用户名: 密码: 验证码:
蛋白质动态超高压微射流改性研究及机理初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压处理技术被认为是新的食品加工与保藏技术中最有潜力和发展前途的一种物理改性技术。在动态超高压微射流均质的过程中,物料受到强烈剪切、高速撞击、剧烈震荡、压力瞬间释放等动力作用,可能会导致生物大分子结构的变化,尤其是蛋白质。针对国内外用超高压微射流技术对蛋白质进行改性的研究少、功能性质变化研究深度不够的现状,本论文以大豆分离蛋白、花生蛋白、蛋清蛋白为研究对象,研究动态超高压微射流技术对蛋白进行改性后功能性质的变化规律,初步探讨了蛋白质动态超高压微射流技术改性的机理,并对蛋白经过动态超高压微射流改性后的产物进行了安全性评价。本论文为蛋白改性和动态超高压微射流技术的应用提供了一条新途径,为蛋白质资源的综合利用提供一种新方法。本论文的实验和研究结果如下:
     1.蛋白经过动态超高压微射流均质后平均颗粒大小有较大的变化:大豆分离蛋白、花生蛋白、蛋清蛋白经过动态超高压微射流均质后平均颗粒尺寸显著减小。大豆分离蛋白在140MPa达到最低为167.2nm,花生蛋白在140MPa达到最低为281.8nm,蛋清蛋白在160MPa达到最低为229.0nm。
     2.蛋白经过动态超高压微射流均质后功能性基团的变化如下:大豆分离蛋白巯基含量随着压力的升高而升高,在100MPa稍下降后,持续上升至160MPa,花生分离蛋白溶液经过动态超高压微射流处理后,巯基含量随着压力的升高而降低,蛋清蛋白经过动态超高压微射流处理后,巯基含量随着压力的升高而降低,在120MPa又有升高,并且持续上升至160MPa;大豆蛋白、蛋清蛋白疏水基团的含量在100MPa时最高,花生蛋白疏水基团的含量随着处理压力的增大而增大;大豆分离蛋白和蛋清蛋白的紫外吸收都是在80MPa时最高;经过处理后大豆蛋白、蛋清蛋白的DSC曲线波峰均向右偏移。
     3.不同浓度的蛋白经过动态超高压微射流均质后功能性质变化如下:大豆分离蛋白和花生蛋白的变化相同,低浓度蛋白溶解性的提高更为显著,较高浓度(4%、6%、8%)的蛋白经过动态超高压均质后乳化性均降低了,较高浓度的大豆分离蛋白起泡性会优于较低浓度的起泡性,粘度随着大豆分离蛋白浓度的增大而增大;蛋清蛋白的溶解性随着浓度的增大而增大,2%、4%蛋清蛋白经过动态超高压均质后乳化性会增大,6%、8%的蛋清蛋白溶液的乳化性会降低,6%、8%的起泡性会优于4%的起泡性,不同浓度的蛋清蛋白的流变特性不同。
     4.不同温度的蛋白经过动态超高压微射流均质后功能性质变化如下:较低温度有利于大豆分离蛋白溶解性的改善,温度对大豆分离蛋白其他功能性质影响不大;温度对花生蛋白的功能性质影响不大;温度会引起蛋清蛋白流变特性发生变化,对其他的功能性质影响不大。
     5.蛋白经过动态超高压微射流不同均质压力后功能性质变化如下:随着压力的增大,动态超高压微射流处理能使大豆分离蛋白、花生蛋白的溶解性、起泡性、凝胶性、流变性得到改善;随着压力的增大,动态超高压微射流处理对蛋清蛋白的溶解性没有什么影响,而起泡性、凝胶性、流变性得到了改善。
     6.蛋白经过动态超高压微射流不同均质次数后功能性质变化如下:动态超高压微射流均质次数会使大豆分离蛋白溶解性、乳化性和乳化稳定性降低,起泡性略微改善,但是会获得好的起泡稳定性,同时也会获得更好的流变特性;动态超高压均质次数对花生蛋白的溶解度、乳化性和乳化稳定性、起泡性和起泡稳定性影响不大,会获得更好的流变特性;动态超高压微射流均质次数能使蛋清蛋白溶解度增强,乳化性和乳化稳定性降低,会使起泡性略微改善,而蛋清蛋白的流变特性发生了改变,流变特性发生变化。
     7.蛋白经过动态超高压微射流均质后二级结构的变化如下:园二色谱的结果表明,大豆分离蛋白中的7S球蛋白受动态超高压微射流的影响比较大,7S球蛋白的α-螺旋比例在经过普通均质后有了提高,β-折叠比例有所下降。动态超高压微射流对11S球蛋白的结构影响不大;红外光谱的结果表明,N-H伸缩振动峰往低波数迁移,说明动态超高压均质对大豆分离蛋白的氢键影响较大,酰胺基吸收峰往高波数迁移,说明β-折叠的减少,不同的均质压力对蛋白的二级结构影响程度不一样。
     8.动态超高压微射流影响大豆分离蛋白功能性质的机理初探:溶解度的改善可能是由于动态超高压微射流均质使凝聚的球状的大豆分离蛋白逐渐解缔和伸展,蛋白质的水化作用增强;乳化性的影响可能由于动态超高压微射流均质破坏了蛋白质分子内部的疏水相互作用,产生和暴露了更多的疏水性区域,增强了蛋白的表面疏水性,乳化性增强,压力升高到100MPa以上,蛋白质分子的聚集,疏水性的下降,乳化性随之下降;起泡性改善的原因可能是由于动态超高压微射流能使大豆分离蛋白溶解性提高,且使更多的疏水区域暴露了出来;流变性改变的机理可能是由于动态超高压微射流使原来聚集体中存在的弱结合的键断裂了,使蛋白质聚集体解聚,摩擦阻力减小,出现剪切稀化的现象,且流体趋近于牛顿流体;凝胶性的改善可能是由于大豆分离蛋白颗粒的尺寸大大减小,疏水基团的暴露,蛋白质构象的变化,都有利于凝胶网络的形成;成膜性的改善可能是由于动态超高压微射流均质使更多的疏水键打开,蛋白质分子的结合点会增强,相互作用也增强了。
     9.蛋白经过动态超高压微射流均质后产物的安全性评测如下:经过动态超高压微射流均质处理后的大豆分离蛋白、花生蛋白、蛋清蛋白不影响小鼠的正常生长,没有毒副作用。
Dynamic high-pressure processing is considered as one of the most potential and promising physical modification technologies in the latest food processing and preservation development. In the process of dynamic ultra-high pressure micro-fluidization, materials received strong shear, high-speed collision, intensive shake, the instant release of the pressure force and so on, which may lead to the changes in the structures of large molecules, especially in protein. In view of this fact that there are few researches on the application of ultra-high pressure micro-fluidization in the modification of protein, and that the in-depth studies on the functional property changes are still lacking both at home and abroad, this paper focuses on the changes in the functional properties of the soy protein isolate, peanut protein and egg white protein after ultra-high pressure micro-fluidization treatment, preliminary discussing the mechanism of the modification technology of the micro-fluidization in protein and the safety evaluation of the modified products. This paper offers a new approach to the protein modification as well as a new method on the application of dynamic ultra-high pressure micro-fluidization. The experimental results of this paper are summarized showed as follows:
     1. Mean particle size is greatly changed by dynamic ultra-high pressure micro-fluidization: the mean particle size of the soy protein isolate, peanut protein, and egg white protein significantly decreases after the dynamic ultra-high pressure micro-fluidization treatment. The mean particle size of the soy protein isolate reaches the minimum of 167.2nm at 140MPa; the peanut protein reaches the minimum of 281.8nm at 140MPa; while egg white protein reaches the minimum of 229.0nm at 160MPa.
     2. Functional groups are changed by dynamic ultra-high pressure micro-fluidization with the results showed as follows: the -SH content of soy protein isolate increases with the pressure, then decreases at 100MPa, and then rises continuously up to 160MPa; after treatment by dynamic ultra-high pressure micro-fluidization, the -SH content in peanut protein decreases with the pressure; while the -SH content in egg white protein decreases with the pressure at first, then increases at 120MPa and continuously rises up to 160Mpa. The content of surface hydrophobicity group of soy protein isolate and egg white protein reaches the maximum at 100MPa; for peanut protein it increases with the pressure; the UV absorbing intensity of soy protein isolate and egg white protein reach the maximum at 80Mpa, and their DSC's curve peak moves rightward.
     3. The following is the changes of functional properties of the protein in different concentration after dynamic ultra-high pressure micro-fluidization treatment: the changes of soy protein isolate and peanut protein are similar. The solubility of the lower concentration ones increase significantly, the emulsifying properties of the higher concentration (4%,6%,8%) proteins after micro-fluidization by dynamic ultra-high pressure decrease, the foaming capability of soy protein isolate with higher concentration is better than that with lower concentration and the viscosity of soy protein isolate increases with the concentration; the solubility of egg white protein increases with the concentration, the emulsifying properties of 2% and 4% egg white protein increase, while those of 6% and 8% egg white protein decrease, the foaming capability of 6% and 8% egg white protein are better than that of 4% and the flow pattern of different concentration egg white protein are different.
     4. The changes in the functional properties of the protein in different temperatures after treatment are listed as follows: lower temperature (20℃) is helpful to the improvement of the solubility of soy protein isolate, but temperature makes little impact on other functional properties; the temperature effect on peanut protein is small; temperature (20℃,30℃,40℃) causes the changes in the flow pattern of the egg white protein, but leaves little changes in other functional properties.
     5. The effect of pressure on the changes in the functional properties of the protein are indicated as follows: the solubility, foaming capability, gel property and rheological property of soy protein isolate and peanut protein have been improved; the solubility of egg white protein changes little with the pressure but the foaming capability, gel property, and rheological property have been improved.
     6. The changes in the functional properties of the protein after treatment by different micro-fluidization passes are showed as follows: the solubility, emulsifying property, and emulsifying stability of soy protein isolate decrease, while there is a little improvement in its foaming capability, but it gains a better foaming stability, as the number of pass increases. Meantime, it gains a better rheological property. There are little changes in the solubility, emulsifying property and emulsifying stability, foaming capability and foaming stability of the peanut protein, but it gains a better rheological property. As to egg white protein, the solubility increases, emulsifying property and emulsifying stability decreases, the foaming capability improves a little but its rheological property is changed and its flow pattern is also changed (how).
     7. The changes in the secondary structure of protein by micro-fluidization are shown as follows: The results of Circular Dichroism (CD) spectroscopy shows that dynamic ultra-high pressure micro-fluidization has a great influence on 7S globulin of soy protein isolate, theα-helix ratio of 7S globulin increases by normal homogenization, whileβ-sheet ratio decreases. There are no significant changes in the structure of 11S globulin. The results of infrared reflectance spectroscopy show that the peak of N-H stretching vibration moves to the low wave number, which confirms that dynamic ultra-high pressure micro-fluidization causes changes in the hydrogen bond of soy protein isolate; and the absorption peak of amide group shows thatβ-sheet decreases, indicating different micro-fluidization pressures make different impacts on the secondary structure of protein.
     8. The following summarizes the studies on the mechanism of the dynamic ultra-high pressure micro-fluidization treatment on the functional properties of soy protein isolate: the improvement of solubility is made possibly because the dynamic ultra-high pressure micro-fluidization makes globate soy protein isolate disaggregate and extend gradually, and makes the hydration of protein increase. The infuence on emulsifying property may be because homogenization destroys the hydrophobic interaction inside protein, producing and exposing more hydrophobic regions, increasing the contents of the super-hydrophobic characteristics. Thus the emulsifying property increases. However, when the pressure rises above 100MPa, protein molecular aggregates and hydrophobic characteristic decreases, which causes the decrease of emulsifying property. The improvement in foaming capability is partly because the solubility of soy protein isolate increases and discloses more hydrophobic region. The rheological property changes possibly because the weak binding bond is ruptured by dynamic ultra-high pressure micro-fluidization which aggregates originally, and because the protein aggregation is disassociated, friction resistance decreases, shear thinning phenomena appears and the fluid behaves closer to the Newtonian fluid. The improvement of gel property might result from the significant decrease of mean particle size of soy protein isolate, hydrophobic groups expose and protein conformation changes, which help to form the gel network. The improvement of filming ability is partly because homogenization makes more hydrophobic bond unfolded, the bonding sites of the protein molecular increases and interaction increases.
     9. The preliminary safety evaluation results of the proteins after homogenization by dynamic ultra-high pressure micro- fluidization are showed as follows: soy protein isolate, peanut protein, and egg white protein have little influence on the growth of mouse and no adverse effects were found.
引文
[1] 莫文敏,曾庆孝.蛋白质改性研究进展[J].食品科学,2000,21(06):6-10.
    [2] J P.lens,W J. Mulder, RKolster.Modification of wheat gluten for nonfood applications[J].Cereal foods world, 1999,44(1):5-9.
    [3] 孔祥珍,周惠明.食品蛋白质改性研究[J].粮食与油脂,2004,25(02):22-24.
    [4] 孙鹏.大豆蛋白改性技术的研究[J].食品研究与开发,2005,26(05):115-117.
    [5] 李汴生,曾庆孝,彭志英.高压处理后大豆分离蛋白溶解性和流变性的变化及其机理[J].高压物理学报,1999,13,(01):22-28.
    [6] 杜军,张绍英,戴元忠等.动力作用作为冷杀菌方法的可行性初探[J].中国乳品工业,2002,30(06):25-27.
    [7] 周瑞宝,周兵.大豆7S和11S球蛋白的结构和功能性质.中国粮油学报,1998,13(06):39-42.
    [8] Utsumi S ,Matsumura Y,Mori T. Structure2function relationships of soy proteins[A]. Damodaran S, Paraf A. Food Proteins and Their Application[M] . New York: Marcel Dekker, 1997. 257 - 291.
    [9] Yamauchi F, Sato M,Sato W,et al. Isolation and identification of a new type ofβ- conglycinin in soybean globulins[J]. Agric.Biol. Chem. ,1981,45:2863 - 2868.
    [10] Maruyama N ,Katsube T, Wada Y,et al. The roles of the N linked glycans and extension regions of soybean β—conglycinin in folding, assembly and structural features [J]. Eur. J .Biochem., 1998,258:854 - 862.
    [11] Maruyama N ,Satoh R ,Wada Y,et al. Structure2physicochemical function relationships of soybean β—2conglycinin constituent subunits[J]. Agric. Food Chem.,1999,47:5278-5284.
    [12] Kim C2S ,Kamiya S ,Sato T,et al. Improvement of nutritional value and functional properties of soybean glycinin by protein engineering[J] . Protein Eng. ,1990 ,(3):725-731.
    [13] Utsumi S ,Gidamis A B ,Kanamori J ,et al. Effects of deletion of disulfide bonds by protein engineering on the conformation and functional properties of soybean proglycinin[J]. Agric. Food Chem. ,1993,41:687 - 691.
    [14] 黄友如,裘爱泳,华欲飞.大豆蛋白结构与功能的关系[J].中国油脂,2004,29(11):24-28.
    [15] 曾卫国.花生蛋白溶解性和乳化性的研究[J].农产品加工学刊,2005,1;16-18
    [16] P. Vincent Monteiro and V. Prakash. Effect of Proteases on Arachin, Conarachin I, andConarachin Il from Peanut (Arachis hypogaea L.)[J], Department of Protein Technology, Central Food Technological Research Institute, Mysore 570 013, India, 1994,42;268-273
    [17] 胡晓军,姜延程.花生分离蛋白质基础研究[J].郑州粮食学院学报,1998,19;13-18
    [18] 袁道强,梁丽琴,王振锋等.改性植物蛋白的研究及应用[J].食品研究与开发,2005,26(6):13-15
    [19] K. Govindaraju, H. Srinivas. Studies on the effects of enzymatic hydrolysis on functional and physico-chemical properties of arachin[J], Department of Protein Chemistry & Technology, Central Food Technological Research Institute, Mysore 570 020, Karnataka, India,2004
    [20] 周雪松.花生蛋白改性研究[J].粮食加工,2005,3;42-45.
    [21] 王蕾.花生种子伴花生球蛋白160.5kD多肽的cDNA克隆.硕士学位论文,2001;14-15.
    [22] 杨晓泉,张水华,黎茵等.花生2S蛋白的提取分离及部分性质研究[J].华南理工大学学报,1998,26(4);1-5
    [23] Iesel Van der Plancken,Ann Van Loey and Marc E .Hendrickx. Foaming proterties of egg white protein affected by heat or high pressure treatment [J]. J.Food.Eng.2006,
    [24] POWRIE, W.D.; NAKAI, S. Characteristics of edible and fluids of animal origin: egg. In: Fennema, O. Food chemistry. New York: Marcel Dekker, 1985. p.829-855.
    [25] Powrie, W. D., & Nakai, S. (1986). The chemistry of eggs and egg products. In W. J. Stadelman, & W. J. Cotterill (Eds.), Egg science and technology (pp. 97- 139). AⅥ Publishing.
    [26] 田波,迟玉杰等.蛋清蛋白质酶改性条件的研究.食品与发酵工业,2002,29(2):30-33
    [27] Yoshinori Mine. Recent advances in the understanding of egg white protein functionality[J]. Trend in Food Sci& Tech.1995,225-232
    [28] Kato, A. and Takagi, Y. (1986) J. Agric. Food Chem 36,1156-1159
    [29] Cunningham, F.E. and Lineweaver, H. (1965) Food Technol.19,1442-1447
    [30] OSUGA, D.T.; FEENEY, R.E. Eggs proteins. In: WHITAKER, J.R.;TANNENBAUM, S.R. (ED.) Food proteins. 2.ed. Westport: Aⅵ Publishing, 1977. p.209-266.
    [31] ZABIK, M. Eggs and products. In: BOWERS J. Food theory and applications. 2.ed. New York: Macmillan Publishing Co., 1992. p.359-424.
    [32] Ana Cláudia Carraro Alleoni Albumen Protein and functional properties of gelation and foaming[J], sci.Agri. 3(63),2006:291-298
    [33] Longsworth, LG., Cannan, R.K. and Maclnnes, D.A. (1940) J . Am.Chem. Soc. 62, 2580-2590
    [34] 黄友如,华欲飞,裘爱泳.大豆分离蛋白功能性质及其影响因素[J].粮食与油脂,2003(5):12-15.
    [35] Garcra M C Composition and characterization of soybean protein and related products[J]. Critical reviews in food science and nutrition,1997,37(4):361-391.
    [36] Arrese E L et al. Electrophoretic, Solution, and functional properties of commercial soy protein isolate[J]. J. Agric food chem.1991,39(6):1029-1032.
    [37] Petrucclli S.Anon M.C. Relationship between the Method of obtention and the structure and functional properties of soy protein isolate.2. Surface properties[J]. J Agne, Food Chem, 1994,42(10):2170-2176.
    [38] Kinsella J.E. Functional properties of soy proteins[J]. JAOCS,1979,56(3):242-258.
    [39] 杨晓泉,陈中,赵谋民.花生蛋白的分离及部分性质研究[J].中国粮油学报,2001,16(5):25-28
    [40] 张维农,刘大川,胡小泓.花生蛋白产品功能特性的研究[J].中国油脂,2002,27(5);60-65
    [41] 董贝森.花生蛋白粉的制取及在食品工业中的应用[J].中国油料作物学报,1998,20(3):85-89
    [42] Navin Kumar D. Kella. Heat-induced reversible gelation of arachin: kinetics, thermodynamics and protein species involved in the process [J], Protein Technological Discipline, Central Food Technology Research Institute, Mysore, India, 23 January 2003.
    [43] 刘大川,张维农,胡小泓.花生蛋白制备工艺和功能特性的研究[J].武汉工业学报,2001,4:1-4
    [44] 郭兴凤,张艳红,陆惠等.大豆分离蛋白凝胶制备和凝胶质构特性研究[J].中国粮油学报,2005,20(6);72-75
    [45] Johnson, T.M. and 7_.abik, M.E. (1981)]. Food So/. 46,1231-1236
    [46] Edwin E. Garcia Rojas, Jane S. dos Reis Coimbra,Luis A. Minim. Hydrophobic interaction adsorption of hen egg white proteins alumin, conalbumin, and lysozyme [J]. Journal of Chromatography B, 2006-10-9
    [47] Yoshinori Mine . Effect of pH during the dry heating on the gelling properties of egg white proteins [J]. Food Research International,29(2),1996:155-161
    [48] Painter, P.C. and Koenig, J.- (1976) Biopolymers 15, 2155-2166
    [49] 王璋,许时婴,汤坚.食品化学[M].北京:中国轻工业出版社,1997.
    [50] 李川,李娅娜,刘虎成等.大豆蛋白改性[J].食品工业科技,2000,21(03):75-76.
    [51] 史新惠,王兰.植物蛋白的改性[J].郑州工程学院学报,1996,(12):60-65.
    [52] 赵光明,蔡淑霞等.改善大豆分离蛋白功能性质的方法[J].食品科技,200l(5):21-22.
    [53] Boatright W L, Hettiarachchy N S. Spray2Dried Soy Protein Isolate Solubility, Gelling Characteristics, and ExtractableProtein as Affected by Antioxidants [J].J. Food Sci., 1995,60 (4) :806 - 809.
    [54] Boatright WL ,Hettiarachchy N S. Soy Protein Isolate Solu2bility and Surface Hydrophobicity as Affected by Antioxidants[J] . Food Sci.,1995,60(4) :798 - 800.
    [55] Petruccelli S, Anon M C. Partial Reduction of Soy ProteinIsolate Disulfide Bonds[J] . J. Agric. Food Chem., 1995,43(8) :2001 - 2006.
    [56] Chiang W D. Functional Properties of Soy Protein Hydrolysate Produced from a Continuous Membrane ReactorSystem[J] . Food Chem. ,1999,65:189 - 194.
    [57] Staswick D E ,Nielsen N C. Characterization of a Soybean Cultivar Lacking Certain Glycinin Subunits [J] . Archives of Biochemistry andBiophysics ,1983,223(1) :1 - 8.
    [58] Davies C S. Flavor Improvement of Soybean Preparations byGenetic Removal of Lipoxygenase22 [J] . J. Am. Oil Chem.Soc. ,1987,64(10) :1428 - 1433.
    [59] Mazur B . Gene Discovery and Product Development for GrainQuality Traits[J] . Science ,1999,285(5426) :372 - 375.
    [60] 江志炜,沈蓓英,潘秋琴.蛋白质加工技术[M].化学工业出版社,2002
    [61] 潘秋琴,沈蓓英,程霜.花生蛋白质的磷酸化改性[J].1997,22(1);25-27
    [62] C. W. Cater and W. E. F. Naismith . Further studies on the denaturation of arachin with urea and guanidinium chloride [J], the Imperial Chemical Industries Limited, Fibres Division, Dumfries, Scotland, 2004
    [63] Navin Kumar D. Kella . Effect of amides and ureas on the reversible gelation ofarachin[J], Protein Technology Discipline, Central Food Technological Research Institute, Mysore, Karnataka 570013, India,2003
    [64] 刘志强,刘擘,曾云龙.酶法有限水解对花生蛋白功能特性的影响[J].食品科学,2004,25(1):69-72
    [65] Hesham M.Badr . Effect of gamma radiation and cold storage on chemical and organoleptic properties and microbiological status of liquid egg white and yolk[J]. Food Chemistry. 97(2006): 285-293
    [66] Kato, A., Ibrahim, H.R., Watanabe, H., Honma, K. and Kobayashi, K.(1989)J. Ayric. Food Chem. 37, 433-437
    [67] Kato, A., Ibrahim, H.R., Watanabe, H., Honma, K. and Kobayashi, K.(1990).J. Agric. Food Chem. 38, 32-37
    [68] Hayashi, R., Kawamura, Y., Nakasa, T. and Okinaka, S. (1989)Agric.Biol. Chem. 53, 2935-2939
    [69] Kato, A., Minaki, K. and Kobayashi, K. (1993) J. Agric. Food Chem.41,540-543
    [70] Mine, Y., Chiba, K. and T~b, M. (1994) in Food Hydmcof/o/ds:Structure, Properties and Fuectians (Nishinafi, K. and Doi, E., eds),pp. 415-420, Plenum Press
    [71] 徐雅琴,杨严俊.美拉德反应提高鸡蛋白粉凝胶性质的研究.食品工业科技,2005,26(10):103-109
    [72] C.Y.Ma, L.M.Pdste. Effects of Chemical Modifications on the Physicochemical and Cake-Baking Properties of Egg White [J]. Food Research Institute Agriculture Canada, 1986
    [73] 田波,迟玉杰等.蛋清蛋白质水解物的精制[J].食品科学,2003,Vol.24NO.1
    [74] 杨诗斌,徐凯,张志森.高剪切及高压均质机理研究及其在食品工业中的应用[J].粮油加工与食品机械,2002(04):32-35.
    [75] M.Iordache, P.Jelen, High pressure microfluidization treatment of heat denatured whey proteins for improved functionality[J],Innovative Food Science and Emerging Technologies ,2003(4):367-376
    [76] 刘成梅,刘伟,涂宗财等.微射流均质机流体动力学行为分析[J].食品科学,2004(4):58~62
    [77] 张志森,唐书泽,汪勇.微射流高压均质过程动量及流场结构分析[J].包装与食品机械,2005,23(1):5—7。
    [78] 涂宗财,陈剑兵.带肉胡萝卜汁的流变特性研究[J].食品科学,2006,27(3):52-55..
    [79] 涂宗财,陈剑兵.带肉芹菜汁的流变特性研究[J].食品工业科技,2006(2),102—10
    [80] 刘成梅,刘伟等.Microflidizer对膳食纤维溶液物理性质的影响[J].食品科学,2004(2):72~75
    [81] 刘成梅,刘伟等.Microflidizer对膳食纤维的微粒粒度分布的影响[J].食品科学,2004 (1):52~55
    [82] 涂宗财,任维等.超高压技术对大米淀粉物性影响初探[J].食品工业科技,2006,27(5):103-105.
    [83] Michael H. Tunick,Diane L. Van Hekken,Peter H. Cooke,Effect of high pressure microfuidization on microstructure of mozzarella cheese[J]. Lebensm-Wiss.u-Technol, 2000(33), 538-544
    [84] N.Lagoueyte,P. Paquin. Effects of microfluidization on the functional properties of xanthan gum[J],Food Hydrocolloids 1998 (12):365-371
    [85] 涂宗财,汪菁琴,阮榕生等.超高压均质对大豆分离蛋白功能特性的影响[J].食品工业科技,2006,27(1):66-67.
    [86] 涂宗财,汪菁琴,阮榕生等.动态超高压微射流均质对大豆分离蛋白起泡性、凝胶性的影响[J].2006,27(10):101-103
    [87] 张坤生,李阳阳.食品蛋白质的磷酸化及功能性研究[J].食品研究与开发,2005,26(06):95-98
    [88] 郭永,张春红.大豆蛋白改性的研究现状及发展趋势[J].粮油加工与食品机械,2003(07):46-50
    [89] Ellman, G. L. (1959). Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics, 82, 70.
    [90] Takagi, S., Akashi, M., & Yasumatsu, K. (1979). Determination of hydrostatic region in soybean globulin. Nippon Shokuhin Kogyo Gakkaishi, 26, 133-138.
    [91] Hongkang Zhang, Lite Li, Eizo Tatsumi,et.al. Influence of high pressure on conformational changes of soybean glycine[J]. Innovation food science and Emerging Techologies 4 (2003):269-275.
    [92] Beveridge T, Toma S J, Nakai S. Determination of-SH and S-S groupsin some food proteins using Ellman's reagent[J]. Journal of Food Science, 1974, 39(1): 49-51.
    [93] 李迎秋,陈正行.高压脉冲电场对大豆分离蛋白疏水性和巯基含量的影响[J].食品科学,2006,27(05):40-42.
    [94] Alizadeh-Pasdar N, Li-chan, E C Y. Comparison of protein surface hydrophobicity measured at various pH values using three different fluorescent probes [J]. Journal of Agriculturaland Food Chemistry, 2000,48:328-334.
    [95] Yamagishi T,Yamauchi F,Shibasaki K. Isolation and Partial Characterization of Heat-denatured Products of Soybean 11S Globulin and Their Analysis by Electrophoresis[J]. J Agric Biol Chem,1980,44:1575.
    [96] W agnerJ .R , SorgentiniD .A ., A nonM .C .T hermala nde lectrophoreticb ehavior, hydrophobicity, and some functional properties of acid-treated soy isolate. J. Agric.Food Chem 1996,44(7):1881-1889
    [97] Motina E, Papadopoulou A, Ledward D A. Emulsifying properties of high pressure treated soy protein isolate and 7S and 11S globulins[J]. Food Hydrocolloids,2001,15:263-269.
    [98] 李明姝,姚开,贾冬英等.碱提酸沉法制取花生分离蛋白的优化条件[J].中国油 脂,2004,29(11):21-23
    [99] 上官新晨,陈锦屏等.籽粒苋蛋白质功能特性的研究[J].中国粮油学报,2003,2(1):55—57
    [100] 王放,王显伦.食品营养保健原理及技术[M].北京:中国轻工业出版社,1997,1
    [101] Coffmann, C. W. , & Garcia, V. V. Functional properties and amino acid content of a protein isolate from mung bean flour. Journal of Food Technology, (UK), 12(1977). , 473.
    [102] K. O. Adebowale, O. S. Lawal. Foaming, gelation and electrophoretic charteristics of mucuna bean (Mucuna pruriens) protein concentrates, Food Chemistry 83 (2003)237-246.
    [103] 周素梅.蛋白质在焙烤制品中功能性作用[J].粮食与油脂,1999,1,25-26
    [104] Utsumi S, Kinsella J E. Structure-function relationships in food proteins: subunit interactions in heat-indueed gelation of 7S, 1IS, and soy isolate proteins[J] , J. Agric. Food Chem. , 1985, 33(2): 297--303.
    [105] 黄友如,华欲飞,裘爱泳.醇洗豆粕对大豆分离蛋白功能性质的影响(Ⅰ)-凝胶性能[J].中国油脂,2003,28(10):54-57.
    [106] 邓杨悟,田少君.大豆分离蛋白的成膜性研究[J].郑州工程学院学报,2004,25(02):17-21
    [107] 朱建华,杨晓泉.超声物理改性对SPI功能特性的影响[J].中国油脂,2006,31(1):42-44
    [108] Cheftel, J. C. Balny, R. Hayashi, K. Heremans, & P. Masson. Effects of high hydrostatic pressure on food constituents: an overview[J]. , High pressure and biotechnology (pp. 211-218), (1992)vol. 224. Montrouge: Libbey Eurotext Ltd.
    [109] Dickinson, E. J. Wilson, Protein adsorption at liquid interfaces and therelationship to foam stability[J]. Foams: physics, chemistry and structure (pp. 39-53). (1989) London: Springer.
    [110] O.R.FeImema主编.王璋译.食品化学.第二版.北京:中国轻工出版社,1991.230—233.
    [111] wolfw J. Soybean as a food source[J]. CRC CriticalRefiews in Food Technology, 1971(4): 81--158.
    [112] 金安儿,张月萍,郭紊娟.高压下大豆蛋白凝胶化反应之探讨[J].中国农业化学会志.1994.32(3):309-321.
    [113] Doi, E. , Kitabatake, N. Structure of glycinin and ovalbumin gels. Food Hydrocolloids 3(1989), 327-337.
    [114] 冯治平,刘清斌.食品技术可食性花生分离蛋白膜的保藏性能研究.2004
    [115] 陈复生主编.食品超高压加工技术[M].化学工业出版社,2005
    [116] Wolf W J. Soybean protein: their functional, chemical and physical properties[J]. Journal of Agricultural and Food Chemistry, 1970, 45: 656-660
    [117] Esel Van der P lancken, Ann Van Loey, Marc E. Hendrickx. Foaming properties of egg white affected by heat or high pressure treatment. Journal of Food Engineering 78(2007)1410-1426
    [118] 管斌,林洪,王广策等.食品蛋白质化学[M].化学工业出版社,2005年5月
    [119] 林克椿.生物技术一波谱技术及其在生物学中的应用[J].北京,科学出版社,1989:10-132
    [120] 沈星灿,梁宏,何锡文等.园二色光谱分析蛋白质构象的方法及研究进展[J].分析化学,2004,32(03):388-394.
    [121] 谢孟峡,刘媛.红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定[M].高等学校化学学报,2003,24(02):226-231.
    [122] 蔡国友,侯玉霞,丁晓岚等.应用圆二色光谱研究交变应力对烟草细胞膜蛋白结构的影响[J].光子学报,2000,29(4),289—316
    [123] 韩振为,钟成,王昌秀.圆二色性测定蛋白质在超细粒子上吸附的构象变化[J].分析测试学报,2004,23(2),27-30
    [124] Narasimha Sreerama, Robert W. Woody, Poly(Pro) Ⅱ Helices in Globular Proteins: Identification and Circular Dichroic Analysis, Biochemistry 1994, 33, 10022-10025
    [125] Yhanh V H, Okubo K, Shibasaki K. Major proteins of soybean seeds: A straight-forward fractionation and their characterization. J Agric Food Chem, 1976, 24, 1117-1121.
    [126] 黄惠华,梁汉华,郭乾初.超声波对大豆胰蛋白酶抑制剂活性及二级结构的影响[J].食品科学,2004,25(03):29-33.
    [127] 阎隆飞,孙之荣.蛋白质分子结构[M].北京:清华大学出版社,1999.177—181.
    [128] V Schmidt, C Giacomelli, V Soldi. Thermal stability of films formed bysoy protein isolateesodium dodecyl sulfate[J]. Polymer Degradation and Stability, 2005, 87: 25-31.
    [129] Preeti Lodha, Anil N. Netravali. Thermal and mechanical properties ofenvironment-friendly 'green' plastics from stearic acid modified-soy proteinisolate[J]. IndustrialCropsandProducts, 2005, 21: 49-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700