用户名: 密码: 验证码:
哀牢山—金沙江钾质碱性岩带地球化学特征及其构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱性岩:典型的碱性岩为硅不饱和,出现霞石、白榴石等似长石类矿物。在十九世纪九十年代就将碱性岩分为大西洋型的钠质碱性岩和地中海型的钾质碱性岩,到二十世纪九十年代将碱性岩分为超基性碱性岩、基性碱性岩、中性碱性岩和碱性岩。碱性岩物质来源较深,主要源自上地幔,形成于岩石圈拉张环境,是深部地球动力学过程在浅部地壳的直接表现和历史记录,因此对碱性岩的研究是探索地球深部物质组成、物理化学环境、地壳上层构造和深部动力学过程的一个重要途径。碱性岩是除幔源岩石包体外另一类可提供地幔信息的岩石,是窥探地幔的窗口。
     本文的研究范围是哀牢山-金沙江钾质碱性岩带,该带位于我国西南三江地区的扬子板块和中缅板块三江褶皱区间的缝合带和多个地体边界带,由喜马拉雅期钾质富碱岩浆岩组成;从北往南由新疆塔什库尔干→沱沱河沿→青海囊谦→西藏江达→云南剑川→下关,向南到金平,中国境内该岩带延长达3700km,且向南延至越南境内,平面上岩带呈反“S”形的线形分布特点。如此年轻的巨型钾质碱性岩带,主要由暗霞正长岩、霞辉岩、等色岩、透辉石正长岩、角闪石正长岩、透辉石花岗岩、石英二长岩、二长花岗斑岩、钾长花岗斑岩、碱长花岗斑岩、云煌岩、煌斑岩、含镁铝榴石橄榄碱煌岩、碱性玄武岩、安粗岩和粗面岩等组成。组成这些钾质碱性岩带的岩石:在岩相上,包括深成相、浅成相和喷溢相等不同岩相;在岩性上,从超基性、基性、中性到酸性岩石;造岩矿物,从超基性到酸性岩石中均有透辉石,在基性、超基性岩中有霞石;在岩石化学成分上,所有岩石均表现出富碱高钾富钙,微量元素富集Rb、Sr、Ba等大离子亲石元素和Th、U等放射性元素,贫Nb、Ta、Zr、Hf等高场强元素;稀土元素富集轻稀土,铕负异常不明显;Sr、Nd、Pb同位素组成,显示了物质来源于富集地幔源区。
     年龄测量结果表明:东部金平-剑川地区锆石SHRIMP U-Pb年龄范围38Ma-34Ma,西部巴毛穷宗-羊湖-泉水沟-昝坎等Ar-Ar年龄范围44Ma-6Ma,显示哀牢山-金沙江钾质碱性岩浆岩带的岩浆作用东早西晚;岩带从南到北(邦达错-羊湖-阿鲁克库勒)年龄由大到小(44Ma-16Ma-0.4Ma),显示新生代的岩浆作用由老到新的变化。其中最早的岩浆作用的时间是38Ma,相当于始新世晚期,其控岩断裂构造形成时间晚于印度与欧亚两大陆在始新世中期(45Ma)碰撞的时间。这种因果关系,反映了青藏高原在两个大陆碰撞之后继续向北偏东(21°)推移,受到了塔里木、柴达木和康滇古陆古老基底的阻挡,导致了长达数千公里的金沙江-红河走滑拉分带的形成,同时伴随着钾质碱性深成岩和火山岩产出。该岩带钾质碱性岩浆作用,始于始新世中期(44Ma)到更新世(0.37Ma),岩浆作用时间长达40Ma之多。这一现象与印度、欧亚两大陆碰撞时间在50Ma-45Ma至今是一致的。结合地质构造、地球物理、矿物岩石学、地球化学、成矿和年代学等资料,本论文对哀牢山-金沙江钾质碱性岩带性质等进行详细论述。
The alkali rocks include potassic alkali rocks and natric alkali rocks. And in the 19 century alkali rocks are often associated with Pacific style natric alkali rocks and mediterranean style potassic alkaic rocks. They were usually generated in deep-large-fault zone and closely connected with basic/ultra basic rocks in space. Therefore, alkali-rock is of significance in tectonic petrology. The researching area that is Ailaoshan-Jinshajiang potassic alkalic rock zone lies in the southwest of China. The zone lies at the joint of Yangtze plate and Zhongmian plate in Sanjiang fold series and many rocks' borderlines. It is composed of Himalaya period potassic alkalic magmatic rock. The zone is 3700 kilometres. The rock belt are composed of malignite, nepheline gabbro, shonkinite, diopside-sienite, hornblende sienite, amphibole-monzonite,granodiorite-granophyre, kaligranite-porphyry, fraidronite, kersanton, precious garnet, olivine alkali-lamprophyre, alkalic-pyroxenolite, alkalic-basalt, latite and trachyte. And the lithofacies of the potassic rock zone include plutonic intrusion, hypabyssal intrusion and eruption.
     The lithologic characters about the rock zone include ultra basic rocks, basic rocks, neutral rocks and acidic rocks, but the characters of all rocks are alkali. The bigest character is that the content of kalium is more than the natrium. The rock forming mineral of all rocks has diopside, and the nepheline is in the ultra basic rocks and basic rocks. The characters of geochemistry are rich alkali. And at the same time the content of calcium is high. They are rich in alkali, high in Potassium, enriched in LILE, LREE and Pb, depleted in HFSE and have a small Sr, Nd, Pb isotope range. Their source is probably a kind of even metasomatic mantle. This is consistent with the fact that there is kimberlite containing flogopite in the deep-source enclosure of Cenozoic super-K alkali lava in the southern part of this rock zone.
     The Zircon SHRIMP dating results of 36.8Ma, 36.8Ma, 34.1Ma, 38.3Ma yielded about the rocks in the south belt. This result is in late Eocene and belongs to Himalaya period. The rock-controlling structure of this rockmass may form before 40 Ma, much earlier than 45Ma-the collision time. At the same time the Ar-Ar and K-Ar dating results of 44Ma-0.37Ma yielded about the rocks in the north belt. The time shows the evolvement history and time of volcanic action about the North Tibet. And it reflects that the magmatism time of Ailaoshan-Jinshajiang potassic alkalic rock zone from east is younger than west magmatism time. The time is from the middle of Eocene to Miocene. The durative time of magmatism is 40Ma. This phenomenon is consistent with that about the collision between Europe slab and Asia slab. It hints that the cause of formation is inherent contact with the collision. Studying the information about geological structure, physical geography, mineral petrology, geochemistry, mineral and chronology, we know that the magma of this rock zone is originated from the partly melting of relatively shallower spinel mantle.
引文
[1] 蔡新平.扬子地台西缘新生代富碱斑岩中的深源包体及其意义.地质科学,1992,27(2):183-189.
    [2] 迟效国,李才,金巍.藏北羌塘地区新生代火山作用新生代火山与岩石圈构造演化.中国科学D辑 地球科学,2005,35(5):399-410.
    [3] 从柏林,张儒媛,吴根耀,等.中国滇西变质地质学研究.中国地质科学新探索.北京:石油工业出版社,1998,93-110.
    [4] 邓万明.藏北第四纪火山岩岩石学、岩石化学初步研究.地质学报,1978,(2):148-162.
    [5] 邓万明.西藏阿里北部的新生代火山岩-兼论陆内俯冲作用.岩石学报,1989,(3):1-11.
    [6] 邓万明.中昆仑造山带钾玄质火山岩的地质、地球化学和时代.地质科学,1991,(3):193-206.
    [7] 邓万明.青藏北部新生代钾质火山岩微量元素和Sr,Nd同位素地球化学研究.岩石学报,1993,9(4):379-387.
    [8] 邓万明,郑锡澜,松本征夫.青海可可西里地区新生代火山岩的岩石特征与时代.岩石矿物学杂志,1996,15(4):289-298.
    [9] 邓万明.青藏高原北部新生代板内火山岩.北京:地质出版社,1998,24-107.
    [10] 邓万明,孙宏娟,张玉泉.青海囊谦盆地新生代火山岩的K-Ar年龄.科学通报,1999,44(23):2554-2558.
    [11] 丁林,张进江,周勇,等.青藏高原岩石圈演化的记录:藏北超钾质及钠质火山岩的岩石学与地球化学特征.岩石学报,1999,15(1):408-421.
    [12] 段建中.金沙江-红河富碱侵入岩带岩石-矿物学及岩石化学特征.云南地质,2000,19(3):207-231.
    [13] 费鼎.南海北部区域构造和陆壳向洋壳转化.地球物理学报,1983,26(5):459-467
    [14] 付建明,马昌前,谢才富,张业明,彭松柏.湖南九嶷山复式花岗岩体 SHRIMP锆石定年及其地质意义.大地构造与成矿学,2004,28(4):370-378.
    [15] 何允中.藏东玉龙斑岩铜矿带的遥感地质特征及成矿预测.西藏地质,1992,(1):22-34.
    [16] 洪大卫.福建沿海品洞花岗岩带的岩石学和成因演化.北京科学技术出版社,1987,99-105.
    [17] 洪大卫等.A型花岗岩的构造环境分类及其鉴别标志.中国科学(B),1995,25(4):418-426.
    [18] 候增谦,杨岳清,曲晓明,黄典豪,,吕庆田,余金杰,唐绍华.三江地区义敦岛弧造山演化和成矿系统.地质学报,2004,78(1):109-120.
    [19] 黄智龙,刘丛强.云南老王寨金矿区煌斑岩成因及其与金矿化的关系.北京:地质出版社,1999,62-107.
    [20] 简平,程裕淇,刘敦一.变质锆石成因的岩相学研究.地学前缘,2001,8(3):183-190.
    [21] 李才,范和平,徐峰.青藏高原北部新生代火山岩岩石化学特征及其构造意义.现代地质,1989,26(3):39-56.
    [22] 李献华,周汉文,韦刚健,刘颖,钟孙霖,罗清华,李寄蜗.滇西新生代超钾质煌斑岩的元素和Sr-Nd同位素特征及其对岩石圈地幔组成的制约.地球化学,2002a,31(1):26-34
    [23] 李献华,刘颖,涂湘林,胡光黔,曾文.岩石样品主量与微量元素ICP—AES和ICP—MS准确测定—酸深和碱熔分解样品方法的对比.地球化学,2002b,31(3):289-294
    [24] 林金辉,伊海生,赵兵,李葆华,时志强,黄继钧.藏北祖尔肯乌拉山地区新生代火山岩~(40)Ar-~(39)Ar同位素定年及其意义.矿物岩石,2003,23(3):31-34.
    [25] 林金辉,伊海生,时志强等.藏北祖尔肯乌拉山地区新生代高钾钙碱岩系火山岩同位素地球化学研究.矿物岩石,2004,24(4):59-64.
    [26] 刘怀仁.东非裂谷之观察.地质矿产部成都地质矿产研究所主编中国西部特提斯构造演化及成矿作用.成都:电子科技大学出版社,1991,366-367.
    [27] 刘嘉麒,买买提·依明.西昆仑山第四纪火山的分布与K-Ar年龄.中国科学(B辑),1990,2:180-187.
    [28] 刘粲,胡瑞忠,迟效国,等.藏北新生代两套钾玄质火山岩系列地球化学特征,矿物岩石,2003,23(2):66-71.
    [29] 刘颖,刘海臣,李献华.用ICP-MS准确测定岩石样品中的40余种微量元素.地球化学,1996,25(6):552-558.
    [30] 吕伯西等.全平县孟平.大平糜棱岩化A型花岗岩岩石学特征.云南地质,1989,8(3-4):239-248
    [31] 莫宣学.我国西部造山带火山岩研究中的一些问题.中国地质大学岩石教研室.岩石学论文集.武汉:中国地质大学出版社.1992,47-55.
    [32] 胡瑞忠,毕献武,邵树勋,等.云南马厂箐铜矿氦同位素组成研究.科学通报,1997,42(14):1542-1545.
    [33] 李齐,陈文寄,万景林,等.哀牢山-红河剪切带构造抬升和运动形式转换时间的新证据.中国科学(D辑),2000,30(6):576-583.
    [34] 吕伯西,王增,张能德等.三江地区花岗岩类及其成矿专属性.北京:地质出版社.1993.
    [35] 吕伯西,钱祥贵.滇西三江地区新生代碱性系列岩浆岩构造类型.云南地质,2000,19(3):232-243.
    [36] 卢德源,陈纪平.青藏高原北部沱沱河-格尔木一带地壳深部结构,地质论评,1987,33(2):122-128。
    [37] 骆耀南,俞如龙.龙门山-锦屏山陆内造山带喜马拉雅期构造-岩浆作用主要特征及其动力学模式.陈毓川.喜马拉雅期内生成矿作用研究.北京:地质出版社,2001,88-95.
    [38] 莫宣学.我国西部造山带火山岩研究中的一些问题.中国地质大学岩石教研室.岩石学论文集.武汉:中国地质大学出版社.1992,47-55.
    [39] 莫宣学,路风香,沈上越,等.三江特提斯火山作用与成矿.北京:地质出版社.1993.
    [40] 芮宗瑶,黄崇轲,齐国明,等.中国斑岩铜(钼)矿.北京:地质出版社,1983.
    [41] 青海省地质矿产局.青海省区域地质志:区域地质.第24号,地质出版社,1991,382-386(碱性岩),439-445(火山岩).
    [42] 邱家骧.岩浆岩岩石学.地质出版社,1985,129-134.
    [43] 邱家骧等著.秦巴碱性岩.北京地质出扳社,1993,1-178.
    [44] 芮宗瑶,黄崇轲,齐国明,等.中国斑岩铜(钼)矿.北京:地质出版社 1983.
    [45] 沈敢富,吕伯西.西南三江地区新生代侵入岩的成岩与成矿.北京:地质出版社,2000.
    [46] 沈其韩,宋彪,徐惠芬,耿元生,沈昆.山东沂水太古宙蔡峪和大山岩体SHRIMP锆石年代学.地质论评,2004,50(3):275-284.
    [47] 施泽民等.攀西裂谷带环状碱性杂岩体.中国攀西裂谷文集(1),张云湘主编,北京,地质出版社,1985,175-200.
    [48] 舒小辛.云南马关地区碧玄岩中单辉橄榄岩包体的成因.岩石矿物学杂志,1995,14(1):47-51.
    [49] 宋彪,张玉海,万渝生等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论评,2002,48(增刊):26-30.
    [50] 孙鼐,彭亚鸣主编.火成岩岩石学.北京·地质出版社.1985,171-186
    [51] Sun linchung et al,哀牢山-红河剪切带的板内拉张早于大陆挤压.Geology,1997,25(4):311-314.
    [52] 谭富文,潘桂棠,徐强.羌塘腹地新生代火山岩的地球化学特征与青藏高原隆升.岩石矿物学杂志,2000,19(2):121-130.
    [53] 唐仁鲤,罗怀松.西藏玉龙斑岩铜(钼)矿带地质.地质出版社.1995,1-40.
    [54] 涂光炽.华南两个富碱侵入岩带的初步研究.中国科学院贵阳地球化学研究所年报.贵阳:贵州人民出版社,1982,127-129.
    [55] 涂光炽,张玉泉,赵振华.华南两个富碱浸入岩带的初步研究.见徐克勤、涂光炽主编,花岗岩地质和成矿关系.南京:江苏科学技术出版社.1984,21-37
    [56] 王德滋,彭亚鸣,表朴.福建魁岐花岗岩的岩石学和地球化学特征成因探讨.地球化学,1985,(3):197-205
    [57] 王建,李建平,王江海.滇西大理.剑川地区钾玄质岩浆作用:后碰撞走滑拉伸环境岛弧型岩浆作用的地球化学研究.岩石学报,2003,19(1):61-70.
    [58] 万渝生,罗照华,李莉.3.8Ma:青藏高原年轻碱性玄武岩锆石离子探针U-Pb年龄测定.地球化学,2004,33(5):442-446.
    [59] 万哨凯,夏斌,张玉泉.老君山正长岩SHRIMP定年.大地构造与成矿学.2005,29(4):522-526.
    [60] 魏启荣博士后出站报告.青藏东缘新生代两期高钾岩系中深源包体的岩石学和地球化学研究.以云南马关六合地区为例.2002.
    [61] 吴才来,杨经绥,J.Wooden,J.G.Liou,李海兵,孟繁聪,H.Persing,A.Meibom.柴达木花岗岩锆石SHRIMP定年.科学通报,2001,46(20):1743-1747.
    [62] 吴利仁.若干地区碱性岩研究.北京:科学出版社,1966,1-20
    [63] 魏启荣.三江中段火山岩同位素示踪及地球化学分区与成矿.武汉:中国地质大学.1999.
    [64] 吴根耀.滇西丽江-金平二叠纪玄武岩的对比及其地质意义.岩石学报,1993,9(增刊):63-69.
    [65] 吴根耀.滇西北地区第三纪的逆冲推覆构造.大地构造与成矿学,1994,18(4):331-338.
    [66] 夏斌,林清茶,张玉泉.云南大平糜棱岩化碱性花岗岩岩石地球化学特征及成因讨论.地质学报,2006,80(6):287-293.
    [67] 解广轰,刘丛强,增田彰正等.青藏高原周边地区新生代火山岩的地球化学特征-古老富集地幔存在的证据.中国新生代火山岩年代学与地球化学(刘若新主编).北京:地震出版社,1992,400-427.
    [68] 谢应雯,张玉泉,涂光炽.哀牢山.金沙江富碱侵入岩带地球化学与成矿专属性初步研究.昆明工学院院报,1984,4:1-17.
    [69] 谢应雯,张玉泉.云南十里村透辉石花岗岩特征及成因探讨.地球化学,1988,4:301-309.
    [70] 晏贤富.云南某些断陷盆地的地质特征及物探的应用效果.云南地质,1982,1(1):47-58.
    [71] 杨建民,薛春纪,徐珏,等.滇西北喜马拉雅期富碱斑岩地质特征及其成矿作用.陈毓川.喜马拉雅期内生成矿作用研究.北京:地质出版社,2001,57-68
    [72] 杨振宇,孙知明,马醒华,尹济云,Y.otofuji.红河断裂两侧早第三纪地磁研究及其地质意义.地质学报,2001,75(1) 35-44.
    [73] 于文杰.金沙江结合带中段地质特征.西藏地质,1993,(2):26-37.
    [74] 曾普胜,杨伟光,喻学惠.滇西富碱斑岩带及其与金矿化的关系.地球学报,1999,20(增刊):367-372.
    [75] 张玉泉,谢应雯,涂光炽,等.哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究.岩石学报,1987.3(1):17-28.
    [76] 张玉泉,谢应雯.青藏高原及邻区富碱侵入岩-以苦干子和太和二岩体为例.中国科学(B辑),1994,24(10):1102-1108
    [77] 张玉泉,谢应雯.哀牢山.金沙江富碱侵入岩年代学和Sr、Nd同位素组成.中国科学(D辑),1997,27(4):289-293.
    [78] 张玉泉,谢应雯,梁华英.邱华宁,李献华.藏东玉龙铜矿带含矿斑岩及其成岩系列.地球化学,1998a,27(3):236-243
    [79] 张玉泉,谢应雯,邱华宁等.钾玄岩系列:藏东玉龙铜矿带含矿斑岩Sr、 Nd、Pb同位素组成.地球科学,1998b,33(3):359-366
    [80] 张玉泉,谢应雯,李献华,邱华宁,赵振华,梁华英.青藏高原东部钾玄岩系岩浆岩同位素特征:岩石成因及其构造意义.中国科学(D辑),2000,30(5):493-498.
    [81] 张玉泉,夏斌,梁华英,刘红英,林清茶.云南大平糜棱岩化碱性花岗岩的锆石特征及其地质意义.高校地质学报,2004,10(3):378-384.
    [82] 曾广策,邱家骧.碱性岩的概念及其分类命名综述,地质科技情报,1996,15(1):31-37
    [83] 钟大赉,P.Tapponnier,吴海威,张边生,嵇少丞,钟嘉猷,刘小汉,U.Schaerer,R.Lacassin,P.Leloup.大型走滑断层-碰撞后陆内变形的重要形式.科学通报,1989,526-529.
    [84] 钟大赉,丁林,刘福田,等.造山带岩石层多向层架构造及其对新生代岩浆活动制约-以三江及邻区为例.中国科学(D辑),2000,30(增刊):1-8。
    [85] 钟康惠,刘肇昌,舒良树,李凡友,施央申.澜沧江断裂带的新生代走滑运动学特征.地质论评,2004,50(1):1-8.
    [86] 中国科学院青藏高原综合科学考察队.喀喇昆仑山-昆仑山地区地质演化.科学出版社,2000,209-409.
    [87] 郑祥身,边千韬,郑健康.青海可可西里地区新生代火山岩研究,岩石学报,1996.12(4):530-545.
    [88] 朱炳泉,张玉泉,谢应雯.滇西洱海东第三纪超K质火成岩系的Nd-Sr-Pb同位素特征与西南大陆地幔演化.地球化学,1992,(3):201-211.
    [89] 周伯茀等.攀西裂谷带A型花岗岩.中国攀西裂谷文集(1),张云湘主编,北京,地质出版社,1985,201-226
    [90] 周均若等.漳州I-A型花岗岩.北京科学出版社,1994,108-132
    [91] Amand N, Vidal Ph. Geochronology and gechemistry of the magmatic rocks from the Kunlun-Karakunlun geotraverse. Colloque Kunlun-Kalakorum. 1990, 90 28-30 Juin. 52.
    [92] Anderson JL, Thomas WM. Protenozoic anorogenic two-mica granite: silver plume and ST, Vrain batholiths of Colorado. Geolgy, 1985, 13: 177-180.
    [93] Arnaud N. O, Vidal Ph, Tapponnier Pet al. The high K_2O volcanism of northwestern Tibet: Geochemistry and tectonic implications, Earth and Planetary Science Letters, 1992, 111: 351-367.
    [94] Bailey D. K. Mantale metasomatism-perspective and prospect. Geological Sociey Special Publication, 1987, No 30: 1-13.
    [95] Bonin, B., From orogenic to anorogenic settings: evolution of granitoid suites after a major orogenesis. Geol. J., W. S. pither Spec. Iss., 1990, 25: 261-270.
    [96] Breemen, O. V. &Bowden, P. Sequential age trends for some Nigerian Mesozoic Granites, Nature Phys, Sci. 1973, 242: 9-10.
    [97] Buma, G., Frey, F. a. &Wones, D. R. New England Granites: Trace element evidence regarding their origin and differentiation. Contrib. Mineral. Petrol, 1971, 31: 300-320.
    [98] Chung SL, Lee T L, Lo CH, eta 1. Intraplate extension prior to continental extrusion along the AilaoShan-RedRiver shear zone. Geology, 1997. 25(4): 311-314.
    [99] Chung SL, Lo C H, Lee T L, et al. Diachronous uplift of the Tibet an Plateau starting 40 Myr ago. Nature, 1998. 394: 769-773.
    [100] Clemens, J. D. Holloway, J. R. and White, A. J. R. Origin of an A-type granite: Experimental constraints. American Mineralogist, 1986, 71:317-324.
    [101]Collins WJ, Beams SD, White AJR and Chappell BW. Nature and origin of A. type granites with particular reference to south eastern Australia. Contrib. Mineral Petrol., 1982, 80:189-200
    [102]Composton W, Williams I S, Meyer C. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res, 1984, 89: B525-534.
    [103]Creaser R.A. A-type granites revisited: Assessment of a residual-source model Gdollgy, 1991,19: 163-166.
    [104] Daly, R. A. Origin of the alkaline rocks. Geological society of America bulletin, 1910,21:87-115.
    
    [105]Daly, R .A. Igneous Rocks and Their Origin. McGraw-Hill, New York. 1914.
    [106]Dewey J F, Shackleton R M and Chang Chengfa. The tectonic evolution of the Tibeten plateau. Phil. Trans. R. Soc. Lond, 1988, A327: 379-413.
    [107]Eby GN. The A-Type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 1990, 26:115-134.
    [108]Eby GN. Chemical subdivision of the A-type granitoids: Petrogeneis and tectenie inplicatioss. Geology, 1992, 20:641-644.
    [109]Fitton J G, et al. Alkaline Igneous Rocks. Blackwell Sci. Publication, Oxford, London. 1987.
    [110]Harker A. The natural history of igneous rocks, I. Their geographical and chronological distribution. Sci Prog, 1896, (6):12-33.
    [111]Harvies et al., Geochemical characteristics of collision-zone manokatism, in coward MP and Ries AC.eds, collision tectonic. Geol.Spec.pub, 1986, 19: 362-375.
    [112]Holto, F., Hassnen. M.A. Maximum and minimum water contents of granitic melts generated in the crust: a revaluation and implication. Lithos, 2001,56(1):1-14.
    
    [113]Iddings, J.P., Absarokte-Shoshonite-Banakite Siries. J. geol., 1895, 3:935-959.
    [114] Irvine, T.N., Baragar, R.A. A guide to the chemical classification of the common volcanic rocks, Canadian J. Earth Sci, 1971, 5(8):523-548.
    [115]Joplin, G.A. The shoshonite association: a review. J. geo. Soc. Aust., 1968, 15(2): 275-294.
    [116]King, P.L., White, A.J.R. Chappell, B.W. and alien, CM. Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology. 1997, 38(3): 371-391.
    [117]Kuno, H. High-alumina basalt. Petrol, 1960, 1:121-145.
    [118]Loiselle, M.C., Wones, D.R. Characteristic and origin of anorogenic granites. Geol. Soc.Am. Abstr. Programs. 1979, 11: 468.
    [119]Ludwig K. Isoplot/Ex 2.49. A geochronological toolkit for microsoft Excel. Berkeley Geochronology Center, Special Publication, 2001, No. la.
    [120] Martin RF and Piwinskii AJ. Magmatism and tectonic settings, J. Geophys Res, 1972, 77: 4966-4975
    [121]Menzies, M. Alkaline rocks and their inclusions: a window on the Earth's interior. Geological Society Special Publication, 1987, No 30:15-27.
    [122] Philippe Patriat, Jose Achache. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 1984, 311(18): 615-621.
    [123]Poitrasson F et al. The relationship between petrology and Nd isotopes as evidence for conitrasting anorogenid granite genesis: Example of the conaican province (SE France). Jouirnal of Petrology, 1995, 1251-1274.
    [124]Rhodes, R. C. Structural geometry of subvolcanic ring complexes as related to pre-Cenzoic motions of continental plates. Tectonophysics, 1971, 12: 111-117.
    [125]Shand S.J. Zusamimensetzung und genesis der alkaligesteines sudafrikcas. Mineral Petrol Mitt, 1933, 44:211-216.
    [126]Sorensen H. The alkaline rocks. John Wiley and Sons. London, New York. 1974.
    [127]Sylveste P.J. Post-collision alkaline granites,Journal of Geology 1989, V97, p.261-280
    [128]Tapponnier P, Peltzer G, Le Dain A Y et al. Propogating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology, 1982, 10:611-616
    [129]Tapponnier P, et al. On the mechanics of the collisions between India and Asia. Coward MP, Ries A C. Collision Tectonics, Oxford: Blackwell Scientific Publications, 1986,115-157.
    [130]Tapponnier P, et al. The AilaoShan-RedRiver metamorphic belt: Tertiary left-lateral shear between Indochina and South China .Nature, 1990, 343:431-437.
    [131]Tilley, C.E & Umir, A.J.D., Intermediate members of the oceanic basalt-trachyte association. Geol. For. Stockh. forh., 1964, 85:436-444.
    [132]Turner S, Hawksworth CJ, Lin JQ et al., Timing of Tibetan uplift constrained by analysis volcanic rocks. Nature, 1993, 364:50-53.
    [133]Whalen, J. B., Currie, K.L. and Chappell, B.W. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrologe. 1987,95:407-419.
    [134] Williams I S. Some observations on the use of zircon U-Pb geochronology in the study of granitc rocks. Trans R Soc Edinburgh-Earth Sci, 1992, 83: 447-458.
    [135]Wright, J. B. A simple alkalinity ratio and its application to questions of non-orogenic granite gneiss. Geological Magazine, 1969, 106(4):370-384.
    [136] Wright, J.B., Continental drift magmatic provinces and mantle plumes. Nature, 1973,244:569.
    [137]Wyllie P J, Sekine T. The formation of mantle phlogopite in subduction zone hybridization. Contrib Mineral Petrol, 1982, 79:375-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700