用户名: 密码: 验证码:
参数化的超声回波模型及其参数估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在无损检测中,通过换能器发射超声脉冲照射目标,并接收目标的反向散射回波来完成对目标的探测。通过对获得的目标回波进行分析,确定反射目标的物理特性如几何形状、尺寸以及传输路径上的各种信息,因此精确估计回波信号的参数至关重要。然而,在实际中,由于材料结构的复杂性和噪声对目标回波信号的影响,所接收的回波信号总会发生一定的变化,而且,随着超声射入目标的深度增加,回波衰减加重。另外,超声回波的多层材料检测技术,主要是应用层与层之间的时延来估计层的厚度,但随着层厚度减小,不同层之间的反射回波会发生重叠,造成时间测量困难和误差。现存的很多算法在低信噪比时估计精度较差,计算量较大,并且在低信噪比时性能与克拉美罗(CRLB)界仍存在一定的距离,尤其是对重叠的多回波信号的参数估计,误差较大。因而在中低信噪比时,性能逼近CRLB界且计算量小的超声回波信号参数估计算法,尤其是重叠的多回波信号的参数估计是研究的重点和难点。
     本文研究的算法旨在提高算法的抗噪声特性和估计精度,尤其是对重叠的多回波信号的估计精度,使之在低信噪比情况下性能贴近CRLB界,并取得以下一些创新性成果:
     1)提出了一种基于包络的超声回波信号的参数估计算法,并详细推导了加性高斯白噪声对算法性能的影响,得到了关于高斯信号的CRLB界的理论表达式。由于高斯信号的包络包含了无损检测中重要的因素——传播时间(TOF),因此可以只是通过包络来估计TOF,这不仅提高精度,还可以降低计算量。为此,文中首先通过希尔伯特变换来抽取回波信号的包络,研究发现噪声对包络的提取影响很大,因此引入小波去噪的方法,提高提取包络的精度,最后用改进的高斯牛顿法求解关于信号包络参数的最小二乘估计问题以达到估计TOF的目的。在对多回波信号的参数估计中,采用了空间交替广义期望最大(SAGE)算法,以提高运算速度。文中深入讨论了算法对噪声的鲁棒性。与经典算法相比,本文所提的算法估计精度高,并且运算量低,也适用于信噪比低的情况。算法的弊端是当两个回波重叠很严重时,无法有效估计两个回波的TOF。
     2)根据Gabor变换时频分析的特点,提出了Gabor变换域上超声回波信号参数估计方法。通过建立回波信号与Gabor变换分析窗函数相似度(即距离)模型,将模型相似度最小化问题转化为求解回波信号Gabor变换系数模的最大值来估计回波信号的传播时间(TOF)和中心频率(CF)。在估计超声回波信号的参数时,首先通过网格搜索方法粗略估计TOF和CF,然后用拟牛顿法迭代搜索得到精确的TOF和CF估计值,最后通过Gabor变换函数表达式推导出与TOF和CF相关的其他估计量,进而估计剩余参数。在估计多回波信号的参数时,最强的信号分量的参数先估计出来,接着估计次强的信号分量的参数,最后估计最弱的信号分量的参数。通过理论分析和仿真实验验证了本文所提算法的性能逼近CRLB界,且优于互相关算法和MUSIC算法。
     3)基于分数阶傅立叶变换表达信号具有良好的时频聚集性,提出了一种基于分数阶傅立叶变换的超声回波信号参数估计算法。将重叠的多回波高斯信号的各个分量在分数域平面(α u)上的能量谱投影在分数域轴u后,通过最小化输出信号与参考信号之间的均方误差来确定最优变换阶α用于有效分解重叠的多回波高斯信号,最后利用互相关法估计各个分量的TOF。另外,详细讨论了分数阶域上的加窗问题。通过仿真实验验证了所提出的算法在分解多回波超声信号的有效性,以及在估计各个分量的TOF的性能优于经典的互相关法。
In nondestructive evaluation (NDE) testing, target can be detected by the transducertransmitting ultrasonic pulse and target backscattering echo. By inspecting the backscatteredechoes, the patterns of ultrasonic backscattered echoes represent valuable informationpertaining to the geometric shape, size, and orientation of the reflectors as well as themicrostructure of the propagation path. Accurate estimation of the ultrasonic echo pattern isessential. In practice, however, because of the complexity of the material structure and noiseon the influence of the echo signal, the received echo signal will be corrupted. Furthermore,the echo attenuation becomes more serious as the depth of the target increases. Multilayermaterials detection technology by ultrasonic echo aims at estimating the thickness of the layerby time delay. However, when the layer thickness is reduced, echoes of different layers willoverlap, and it will result in difficulties and errors for time measurement. Furthermore, theexisting methods still have performance gap compared with the CRLB when SNR is low.Especially for superimposed echoes, the error is larger. Thus, method for estimatingparameters of ultrasonic echoes which approach the CRLB when SNR is low are the keypoint in the study of parameter estimation.
     In this study, algorithm of research on parameter estimation aims to improve the anti noisecharacteristic and the estimation precision, especially for superimposed echoes. The followinginnovative results are obtained.
     1) A novel method for estimating parameters of ultrasonic echoes based on envelope isproposed. We also deduce the effects of White Gaussian Noise (WGN) on the performanceand CRLB of Gaussian signal. By considering only the envelope of the ultrasonic signalswhich contains Time-Of-Flight (TOF), the number of parameters can be reduced, thecomputational burden can be reduced and the estimation accuracy can be improved. Firstly,the Hilbert transform (HT) is used in ultrasonic signal processing in order to extract theenvelope of the echo and to reduce the computational burden. Then, the wavelet denoisingtechnique is applied to the extracted noisy envelope to improve the estimation accuracy.Finally, the echo parameters are estimated by using a Modified Gauss Newton (MGN) basednonlinear Least Squares (LS) estimation method. And, the Space Alternating GeneralizedExpectation-Maximization (SAGE) algorithm is adopted to estimate the parameters ofM-superimposed echoes. Compared with the other exsiting methods, the proposed method ismore efficient and is fit for the cases of low SNRs. The drawback of the proposed method isthat TOFs of two overlaping echoes can not be effectively estimated.
     2) a novel method for parameter estimation based on the Gabor transform (GT) isproposed according to the characteristics of time-frequency analysis in Gabor transform. Thesimilarity (i.e. distance) for echo signal and the Gabor transform window function is modeled.Time of Flight (TOF) and Center Frequency (CF) of echo signal are estimated by translatingmodel for solving the minimum into solving the maximum of Gabor transform coefficientmodulus. Firstly, TOF and CF are estimated by grid search method. Then, Quasi-Newtonmethod is employed to improve the estimation accuracy and reduce computational complexity.Gabor transform function of the signal has an analytic expression which contributes to deriveother estimators relating to TOF and CF such as bandwidth factor, phase and amplitude. Theparameters of multi-component echo signal are estimated by estimating the parameters ofeach component successively. The Monte Carlo simulation and experimental results show thatthe proposed method outperforms the existing cross-correlation algorithm and MUSICalgorithm and approaches the CRLB.
     3) The fractional Fourier transform (FRFT) is an effective technique to display thetime-frequency information of signals. A method for estimating parameters of ultrasonicechoes based on FRFT is proposed. Fractional energy spectrum of each componentoverlapping ultrasonic Gaussian echo signals on parameter plane (α u)is projected ontothe fractional domain u. In order to separate overlapping ultrasonic echo signals, the optimaltransform order is obtained by minimizing the mean square error (MSE) between the outputand the reference signal. TOF of each component is estimated by cross-correlation algorithm.Furthermore, windowing in FRFT domain is discussed. Numerical simulation results showthat the proposed method in separating signals overlapping in time and estimating TOF ofeach component outperforms the cross-correlation algorithm.
引文
[1]国家《中长期铁路网规划》.2008
    [2]李家伟,陈积愚.无损检测手册[M].北京,机械工业出版社.2002
    [3]刘贵民.无损检测技术[M].北京,国防工业出版社.2006
    [4]史亦韦.超声检测[M].北京,机械工业出版社.2005
    [5]尚志远.检测声学原理及应用[M].西安,西北大学出版社.1996
    [6]美国无损检测学会.美国无损检测手册(译)[M].北京,世界图书出版公司.1996
    [7] Shinnosuke Hirata, Minoru Kuribayashi Kurosawa. Ultrasonic distance and velocitymeasurement using a pair of LPM signals for cross-correlation method: Improvement ofDoppler-shift compensation and examination of Doppler velocity estimation[J].Ultrasonics,2012,52(7):873-879.
    [8] Michael Lenz, Martin Bock, Elfgard Kühnicke, Josef Pal, Andreas Crame. Measurementof the sound velocity in fluids using the echo signals from scattering particles[J].Ultrasonics,2012,52(1):117-124.
    [9] Robert Weser, Sebastian W ckel, Benno Wessely, Ulrike Hempel. Particle characterisationin highly concentrated dispersions using ultrasonic backscattering method [J].Ultrasonics,2013,53(3):706-716.
    [10] Patrik Broberg, Anna Runnemalm, Mikael Sj dahl. Improved corner detection byultrasonic testing using phase analysis [J].Ultrasonics,2013,53(2):630-634.
    [11] B. Shakibi, F. Honarvar, M.D.C. Moles, J. Caldwell, Anthony N. Sinclair. Resolutionenhancement of ultrasonic defect signals for crack sizing [J]. NDT&E International,2012,52:37-50.
    [12] Mohammad R. Hoseini, Ming J. Zuo, Xiaodong Wang. Denoising ultrasonic pulse-echosignal using two-dimensional analytic wavelet thresholding[J]. Measurement,2012,45(3):255-267.
    [13] Mingquan Wang, Deshui Han, Shilin Li. The application and research of high-frequencyultrasonic reflection technique used in the measurement of small diameter’s tube cavitysize [J]. Measurement,2013,46(1):521-526.
    [14] Jianzhong Guo, Yunhong Xin.Reconstructing outside pass-band data to improve timeresolution in ultrasonic detection [J]. NDT&E International,2012,50:50-57.
    [15] Ki-Bok Kim, David K. Hsu, Daniel J. Barnard. Estimation of porosity content ofcomposite materials by applying discrete wavelet transform to ultrasonic backscatteredsignal [J].NDT&E International,2013,56:10-16.
    [16] Luchies, Adam C.; Ghoshal, Goutam; Brien, William D O, Jr.; Oelze, Michael L.Quantitative ultrasonic characterization of diffuse scatterers in the presence of structuresthat produce coherent echoes[J]. IEEE Transactions on Ultrasonics, Ferroelectrics andFrequency Control,2012,59(5):893–904.
    [17] Saniie, Jafar, Oruklu, Erdal, Yoon, Sungjoon. System-on-chip design for ultrasonic targetdetection using split-spectrum processing and neural networks [J].IEEE Transactions onUltrasonics, Ferroelectrics and Frequency Control,2012,59(7):1354–1368.
    [18]郑纪彬,符渭波,苏涛,朱文涛.一种新的高速多目标检测及参数估计方法[J].西安电子科技大学学报,2013,40(2):99-108.
    [19]柳建楠,刘文峰,王伯雄,罗秀芝.应用于超声测距的小波变换滤波算法[J].清华大学学报(自然科学版),2012,52(7):951-955.
    [20] D. R. Brillinger, Time Series: Data Analysis and Theory [M]. San Francisco:Holden-Day,1981.
    [21] L.Ljung.On the estimation of transfer functions [J].Automatica,1985,21(6):677–696.
    [22] K.W.Peng, A.L.Xu, Z.X.Yang, Optimal correlation based frequency estimator withmaximal estimation range [C].International conference on communications,circuits andSystems, Xiamen, China, May,25-27,2008:259-263.
    [23] B. G. Quinn. Estimating frequency by interpolation using Fourier coefficient[J]. IEEEtrans. on signal processing, May1994,42(5):1264-1268
    [24] B. G. Quinn. Estimation of frequency, amplitude, and phase from the DFT of a timeseries[J]. IEEE trans. on signal process., Mar.1997,45(3):814-817
    [25] B. G. Quinn, E. J. Hannan. The estimation and tracking of frequency[M]. New York:Cambridge Univ. Press,2001
    [26] J.Selva.Computation of spectral and root MUSIC through real polynomial rooting[J].IEEE Transactions on Signal Processing,2005,53(5):1923-1927
    [27] O.Besson, P.Stoica.Analysis of MUSIC and ESPRIT frequency estimates for sinusoidalsignals with lowpass envelopes [J].IEEE trans.on signal processing, Sep.1996,44(9):2359-2364
    [28] J.Saniie.Ultrasonic Signal Processing:System Identification and Parameter Estimation ofReverberant and Inhomogeneous Targets[D].Doctor Dissertation.Indiana,PurdueUniversity,1981.
    [29] D.Marioli, C.Narduzzi, C.Offelli, D.Petri, E.Sardini, A.Taroni. Digital Time-Of-FlightMeasurement for Ultrasonic Sensors [J]. IEEE Transactions on Instrumentation andMeasurement,1992,41(1):93-97.
    [30] B.Audoin, J.Roux.An Innovative Application of the Hilbert Transform to Time DelayEstimation of Overlapped Ultrasonic Echoes [J].Ultrasonics, Elsevier.1996,34(1):25-33.
    [31] A.K.Nandi. On the Subsample Time Delay Estimation of Narrowband Ultrasonic Echoes[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,1995,42(6):993-1001.
    [32] A M Sabatini.Correlation receivers using Laguerre filter banks for modeling narrowbandultrasonic echoes and estimating their time of flights[J].IEEE Transactions on Ultrasonic,Ferro electrics and Frequency Control,1997,44(6):1253-1263.
    [33] Angrisani, L., A. Baccigalupi, R. Schiano and L. Moriello. Ultrasonic time-of-flightestimation through unscented Kalman filter[J]. IEEE Trans on Instrumentation andMeasurement,2006,55(4):1077-1084.
    [34] J. A. Jensen. A model for the propagation and scattering of ultrasound in tissue[J].Acoust. Soc. Amer.,1991,89(1):182–190.
    [35] K. W. Ferrera, R. Algazi, and J. Liu.The effect of frequency dependent scattering andattenuation on the estimation of blood velocity using ultrasound [J].IEEE Trans.Ultrason., Ferroelect., Freq. Contr.,1992,39(6):754–767.
    [36]周光平,李坚,刘镇清等.超声信号处理法检测表面缺陷[J].无损检测,1996,18(12):331一332.
    [37] A. K. Nandi.On the subsample time delay estimation of narrowband ultrasonicechoes[J].IEEE Trans. Ultrason., Ferroelect.,Freq. Contr.,1995,42(6):993–1001.
    [38] A. Grennberg and M. Sandell.Estimation of subsample time delay differences innarrowband ultrasonic echoes using the hilbert transform correlation[J]. IEEE Trans.Ultrason., Ferroelect., Freq. Contr.,1994,41(5):588–595.
    [39]刘丽,惠俊英.一种改进的三点内插时延估计算法[J].应用声学,1999,18(6):34-38.
    [40] B Barshan, B Ayrulu. Performance comparison of four time of flight estimation methodsfor sonar signals [J]. IEEE Electronics Letters,1999,34(16):1616-1617.
    [41] DIFRANCO, J.v., and RUBIN, W.L:'Radar detection'(Artech House,Dedham, MA,1980)
    [42] J. Saniie and D. T. Nagle.Analysis of order-statistic CFAR threshold estimator forimproved ultrasonic flaw detection [J].IEEE Trans. Ultrason., Ferroelect., Freq. Contr.,1992,39(5):618–630.
    [43]J. M. Girault, F. Ossant, A. Ouahabi, D. Kouame, and F. Patat.Time-varyingautoregressive spectral estimation for ultrasonic attenuation in tissuecharacterization[J].IEEE Trans. Ultrason.,Ferroelect., Freq. Contr.,1998,45(3):650–659.
    [44] D. L. Liu and M. Saito.A new method for estimating the acoustic attenuation coefficientof tissue from reflected ultrasound signals [J].IEEE Trans. Med. Imag.,1989,8(1):107–110.
    [45]王威琪,余建国,汪源源.医学超声中的非线性(现象、方法)及其应用前景[J].中国超声医学杂志,1998,14(4):27.
    [46] R. Demirli, J. Saniie, Model-based estimation of ultrasonic echoes Part I: analysis andalgorithms, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2001,48(3):787–802.
    [47]S K Chow, P M Schultheiss. Delay estimation using narrowband processes [J]. IEEETransactions on Acoustics, Speech, and Signal Processing,1981,29(3):478-484.
    [48]郭纲,王树勋,孙晓颖.赵晓晖.超声信号的双指数模型及参数确定方法[J].电子学报,2009,37(7):1501-1504.
    [49] R. Demirli and J. Saniie.Model-based estimation of ultrasonic echoes, part II:nondestructive evaluation applications [J].IEEE Trans. on UFFC,2001,48(3):803-811.
    [50] Dencks, S.; Barkmann, R.; Padilla, F.; Laugier, P.; Gluer, C.Model based estimation ofquantitative ultrasound variables at the proximal femur [J].IEEE Trans. on UFFC,2008,55(6):1304-1315.
    [51] Y. Lu and J.E. Michaels.Numerical implementation of the Matching Pursuit for theanalysis of complex ultrasonic signals [J].IEEE Trans. On UFFC,2008,55(1):173-182.
    [52] Yufeng Lu, R. Demirli, G. Cardoso and J. Saniie.A successive parameter estimationalgorithm for chirplet signal decomposition [J].IEEE Trans.on UFFC,2006,53(11):2121-2131.
    [53] R. Demirli and J. Saniie. A generic parametric model for ultrasonic signalanalysis[C].IEEE Int.Ultrasonics Symposium, October2009:1522–1525.
    [54] Wei Liang,Pei-wen Que. Maximum non-Gaussianity parameters estimation of ultrasonicechoes and its application in ultrasonic non-destructive evaluation [J]. MeasurementScience and Technology,2007,18:3743–3750.
    [55] Bernard O, D’hooge J and Friboulet D. Statistics of the radio-frequency signal based onK distribution with application to echocardiography [J].IEEE Trans. Ultrason.Ferroelectr.Freq. Control2006,53(16):89–94.
    [56] A. Fertner and A. Sjound.Comparison of various time delay estimation methods bycomputer simulation [J].IEEE Trans. Acoust.Speech Signal Process.,1986,34(5):1329–1330.
    [57].Freemantle, R. Challis, and J. White.A z-transform technique for thin-layer reverberationcancellation applied to ultrasonic NDT of adhered structures [C].in IEE Colloq.Advanced Techniques for Collection and Interpretation of NDT Data,1994,102:7/1–4.
    [58] Wang, B. Xie, S. Rokhlin.Determination of embedded layer properties using adaptivetime-frequency domain analysis [J]. J. Acoust. Soc. Am.,2002,111(6):2644–2653.
    [59] Martin, J. J. Meister, M. Arditi, and P. A. Farine. A novel homomorphic processing ofultrasonic echoes for layer thickness measurement [J].IEEE Trans. Signal Process.,1992,40(7):1819–1825.
    [60] Kinra and V. Iyer.Ultrasonic measurement of the thickness, phase velocity, density orattenuation of a thin-viscoelastic plate. Part I: The forward problem [J].Ultrasonics,1995,33(2):95–109.
    [61] Kinra and V. Iyer.Ultrasonic measurement of the thickness, phase velocity, density orattenuation of a thin-viscoelastic plate. Part II: The inverse problem [J], Ultrasonics,1995,33(2):111–122.
    [62] Kundu. Complete acoustic microscopical analysis of multilayered specimens [J]. J. Appl.Mech.,1992,59(1):54–60.
    [63] Rokhlin and W. Huang.Ultrasonic wave interaction with a thin nisotropic layer betweentwo anisotropic solids: Exact and asymptotic-boundary-condition methods [J]. J. Acoust.Soc. Am.,1992,92(3):1729–1742.
    [64]周方,张小凤,张光斌.超声回波参数的蚁群算法估计[J].陕西师范大学学报(自然科学版),2012,40(2):35-40.
    [65]周西峰,朱文文,郭前岗.基于遗传算法和高斯牛顿法的超声回波信号参数估计[J].解放军理工大学学报,2012,13(3):247-251.
    [66] J. Martinsson, J. E. Carlson, and J. Niemi.Model-based phase velocity and attenuationestimation in wideband ultrasonic measurement systems [J]. IEEE Trans. Ultrason.Ferroelectr. Freq. Control,2007,54(1):138–146.
    [67] Fredrik Hagglund, Jesper Martinsson, Johan E. Carlson.Model-Based Estimation of ThinMulti-Layered Media Using Ultrasonic Measurements [J]. IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control,2009,56(8):1689-1702.
    [68] Abdessalem Benammar, Redouane Drai, Abderrezak Guessoum.Detection ofdelamination defects in CFRP materials using ultrasonic signal processing[J],Ultrasonics,2008(48):731-738.
    [69] J Martinsson.Compensating distortion effects in repeated measurements undernon-stationary conditions [J]. Measurement Science and Technology,2009(20):1-12.
    [70] Chen Li, Cetin Cetinkaya.Frequency Domain Thickness Measurement Approach forMicroscale Multilayered Structures [J]. IEEE Transactions on Instrumentation andMeasurement,2006,55(1):206-211.
    [71] Shie Qian, Dapang Chen, Joint Time-frequency Analysis [J]. IEEE Signal ProcessingMagazine,1999,16(2):52-67.
    [72] Malik, M. A., Saniie, J. Gabor transform with optimal time-frequency resolution forultrasonic applications [C]. Proceedings of IEEE Ultrasonics Symposium,1998,36:817-820.
    [73]Malik, M.A., Saniie, J. Evaluation of exponential product kernel for quadratictime-frequency distributions applied to ultrasonic signals [C]. Proceedings of IEEEUltrasonics Symposium,1997,35:643-648.
    [74] Malik, M.A., Saniie, J. Generalized time-frequency representation of ultrasonic signals
    [C]. Proceedings of IEEE Ultrasonics Symposium,1993,31:691-695.
    [75] Malik, M.A., Saniie, J. Gabor coefficients for estimation of arrival time and centerfrequency of ultrasonic echoes [C]. Proceedings of IEEE Ultrasonics Symposium,1995,33:743-746.
    [76] Malik, M.A., Saniie, J., Performance comparison of time-frequency distributions forultrasonic nondestructive testing [C]. Proceedings of IEEE Ultrasonics Symposium,1996,34:701-704.
    [77] M. A. Malik, Unified Time-Frequency Analysis of Ultrasonic Signals [D]. Ph.D. Thesis,Illinois Institute of Technology, Chicago, IL, July1995.
    [78] G. Cardoso and J. Saniie. Ultrasonic data compression via parameters estimation[J].IEEE Trans. Ultrason., Ferroelect., Freq. Contr.,2005,52:313–325.
    [79]Giorgio Bonmassar.The Stochastic Gabor Function Enhances Bandwidth InFinite-Difference-Time Domain S-Parameter Estimation. IEEE Transactions onMicrowave Theory and Techniques,2007,55(4):601-606.
    [80] Liang Tao, Hon Keung Kwan. Novel DCT-based Real-valued discrete Gabor transformand its fast algorithms [J]. IEEE Trans. Signal Process.,2009,57(6):2151-2163.
    [81] Soo-Chang Pei, Jian-Jiun Ding, Relations Between Gabor Transforms and FractionalFourier Transforms and Their Applications for Signal Processing [J]. IEEE Trans. SignalProcess.,2007,55(10):4839-4850.
    [82] H. M. Ozaktas, Z. Zalevsky, M. A. Kutay. The Fractional Fourier Transform withApplications in Optics and Signal Processing [M]. New York: Wiley,2000.
    [83] K. K. Sharma, S. D. Joshi.Signal separation using linear canonical and fractional Fouriertransform [J]. Opt. Commun.,265, pp.454–460,2006.
    [84] D. M. J. Cowell, S. Freear.Separation of Overlapping Linear Frequency Modulated (LFM)Signals Using the Fractional Fourier Transform [J]. IEEE Trans. Ultrason., Ferroelect.,Freq. Contr.,2010,57(10):2324-2333.
    [58] L. B. Almeida.The fractional Fourier transform and time–frequency representations [J].IEEE Trans. Signal Process.,1994,42(11):3084–3091.
    [86] S. C. Pei and J. J. Ding. Relations Between Gabor Transforms and Fractional FourierTransforms and Their Applications for Signal Processing [J]. IEEE Trans. SignalProcess.,2007,55(10):4839–4850.
    [87] S.J.Oruklu E.Ultrasonic Flaw Detection Using Discrete Wavelet Transform for NDEApplications [J]. IEEE Ultrasonics Symposium,2004:1054-1057.
    [88] J.K.A.Abbate, J.Frankel, S.C.Schroeder, P.Das.Signal detection and noise suppressionusing a wavelet transform signal processor: Application to ultrasonic flaw detection[J].IEEE Trans. Ultrason., Ferroelect., Freq. Contr.,1997,44:14-26.
    [89] M.D.Legendre S, Goyette J.Wavelet-Transform-Based Method of Analysis forLamb-Wave Ultrasonic NDE Signals [J]. IEEE Transactions on Instrumentation andMeasurement,2000,49(3):524-530.
    [90] S.E.J.L.Lazaro J C, et al. Influence of thresholding procedures in ultrasonic grain noisereduction using wavelets [J]. Ultrasonics,2002,40:263-267.
    [91] L. C. Q.Zhang Y. Design of matching wavelet filter and its application to ultrasonicsignal processing [J]. NDT&E International,2002,24(12):507-511.
    [92] Z.S.Norden E.Huang, Steven R Long. The empirical mode decomposition and theHilbert spectrum for nonlinear and non-stationary time series analysis [C].inProc.R.Soc.Lond.A,1998:903-995.
    [93] S.L.B.Hualou Liang, Robert Desimone, Pascal Friesd. Empirical mode decomposition:amethod for analyzing neural data [J].Neurocomputing,2005,65(66):801–807.
    [94] S. J. Loutridis. Damage detection in gear systems using empirical modedecomposition[J].Engineering Structures,2004,26:1833-1841.
    [95] S.N.Adriano O.Andrade, Peter Kyberd. EMG signal filtering based on Empirical ModeDecomposition [J].Biomedical Signal Processing and Control,2006, l (1):44-55.
    [96] C.C.H.Ghouti L.Deconvolution of ultrasonic nondestructive evaluation signals usinghigher-order statistics [C]. in ICASSP,IEEE International conference onAcoustics,Speech and Signal Processing-Proceedings,1999:1457-1468.
    [97] B.M.Yamani A, Ghouti L. High-order spectra-based deconvolution of ultrasonic ndtsignals for defect identification [J].Ultrasonics,1997,35(7):525-537.
    [98] M.D.Nandi A. K, Roscher B. Blind deconvolution of ultrasonic signals in nondestructivetesting applications [J].IEEE Transactions on Signal Processing,1997,45(5):1382-1393.
    [99] R.-H.M.A.Ultrasonic non-destructive evaluation with spatial combination of wigner-villetransforms [J]. NDT&E International,2003,36(6):441-453.
    [100] H.M.G.Izquierdo M A G, Graullera O. Time-frequency wiener filtering for structuralnoise reduction [J].Ultrasonics,2002,40(1):259-270.
    [101] B.N.M.Xing L. Wiener filter realization for target detection using group delay statistics[J].IEEE Transactions on Signal Processing,1993,41(6):2067-2076.
    [102] L.M.Liu Z, Wei M. Structure noise reduction of ultrasonic signals using artificial neuralnetwork adaptive filtering [J].Ultrasonics,1997,35(4):325-336.
    [103] P.Q.Qinglun Liu, Huawei Guo. Noise cancellation for ultrasonic ndt signals using blindsource separation [J].Russian Journal of Nondestructive Testing,2006,(1):83-89.
    [104] Michael Camp, Heyno Garbe. Parameter Estimation of Double Exponential Pulses(EMP, UWB) With Least Squares and Nelder Mead Algorithm [J].IEEE Transactionson Electromagnetic Compatibility,2004,46(4):675-678.
    [105] D. C. Rife and R. R. Boorstyn.Single tone parameter estimation from discrete-timeobservations [J]. IEEE Trans. Inf. Theory,1974,20:591–598.
    [106]杨萃,噪声环境下频率估计算法研究[D].华南理工大学,2010.
    [107] Zhenkun Lu, Gang Wei,Fangjiong Chen.TOF Estimation of Ultrasonic Echo signal forObject Location [J]. Information Technology Journal,2011,10(11):2182-2188.
    [108] M. Azaria and D. Hertz. Time delay estimation by generalized cross correlationmethods[J]. IEEE Trans. Acoustics, Speech and Signal Processing,1984,32(2):280-285.
    [109] Chan Y. The least squares estimation of time delay and its use in signal detection[J].IEEE Transactions on Acoustics, Speech and Signal Processing,1978,26(3):217-222.
    [110] B. Boashash.Estimating and interpreting the instantaneous frequency of a signal[C].Proceedings of the IEEE,1992,80(4):520-568.
    [111] S. Shukla,S. Mishra,B. Singh.Empirical-mode decomposition with hilbert transform forpower-quality assessment [J].IEEE Trans. Power Del.,2009,24(4):2159-2165.
    [112] T. Cui,D. Xinzhou,B. Zhiqian,et al.. Hilbert-transform-based transient intermittent earthfault detection in noneffectively grounded distribution systems[J]. IEEE Trans. PowerDel.,2011,26(1):143-151.
    [113] L. Sun, M. Shen, F. Chan, and P. J. Beadle.Instantaneous frequency estimate ofnonstationary phonocardiography signals using Hilbert spectrum[C]. in proc. IEEE Int.Conf. Eng. Medicine and Biology Society,2006:7285-7288.
    [114] E. Oruklu, L. Yufeng, J. Saniie. Hilbert transform pitfalls and solutions for ultrasonicNDE applications[C]. in proc. IEEE Int. Conf. Ultraso. Symp., Rome, Italy, Sep.2009:2004-2007.
    [115] Donoho D L, Johnsto ne I M. Adapting to unknown smoothness via w avelet shrinkage[J]. Journal of the American Statistical Association,1995,90(432):1200-1224.
    [116] D. L. Donoho.De-noising by soft-thresholding[J]. IEEE Trans. Infor. Theo.,1995,41(3):613-627.
    [117] Y. Hu and P. C. Loizou.Speech enhancement based on wavelet thresholding themultitaper spectrum [J]. IEEE Trans. Speech, Audio Process.,2004,12(1):59-67.
    [118] J. A. Nelder and R. Mead.A simplex method for function minimization [J]. Computer J.,1967,7:308–313.
    [119] K. P. Chong and S. H. Zak, An Introduction to Optimization [M].New York: JohnWiley&Sons, Inc.,1996.
    [120] Roman ChaPko,philipp Kugler.A comparison of the landweber method and theGauss-newton method for an inverse parabolic boundary value problem[J]. Journal OfComputational and Applied Mathematics,2004,169:183一196.
    [121] M.H.Loke, T.Dahlin. A comparison of the Gauss-Newton and quasi-Newton Methodsin resistivity imaging inversion[J].Journal of Applied GeoPhysics,2002,49:149一162.
    [122]武良丹,张小凤,贺西平.基于模拟退火算法的超声回波参数估计[J].应用声学,2007,26(5):313-317.
    [123]张贤达.现代信号处理[M].北京,清华大学出版社,2002
    [124] S. D. Silvey. Statistical Inference[M]. Baltimore: Penguin Books,1970
    [125] S. M. Kay, Fundamentals of Statistical Signal Processing. Prentice Hall,1993.
    [126] M. Feder and E. Weinstein. Parameter estimation of superimposed signals using the EMalgorithm[J]. IEEE Trans. Acoust. Speech Signal Process.,1988,36(4):477-489.
    [127] J.A. Fessler, A. O. Hero.Complete-data spaces and generalized EM algorithms [C].InProc. IEEE Conf. Acoust., Speech, Signal Processing,1993,4:1-4.
    [128]邓云凯,刘亚东,行坤,祁海明,陈倩.一种结合时频分析与Dechirp技术提高运动目标参数估计精度的多通道方法[J].电子与信息学报,2011,33(1):14-20.
    [129]许建忠,孙红伟,孙业岐,段平光.采用Radon-Wigner变换的二维波达方向估计[J].电子与信息学报,2012,34(4):997-1001.
    [130]王衍学,何正嘉,訾艳阳,袁静.基于LMD的时频分析方法及其机械故障诊断应用研究[J].振动与冲击,2012,31(9):9-12.
    [131]王柄方,韩赞东,原可义,陈以方.基于时频分析的奥氏体焊缝超声检测信号处理[J].焊接学报,2011,32(5):25-28.
    [132]申永军,张光明,杨绍普,吴彦彦.基于Gabor变换的欠定盲信号分离新方法[J].振动、测试与诊断,2011,31(3):299-313.
    [133] N.J. Redding, G.N. Newsam. Efficient calculation of finite Gabor transforms [J]. IEEETrans. Signal Process.,1996,44(2):190-200.
    [134] S. Qian, D. Chen. Discrete Gabor transforms [J]. IEEE Trans. Signal Process.,1993,41(7):2429–2438.
    [135] J. Wexler and S. Raz.Discrete Gabor expansions[J]. Signal Process.,1990,21(3):207–220.
    [136] R. A. Hom and C. R. Johnson, Matrix Analysis[M]. New York: Cambridge,1985:427-455.
    [137] G. H. Golub and C. F. Van Loan, Matrix Computations[M].2nd ed.Baltimore: JohnsHopkins University Press,1989:566-568.
    [138]张贤达,保铮.非平稳信号分析与处理[M].北京:国防工业出版社,1998:109-143.
    [139] Powell M J D. Some global convergence properties of a variable metric algorithm forminimization without exact line searches [C]. Proceedings of Nonlinear Programming,Philadelphia: Society for Industrial and Applied Mathematics and AmericanMathematical Society,1976:53-72.
    [140] J. Martinsson, F. Hgglund, and J. Carlson. Complete post-separation of overlappingultrasonic signals by combining hard and soft modeling[J]. Ultrasonics,2008,48(5):427–443.
    [141] Yao Z J,Yang J S,Liu S C.A Novel Crosstalk Elimination Method for Sonar RangingSystem in Rescue Robot[J].Procedia Engineering,2012:2029-2044.
    [142]赵兴浩,陶然.基于分数阶相关的无源雷达动目标检测新算法[J].电子学报,2005,33(9):1567-1570.
    [143]陶然,周云松.基于分数阶傅立叶变换的宽带线性调频信号波达方向估计新算法[J].北京理工大学学报,2005,25(10):895-899.
    [144] H.-B. Sun, G.-S. Liu, H. Gu, W.-M. Su.Application of the fractional Fourier transformto moving target detection in airborne SAR[J]. IEEE Transactions on Aerospace andElectronic Systems,2002,38(4):1416–1424.
    [145] A.S. Amein, J.J. Soraghan.A new chirp scaling algorithm based on the fractional Fouriertransform[J]. IEEE Signal Processing Letters,2005,12(10):705–708.
    [146] M. Martorella.Novel approach for ISAR image cross-range scaling[J]. IEEE Aerospaceand Electronic Systems,2008,44(1):281–294.
    [147] X. Li, G. Bi, Y. Ju.Quantitative SNR analysis for ISAR imaging using LPFT [J].IEEETransactions on Aerospace and Electronic Systems,2009,45(3):1241–1248.
    [148]M.Martone,A multicarrier system based on the fractional Fourier transform fortime–frequency-selective channels[J].IEEE Transactions on Communications,2001,49(6):1011–1020.
    [149] T.Erseghe,N.Laurenti,V.Cellini. A multicarrier architecture based upon the affineFourier transform [J].IEEE Transactions on Communications2005,53(5):853–862.
    [150] R.Khanna,R.Saxena, Improved fractional fourier transform based receiver for spatialmultiplexed mimo antenna systems [J]. Wireless Personal Communications,2009,50(4):563–574.
    [151]李丽,邱天爽.基于FRFT的双基地MIMO雷达多普勒频率和收发角联合估计新方法[J].通信学报,2012,33(11):171-176.
    [152]李丽,邱天爽.基于分数阶傅里叶变换的双基地雷达线性调频信号的参数联合估计新方法[J].电子与信息学报,2012,34(4):878-884.
    [153] Mendlovic D,Ozaktas H M.Fractional Fourier Transforms and Their OpticalImplementation(I)[J].JOSA A,1993,10(9):1875-1881.
    [154] Ozaktas H M,Mendlovic D.Fractional Fourier Transforms and Their OpticalImplementation(II)[J].JOSA A,1993,10(12):2522-2531.
    [155]唐江,赵拥军,朱健东,胡卿.基于FrFT的伪码-线性调频信号参数估计算法[J].信号处理,2012,28(9):1271-1277.
    [156]仇兆炀,陈蓉,汪一鸣.基于FRFT的线性调频信号欠采样快速检测方法[J].电子学报,2012,40(11):2165-2170.
    [157]任仕伟,马晓川,鄢社锋.基于分数阶傅立叶变换的线性调频回波参数估计[J].应用声学,2012,31(2):118-122.
    [158]冯冀宁,刁哲军,杨晓波,吴嗣亮.基于假设检验的FRFT域LFM干扰抑制[J].兵工学报,2012,33(1):7-12.
    [159] V. Namias. The fractional order Fourier transform and its application to quantummechanics[J]. IMA J. Appl. Math.,1980,25(3):241–265.
    [160] A. C. McBride and F. H. Kerr.On Namias’s fractional Fourier transforms[J]. IMA J.Appl. Math.,1987,39(2):159–175.
    [161] Ozaktas H M,Arikan O,et al.Digital Computation of the Fractional FourierTransform[J].IEEE Trans.on Signal Processing,1996,44(9):2141-2150.
    [162] Pei S C,Yeh M H,Tseng C C. Discrete Fractional Fourier Transform Based onOrthogonal Projections [J].IEEE Trans. on Signal Processing,1999,47(5):1335-1347.
    [163] M. A. Kutay, H. M. Ozaktas, O. Arikan, and L. Onural.Optimal filtering in fractionalFourier domains[J]. IEEE Trans. Signal Processing,1997,45:1129–1143.
    [164] M. F. Edren, M. A. Kutay and H. M. Ozaktas, Repeated filtering in consecutivefractional Fourier domains and its applications to signal restoration[J]. IEEE Trans.Signal Processing,1999,47:1458–1462.
    [165] Shi, Guangming, Chen, Chongyu, Lin, Jie, Xie, Xuemei, Chen, Xuyang. Narrowbandultrasonic detection with high range resolution: separating echoes via compressedsensing and singular value decomposition [J]. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,2012,59(10):2237–2253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700