用户名: 密码: 验证码:
压电式四维力传感器的有限元仿真分析和设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机运算能力越来越强,数值模拟方法被广泛地应用在了工程技术领域。目前常用的数值模拟方法有:有限单元法、有限差分法、边界元法和离散单元法。而有限单元法是实用性较强、应用性较广的一种数值模拟方法。本文为了研制一种新型压电式四维力传感器,利用有限元软件ANSYS对该传感器的静态、模态特性开展了仿真分析研究,并在此基础上通过优化设计方法进一步研究了该压电传感器的弹性变形环节-弹性膜片的设计对传感器性能的影响。
     本文的主要工作包括:
     ①分析研究了多维力传感器的国内外发展概况,以及有限元分析法在多维力传感器设计中的应用现状。
     ②选用石英作为压电敏感元,根据石英特定的切割形式和排列方式设计出了无耦合测量空间四方向上力和力矩的晶片组布局形式,完成了压电式四维力传感器的基本结构设计。
     ③探讨了有限元分析法的基本概念,优化设计的基本理论,利用有限元分析法开展多维力传感器关键性能参数及其影响量的仿真分析与优化设计。
     ④运用有限元分析软件ANSYS对压电式四维力传感器的设计模型进行了仿真分析,研究对传感器原型开发有着重要影响的静态、模态性能指标:灵敏度、维间干扰、转换效率、固有频率,验证了传感器设计的合理性和传感器自身的新颖性。
     ⑤运用ANSYS软件的优化设计方法,将传感器的灵敏度和固有频率作为目标变量,将传感器中弹性膜片的弹性模量和尺寸作为设计变量,将石英晶片的极限强度作为状态变量,研究了弹性膜片的弹性模量和宽度对传感器性能的影响,为新传感器的设计开发提供了重要的依据。
     本文的研究工作为新型压电式四维力传感器的研制提供了重要的依据。
With the processing ability of the computer becoming more quickly, the numeric simulation method is widely used in the area of the engineering. At present, the numeric simulation method which is often used includes: finite element method, finite difference method, boundary element method and discrete element method. And FEM(finite element method) has strong practicability and broad application. In this paper, for developing a new four-axis piezoelectric force sensor, through simulation by using FEA (finite element analysis) software ANSYS, the static and modal characteristics of the sensor have studied. Through optimization design, the influence of the elastic film on the performance of the sensor has researched. The main work completed includes:
     Firstly, know of the development situation of the multi-axis force sensor and the application of FEA in the design of the multi-axis force sensor.
     Secondly, quartz has been chosen as the sensing element and four-direction forces can be measured without coupling interference. The basic structure of a four-axis piezoelectric force sensor has been designed.
     Thirdly, introduce the basic concept of FEA, the theory of the optimization design, as well as the simulation and optimization to research the basic performance and influence of the sensor by using FEA.
     Fourthly, by using FEA, the static and modal performance indexes such as sensitivity, coupling interference, translation efficiency and natural frequency have been gotten. The result has proved the rationality of the design.
     Fifthly, through the optimization design, research the influence of the elastic film design on the performance of the sensor.
     The research work has provided an important foundation for developing a new four-axis piezoelectric force sensor.
引文
[1]许恕宏.传感器技术及其设计基础[M].北京:机械工业出版社, 1988, 6.
    [2]崔勇. Stewart平台六维力传感器及其标定系统的设计[D].燕山大学, 2006.
    [3]姚智慧,张付祥.机器人六维力传感器研究概况及发展预测[J].广东自动化与信息工程, 2002, 3.
    [4]尹瑞多,王宣银,程佳,李强.广义六维力传感器的特点及研究和应用状况[J].液压与气动, 2005, 10.
    [5]张付祥.仿人行走机器人脚步六维力传感器研究[D].哈尔滨工业大学, 2004.
    [6] P.C.Watson, S.H.Drake, Pedestal. Wrist Force Sensors for Industrial Assembly[J]. Proc.of the 5th Int.Symp. on Industrial Robots, Chicago, 1975:501-511.
    [7] V.Scheinman. Design of a computercontrolled manipulator[D]. M.S.Thesis, Mechanical Engineering Dept., Standford University, 1969.
    [8] J. Schott. Tactile Sensor With Decentralized Signal Conditioning[J]. The 9th IMEKOWorld Congress, Beilin, 1982:138-143.
    [9] Hirose S and Yoneda K. Development of optical 6-axial force sensor and its signal calibration considering non linear calibration[J]. 1990 Proc. Int. Conf. on Robotics and Automation, pp 46–53.
    [10] Robot Technology[M]. London: Kegon page Ltd, 1983.
    [11] Gaillet, C. Reboulet. Isostatic Six Component Force and Torque Sensor[J]. Proceedings of the 13th Internationals Symposium on Industrial Robotics, 1983:102-118.
    [12] Romiti, M. Sorli. Force and Moment Measurement on a Robotic Assembly Hand[J]. Sensors and Actuators,A, 1992:531-538.
    [13] M. Sorli, N. Zhmud. Investigation of Force and Moment Measurement System for a Robotic Assembly Hand[J]. Sensors and Actuators A, 1993: 651-657.
    [14] M. Sorli, S. Pastorelli. Six-axis Reticulated Structure Force/Torque Sensor with Adaptable Performances[J]. Mechatronics, 1995, 5(6):585-601.
    [15] Charles C. Nguyen, Sami C. Antrazi, Zhen-Lei Zhou. Analysis and Implementation of a 6-DOF Stewart Platform-based Force Sensor for Passive Compliant Robotic Assembly[J]. Conference Proceedings-IEEE SOUTHEASTCON, 1991, 2:880-884
    [16] T. A. Dwarakanath, B. Dasgupta, T.S. Mruthyunjaya. Design and Development of a Stewart Platform Based Force-Torque Sensor[J]. Mechatronics, 2001.
    [17] Chul-Goo Kang. Closed-form Force Sensing of a 6-axis Force Transducer Based on the StewartPlatform[J]. Sensors and Actuators A, 2001:31-37.
    [18] H. V. Brussel, H. Belien, H. Thielemans. Force Sensing for Advanced Robot Control[J]. Proc. of the 5th Int. Conf. On Robot Vision and Sensory Contro1s, 1980:279-288.
    [19] E. Kroll. Decoupling Load Components and Improving Robot Interfacing with asEasy-to-use 6-axis Wrist Force Sensor[J]. Proc. of the 7th World Congress, 1986:327-331.
    [20] Paolo Dario. Sensors and Sensory Systems for Advanced Robots[J]. Germany, Springer-Verlag Berlin Geidelberg, 1988.
    [21] T. Yoshikawa, T. Miyazaki. A Six-axis Force Sensor with Three-dimensional Cross-shape Structure[J]. Proc. of IEEE Conf. on Robotics and Automation, 1989:249-255.
    [22] M. Uchiyama, E. Bayo, E. Palma-Villalon. A Systematic Design Procedure to Minimize a Performance Index for Robot Force Sensors[J]. Trans. ASME, Journal of Dynamic Systems, Measurement and Control, 1991, 1(113): 388-394.
    [23] E. Bayo, J. R. Stubbe. Six-axis Force Sensor Evaluation and a new Type of Optimal Frame Truss Design for Robotic Applicatons[J]. Journal of Robotic System, 1989, 6(2):191-20.
    [24] Y. Hatamum.A Ring-Shape 6-axis Force Sensor and Its Application[J].Int. Conf. on Advanced Mechatronics,Tokyo,Japan,1989:647-652
    [25] R. Little. Force/Torque Sensing in Robotic Manufacturing Sensors[J]. The Journal of Machine Perception, 1992, 9(11):346-348.
    [26] M. Kaneko. Twin-Head Six-axis Force Sensors[J]. IEEE Transactions on Robotics and Automation, 1996, 12(1):146-154.
    [27] Kaneko M. A new design of six-axis force sensors[J]. IEEE. International Conference on 2-6 May 1993, PP 961-967 vol.1.
    [28] Lu-Ping Chao, Ching-Yan Yin. The Six-component Force Sensor for Measuring the Loading of the Feet in Locomotion[J]. Materials and Design, 1999, 20(5):237-244.
    [29] N.K. Fowler, A.C Nicol. A Force Transducer to Measure Individual Finger Loads during Activities of Daily Living[J]. Journal of Biomechanics, 1999, 7, 32(7): 721-725.
    [30] Sheng A Liu, Hung L Tzo. A novel six-component force sensor of good measurement isotropy and sensitivities[J]. Sensors and Actuators, A ,2002, 223–230.
    [31]葛运健.多维腕力传感器的研究现状和我们的任务[J].机器人情报, 1993:88-95.
    [32]中国智能研究所. SAFS-1型六维力传感器技术鉴定材料[J]. 1987:101-110.
    [33]黄心汉,胡建元,王健.一种非径向三梁结构六维腕力传感器弹性体及其优化设计[J].机器人, 1992, 14(5):1-7.
    [34]袁哲俊,王娜君.机器人用六维力、力矩传感器[P].中国专利,专利号:CN-2066134U日期:1990, 11.
    [35]曾庆钊,严振祥.一种新型车轮六维力传感器[J].仪表技术与传感器, 1997(10).
    [36]李允明, C. S. George Lee.机器人腕部力传感器的标定[J].中国纺织大学报, 1986.
    [37]熊有伦.机器人力传感器的各向同性[J].自动化学报, 1996, 22(1):10-18.
    [38]陈滨.机器人手腕测力装置[J].机械工程学报, 1988, 24(2):83-87.
    [39]王洪瑞,陈贵林,高峰等.基于Stewart平台的六维力传感器各向同性的进一步分析[J].机械工程学报, 2004, 36(4).
    [40]高峰,金振林,刘辛军等.并联解耦结构六维力与力矩传感器[P].中国专利:99119320.2.1999, 09.
    [41]王巍,崔维娜.一种新结构的智能化六维腕力传感器[J].微计算机信息.2003,19(1):38-40.
    [42]张洁,黄惟一.用有限元法对腕力传感器弹性体的力学分析[J].传感器技术, 2003, 22.
    [43]秦岗,曹效英,宋爱国,黄惟一.新型四维腕力传感器弹性体的有限元分析[J].传感技术学报, 2003, 9.
    [44]黄朋生,任天令,楼其伟等.三维压电加速度传感器的设计[J].压电与声光, 2003, 25.
    [45]董明,惠春等.基于Ansys的压电式四臂加速度计模拟分析[J].传感技术学报, 2006, 19(3).
    [46]韩丽丽,孙宝元等.压电石英晶体扭转效应的ANSYS分析[J].大连理工大学学报, 2006, 46(1).
    [47]娄利飞等. Ansys在PZT压电薄膜微传感器压电分析中的应用[J].机械科学与技术, 2005, 24(7).
    [48] Lu-Ping Chao*and Kuen-Tzong Chen. Shape optimal design and force sensitivity evaluation of six-axis force sensors[J]. Sensors and Actuators A:Physical Volume 63, Issue 2, 30 October 1997, Pages 105-112.
    [49] Gab-Soon Kim. Design of a six-axis wrist force/moment sensor using FEM and its fabrication for an intelligent robot[J]. Sensors and Actuators A: Physical Volume 133, Issue 1, 8 January 2007, Pages 27-34.
    [50]李晓莹.传感器与测试技术[M].高等教育出版社, 2004, 11.
    [51]叶湘滨等.传感器与检测技术[M].国防工业出版社, 2007, 4.
    [52]舒勃尼科夫.石英及其应用[M].国防工业出版社, 1963.
    [53]张沛霖,张仲渊.压电测量[M].国防工业出版社, 1983.
    [54]王矜奉.压电振动[M].科学出版社, 1989, 8.
    [55]孙宝元,张贻恭.压电石英力传感器及动态切削测力仪[M].计量出版社, 1985.
    [56]江克斌,屠义强,邵飞.结构分析有限元原理及ANSYS实现[M].国防工业出版社, 2005.
    [57]尚晓江. ANSYS结构有限元高级分析方法与范例应用[M].中国水利水电出版社, 2006.
    [58]博弈创作室. ANSYS 9.0经典产品基础教程与实例详解[M].中国水利水电出版社, 2006 .
    [59]祝效华,余志祥. ANSYS高级工程有限元分析范例精选[M].电子工业出版社, 2004.
    [60]孙松良.机器人多维力传感器结构设计[D].合肥工业大学, 2005, 5.
    [61]博弈创作室. ANSYS9.0经典产品高级分析技术与实例详解[M].中国水利水电出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700