Systems [M]. NATO ASI, Dordrecht, Kluwer Academic Publishers,1992: 215-232.
    [24]Thomas R.Fisher. Use of 3D Geographic Information Systems in Hazardous Waste Site Investigations [M]. Oxford University Press,1993.
    [25]Rongxing Li. Data structures and application issues in 3D geographic information systems [J]. GEOMATICA,1994,48(3):209-224.
    [26]刘晓明.基于实测的采空区三维建模及其衍生技术的研究与应用:[硕士学位论文].湖南:中南大学,2004.
    [27]Pigot S. A topological model for a 3-dimensional Spatial Information System [D]. Delft University of Technology,2005.
    [28]吴立新,张瑞新,戚宜欣,等.三维地学模拟与虚拟矿山系统[J].测绘学报,2002(1):28-33.
    [29]王纯样,白世伟,贺怀建.三维地层可视化中地质建模研究[J].岩石力学与 工程学报,2003(11):1722-1725.
    [30]李讯.复杂条件下建模技术与岩体开挖稳定性研究:[硕士学位论文].湖南:中南大学,2006.
    [31]罗周全,刘晓明,苏家红,等.基于Surpac的矿床三维模型构建[J].金属矿山,2006,(4):33-36.
    [32]陈爱兵,秦德先,张学书,等.基于MICROMINE矿床三维立体模型的应用[J].地质与勘探,2004,40(5):77-80.
    [33]李海华,张瑞新.应用Surpac软件进行露天矿采矿工程的可视化[J].中国矿业,2004,13(1):63-65.
    [34]Gong J Y, Cheng P G, Wang Y D. Three-dimensional modeling and application in geological exploration engineering [J]. Computers & Geosciences,2004, 30(4):391-404.
    [35]Wu Qiang, Xu Hua. An approach to computer modeling and visualization of geological faults in 3D [J]. Computers& Geosciences,2003,29(4):507-513.
    [36]熊伟,毛善君,马蔼乃,等.面向地质应用的三维数据模型研究[J].煤田地质与勘探,2002(6):11-13.
    [37]边馥苓,傅仲良,胡自锋.面向目标的栅格矢量一体化三维数据模型[J].武汉测绘科技大学学报,2000(4):294-297.
    [38]文小岳,李光强,王振兴.面向地籍的三维数据模型设计与建立[J].测绘科学,2010(5):92-94.
    [39]谭仁春,杜清运,杨品福,等.地形建模中不规则三角网构建的优化算法研究[J].武汉大学学报(信息科学版),2006(5):436-438.
    [40]潘炜,刘大安,钟辉亚,等.三维地质建模以及在边坡工程中的应用[J].岩石力学与工程学报,2004,23(4):597-602.
    [41]王英杰,袁勘省,余卓渊.多维动态地学信息可视化[M].北京:科学出版社.2003.
    [42]曹代勇,王占刚.三维地质模型可视化中直接三维交互的实现[J].中国矿业大学学报,2004,33(5):384-387.
    [43]Chen Aibing, Qin Dexin, Zhang Xueshu. The application of deposit 3D model based on micromine [J]. Geology & Prospect,2004,40(5):77-80.
    [44]Fardin N, Feng Q, Stephansson O. Application of a new insitu 3D laser scanner to study the scale effect on the rock joint surface roughness [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(2):329-335.
    [45]鹿浩,罗周全,杨彪,等.虚拟现实技术及其在矿业中的应用[J].中国钨业, 2007(4):22-25.
    [46]Surpac Vision软件用户使用手册(第四版)[M].北京:Surpac Software International国际软件公司,2000.
    [47]Schaubs P M, Ord A, German G H. Scenario testing of fluid-flow and deformation during mineralization:from simple to complex geometries FLAC and numerical modeling in aeromechanics [M]. Rotterdam:A. A. Balkema, 2003.63-70.
    [48]Lemon A M, Jones N L. Building solid models from boreholes and user-defined cross-sections [J]. Computers & Geosciences,2003,29(3):547-555.
    [49]Simon W, Hooding. Practical geostatistics, modeling and spatial analysis [M]. New York and Heidelberg, Springer-Verlag,2000.
    [50]Zhu Liangfeng, Wu Xincai, Liu Xiuguo.3D stratum modeling based on borehole data [J]. Geology&Geological Information Science,2004,20(3): 26-30.
    [51]黄平路,陈从新,肖国峰,等.复杂地质条件下矿山地下开采地表变形规律的研究[J].岩土力学,2009(10):3020-3024.
    [52]余业雄,欧阳振华.地下水位下降引起地表塌陷的作用机理研究[J].露天采矿技术,2005(3):20-22.
    [53]欧阳振华,蔡美峰,李长洪,等.北洺河铁矿地表塌陷机理研究[J].矿业研究与开发,2005,25(1):21-23.
    [54]邓启江.重大工程岩溶塌陷防治综合研究:[博士学位论文].北京:中国地质大学,2010.
    [55]骆祖江,李会中,付延玲.第四纪松散沉积层地下水渗流与地面沉降控制数值模拟[M].北京:科学出版社,2009:25-29.
    [56]杨彪,罗周全.地下资源开发中的GIS应用[J].采矿技术,2006,(2):62-65.
    [57]Luo Zhouquan, Liu Xiaoming, Su Jiahong, et al. Deposit 3D modeling and application [J]. Journal of Central South University of Technology,2007,14 (2):225-229.
    [58]吴立新,殷作如,邓智毅,等.论21世纪的矿山:数字矿山[J].煤炭学报,2000,25(4):337-342.
    [59]朱焱辉,朱培民,金丹.从ArcGIS平面栅格图形到Gocad三维图像转换的开发探讨[J].工程地球物理学报,2004,1(5):435-460.
    [60]郭贵有.基于GIS的地质灾害评价研究:[硕士学位论文].北京:中国地质大学,2006.
    [61]赵增玉,潘懋,梁河,等.二值证据权(Wofe)模型岩溶塌陷区划研究[J].北京大学学报(自然科学版),2010,46(4):594-510.
    [62]谭红艳.广州市白云区地面塌陷危险性预测评价:[硕士论文].北京:中国地质科学院,2009.
    [63]Cooper, Anthony H. The development of a national Geographic Informationg System (GIS) for British karst geohazards and risk assessement[C]. Proceedings of 8th Multidisciplinary conference on sinkholes and the Engineering and Environmental Impacts of Karst. Louisville, Kentucky,2001.
    [64]戴前伟,冯德山.探地雷达在高速公路桥址溶洞探测中的应[J].勘察科学技术,2002(4):61-63.
    [65]阿发友.高密度电法和地质雷达在断层及溶洞探测中的应用:[硕士学位论文].贵州:贵州大学,2008.
    [66]郭印,彭涛,李天祺,等.井间电磁波CT技术在建筑基底溶洞探测中的应用[J].工程勘察,2009(8):92-94.
    [67]刘兴权,阎曼,杨厚波.三维激光扫描技术在溶洞探测中的应用[J].测绘工程,2010,19(5):41-43.
    [68]董小刚,刘伟,王玥.结合地下水环境解逆问题的数值方法及其优化[J].吉林大学学报(信息科学版),2003,21(3):298-302.
    [69]GB/T 14497-93,地下水资源管理模型工作要求[S].
    [70]陈静,王军.岩溶矿区帷幕注浆截流效果的抽水试验法评价[J].采矿技术,2008,8(6):53-54.
    [71]胡焕校,李振钢,钟志均.帷幕注浆在凡口地区矿山堵水中的应用[J].工程建设,2009,41(2):42-45.
    [72]熊万胜,曹南山.注浆技术在岩溶地区堵漏加固工程中的应用[J].采矿技术,2001,1(3):61-63.
    [73]何成应,赵斌.大红山矿帷幕注浆工程实践及治水效果[J].岩土工程界,2007,10(4):81-84.
    [74]邹艳红.矿山地测数据集成与三维立体定量可视化预测研究:[博士学位论文].长沙:中南大学,2005.
    [75]Huber D, Vandapel N. Automatic 3D underground mine mapping [J], International Journal of Robotics Research (IJRR),2005,25(1):7-17
    [76]Chen Jianhong, Gu Desheng. The Optimization Principle of Combined Surface and Underground Mining and Its Applications [J], Journal of Central South University of Technology,2003,10(3):56-60.
    [77]杨彪,罗周全,刘晓明,等.基于FTP的矿山电子图件定向传输及安全控制技术[J].矿冶工程,2010,10(5):18-20.
    [78]包惠明,胡长顺.岩溶地面塌陷神经网络预测[J].工程地质学报,2002,10(3):300-304.
    [79]王宇琳,何志坚.广东凡口铅锌矿床控矿构造与矿化规律[J].中国科技信息,2008,16:23-24.
    [80]刘景委,林明月,秦鹏,等.凡口铅锌矿有机地球化学特征及成矿意义讨论[J].河北建筑科技学院学报,2005,22(4):54-58.
    [81]刘江龙,刘会平,吴湘滨.广州市地面塌陷的形成原因与时空分布[J].灾害学,2007,22(4):62-65.
    [82]罗泽华.凡口铅锌矿地表沉降监测与研究[J].矿山测量,2003,2(3):4-18.
    [83]闫士民,闫长虹,刘健.人工神经网络在徐州岩溶地面塌陷评价中的应用[J].江苏地质,2007,31(1):45-49.
    [84]赖永标,乔春生.基于支持向量机岩溶塌陷的智能预测模型[J].北京交通大学学报,2008,32(1):36-39.
    [85]沈照理,刘光亚,杨成田,等.水文地质学[M].北京:科学出版社,1985.
    [86]Demuth, Howard B. Neural network design [M]. Beijng:China Machine Press, 2002.
    [87]朱大奇.人工神经网络研究现状及其展望[J].江南大学学报(自然科学版),2004,3(1):103-110.
    [88]闻新.MATLAB神经网络仿真与应用[M].北京:科学出版社,2003.
    [89]Mitsutaka Sugimoto, Aphiehat Sramoon. Theoretieal Model of Shield Behavior Durin Exavation. Ⅰ:Theory [J]. Journal of Geoteehnieal and Geoenvironmental Engineering,2002,128(2):138-155.
    [90]Suwansawat S, Einstein H H. Artificial neural networks for predicting the maximum surface Settlement caused by EPB shield tunneling [J]. Tunneling And Underground space Technology,2006(21):133-159.
    [91]飞思科技产品研发中心.神经网络理论与Matlab7实现[M].北京:电子工业出版社,2006:100-105.
    [92]周开利,康耀红.神经网络模型及其Matlab仿真程序设计[M].北京:清华大学出版社,2005.
    [93]包惠明,胡长顺.岩溶塌陷两级模糊综合评价[J].水文地质工程地质,2001,(3):49-52.
    [94]蒋元平,胡晓炎.用人工神经网络模拟土体塌陷的可行性分析[J].长江大 学学报(自然科学版),2007,4(2):101-103.
    [95]朱庆杰,苏幼坡,刘廷全.唐山市岩溶塌陷安全评价[J].中国安全科学学报,2004,14(2):91-94.
    [96]贺玉龙,杨立中,黄涛.人工神经网络在岩溶塌陷预测中的应用研究[J].中国地质灾害与防治学报,1999,10(4):86-90.
    [97]吴大敏.新桥硫铁矿矿床疏干引起地面塌陷及其综合治理[J].化工矿产地质,2006,28(1):40-43.
    [98]陈文林.多因素诱发矿区岩溶地面塌陷的实例分析[J].西部探矿工程,2006(3):132-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700