用户名: 密码: 验证码:
Zr基大块非晶合金生物相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用电弧熔炼/水冷铜模吸铸法制备了不同的Zr基大块非晶合金。利用X射线衍射分析仪(XRD)、光学显微系统(OM)、扫描电子显微镜(SEM)、示差扫描量热仪(DSC)、差热分析仪(DTA)、Instron力学试验机、电化学设备、等离子质谱仪(ICP-MS)、X射线光电子能谱仪(XPS)、细胞培养技术和四唑盐(MTT)比色法等实验手段系统研究了不同Zr基大块非晶合金的结构、热稳定性、晶化行为、压缩力学性能、电化学行为、离子溶出及细胞毒性等。
     本论文首先研究了Zr_(65-x)Nb_xCu_(17.5)Al_(7.5)Ni_(10) (x=0, 2, 5%)大块非晶合金在模拟体液中的极化行为。结果表明,所有的合金都能自钝化且显示出低的钝化电流密度,意味着该体系合金具有良好的耐蚀性能。Nb的添加进一步显著提高了合金的抗点蚀能力。离子溶出实验表明,Nb的添加显著降低了大块非晶合金离子的析出,尤其是毒性较强的Ni, Cu离子,这可能是由于Nb促进了高保护性钝化膜的快速形成。
     考虑到Ni对人体具有毒副作用,利用Pd, Fe等无毒元素替换Zr_(65)Nb_5Cu_(17.5)Al_(7.5)Ni_(10)大块非晶合金中的Ni开发出了大块非晶合金Zr_(60)Nb_5Cu_(17.5)Ni_5Pd_5Al_(7.5)(样品A)和两种无镍型大块非晶合金Zr_(60)Nb)5Cu_(22.5)Pd)5Al_(7.5)(样品B)和Zr_(60)Nb_5Cu_(20)Fe_5Al_(10)(样品C)。热学性能测试表明该体系非晶合金具有高的热稳定性,样品A和样品C的过冷液相区ΔTx分别高达108℃和99℃。晶化行为研究表明,三种合金在退火过程中均优先析出二十面体准晶相。力学测试表明三种合金(样品A,B,C)都显示出高强度,分别达到1697MPa,1724 MPa和1795MPa,以及高的塑性应变,分别达到13.2%,3.58%和9.5%。在模拟体液中的电化学测试表明,三种合金都显示出低的钝化电流密度以及高的点蚀电位,意味着合金具有优异的耐蚀性能。XPS分析表明,钝化膜中富集着高耐蚀的Zr,Nb,Al氧化物可能是合金具有优异耐蚀性的主要原因。
     细胞毒性试验表明,两种无镍型Zr基大块非晶合金表面上的细胞具有与Ti-6Al-4V合金相似甚至更高的吸光度。SEM观察发现,细胞非常饱满,能够较好地贴附且呈椭圆形铺展在合金表面上,这表明这两种无镍型Zr基代大块非晶合金均具有优异的生物相容性。进一步的XPS分析发现细胞培养后的大块非晶合金表面形成了富Zr和Nb等高生物活性的氧化物,这可能是其具有低的细胞毒性的主要原因。
In this dissertation, different Zr-based bulk metallic glasses were prepared by copper mold casting. their structure was characterized by X-ray diffraction (XRD). Thermal response was investigated using differential scanning calorimetry (DSC) and differential thermal analysis (DTA). Instron mechanical testing system was employed to evaluate their mechanical properties. The corrosion behavior of the alloys obtained was investigated in artificial body fluid by electrochemical measurements. metal ion release of different BMGs were determined in PPb (ng/ml) level with inductively coupled plasma mass spectrometry (ICP-MS) after being immersed in artificial body fluid at 37℃for 20days. The potential cytotoxicity of the BMG was evaluated through cell culture for one week followed by 3-(4,5-Dimethylthiazol-2-yl-) -2,5- diphenyltetrazo- lium bromide (MTT) assay. The fracture surface, the morphologies of the samples after corrosion, and the cell morphologies after cell culture were investigated using Scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) was employed to characterize the composition and chemical states of elements in the passive film formed after potentiodynamic polarization and in the surface of the alloy samples after cell culture.
     The corrosion behaviors of the Zr_(65-x)Nb_xCu_(17.5)Al_(7.5)Ni_(10) (x=0, 2, 5%) BMGs were firstly investigated in artificial body fluid by electrochemical measurements. It was found that the Zr-based alloys with different Nb contents were spontaneously passivated and exhibited significantly low passive current density in artificial body fluid,and Nb enhanced significantly the corrosion resistance of the Zr-based BMG. On the other hand, metal ion release of different BMGs were determined in PPb (ng/ml) level with inductively coupled plasma mass spectrometry (ICP-MS) after being immersed in artificial body fluid at 37℃for 20days. It was found that the addition of Nb considerably reduced the ion release of all kinds of metals of the base system, especially Ni, Cu. This is probably attributed to the rapid formation of highly protective film because of Nb addition.
     The attempt to reduce or remove the cytotoxic Ni in the Zr_(65)Nb_5Cu_(17.5)Al_(7.5)Ni_(10) BMG led to the development of a Ni-reduced BMG (Zr_(60)Nb_5Cu_(17.5)Ni_5Pd_5Al_(7.5)) and two Ni-free BMGs (Zr_(60)Nb_5Cu_(22.5)Pd_5Al_(7.5) and Zr_(60)Nb_5Cu_(20)Fe_5Al_(10)). DSC analyses reveal that the Zr_(60)Nb_5Cu_(17.5) -Ni_5Pd_5Al_(7.5) and Zr_(60)Nb_5Cu_(20)Fe_5Al_(10) BMGs exhibit high thermal stability, as indicated by the largeΔTx of 108℃and 99℃, respectively. In addition, preferential formation of quasicrystals occured in all of the three BMGs upon annealing.
     Studies on the compressive mechanical behavior and fracture feature revealed that the three BMGs of Zr_(65)Nb_5Cu_(17.5)Al_(7.5)Ni_(10), Zr_(60)Nb_5Cu_(22.5)Pd_5Al_(7.5) and Zr_(60)Nb_5Cu_(20)Fe_5Al_(10) all exhibit superior strength with fracture strength of 1697MPa,1724 MPa and 1795MPa,and improved plasticity with plastic strain as high as 13.2%,3.58%and 9.5%, respectively. The corrosion behaviors of the BMGs obtained were investigated in artificial body fluids by electrochemical polarization. It was found the BMGs all exhibit quite low passive current density and high pitting potential, indicating excellent corrosion resistance. XPS analysis revealed that the passive films formed after anodic polarization was enriched in zirconium, niobium and aluminum oxides, which are attributed to the improvement of corrosion resistance.
     The potential cytotoxicity of the two Ni-free BMGs was evaluated through cell culture for one week followed by 3-(4,5-Dimethylthiazol-2-yl-)-2,5-diphenyltetrazolium bromide (MTT) assay. It was found that The Ni-free BMGs show an absorbance similar to or even higher than that of Ti-6Al-4V alloy, implying that the BMGs have higher cell viability and proliferation activity. SEM observation demonstrates that NIH/3T3 cells can closely adhere and well extend on the surfaces of the Ni-free BMGs. This indicates that the BMGs developed exhibit excellent biocompatibility. XPS analysis revealed that the surface of the alloy samples after cell culture was enriched in highly biocompatible Zr-, and Nb- oxides, which account for the reduced cytotoxicity or good biocompatibility of the Ni-free BMGs.
引文
[1] Luborsky F E. Amorphous Metallic Alloys. in: Luborsky F E ed. Amorphous Metallic Alloys. London: Butterworths, 1983: 1
    [2] Luborsky F E. Amorphous Metallic Alloys. in: Luborsky F E ed. Amorphous Metallic Alloys. London: Butterworths, 1983: 2~3
    [3] Turnbull D, Cohen M H. Concerning Reconstructive Transformation and Formation of Glass, J Chem Phys, 1958, 29(8): 1049~1054
    [4] Klements W, Willens R H, Duwez P. Non-Crystalline Structure in Solidified Gold-Silicon Alloys, Nature, 1960, 187(4272): 869~870
    [5] Johnson W L. Bulk metallic glasses — a new engineering material. Current Opinion in Solid State & Materials Science, 1996, 1 (3): 383~386
    [6] Weeber A W, Bakker H. Amorphization by ball milling (a review). Physica B, 1988, 153 (1-3): 93~135
    [7] Chen H S, and Turnbull D. Formation, Stability and Structure of Palladium-silicon Based Alloy Glasses. Acta Metallurgica, 1969, 17(8): 1021~1031
    [8] Naka N, Kita Y T. Rapidly Quenched Metals. ed. B. London: Cantor, MetalsSociety, Masumoto, 1978: 251~253
    [9] Steinberg J, Lord A E, Lacy L L et al. Production of bulk amorphous Pd77.5Sil6.5Cu6 in a containerless low gravity environment. Appl Phys Let, 1981, 38(3):135~137
    [10] Perepezko J H, Smith J S. Glass formation and crystallization in highly undercooled Te-Cu alloys. J Non-Cryst Solids, 1981, 44 (1): 65~83
    [11] Inoue A, Zhang T, Masumoto T. Al-La-Ni amorphous alloys with a wide supercooled liquid region. Mater Trans JIM, 1989, 30 (12): 965~972
    [12] Inoue A, Kita K, Zhang T et al. An amorphous La55Al25Ni20 Alloy Prepared by Water Quenching. Mater Trans JIM, 1989,30(9): 722~725
    [13] Inoue A, Zhang T, Masumoto T. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater Trans JIM, 1990, 31(3): 177~183
    [14] Inoue A, Zhang T, Nishiyama N. Preparation of 16 mm diameter rod of amorphous Zr65Al 7.5Ni10Cu 17.5 alloy. Mater Trans JIM, 1993, 34(12): 1234~123
    [15] Peker A, Johnson W L. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10Be22.5. Appl Phys Lett, 1993, 63 (17): 2342~2344
    [16] Inoue A, Zhang T, Masumoto T. Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method. Mater Trans JIM, 1990, 31 (5): 425~428
    [17] Tan H, Zhang Y, Li Y et al. Optimum glass formation at off-eutectic composition and its relation to skewed eutectic coupled zone in the La based La-Al-(Cu, Ni) pseudo ternary system. Acta Mater, 2003, 57(15): 4551~4561.
    [18] Inoue A, Kato A, Zhang T et al. Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater Trans JIM, 1991, 32(7): 609~616
    [19] Ma H, Shi L L, Xu J et al. Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl Phys Lett, 2005, 87 (18): 181915-1~181915-3
    [20] Inoue A, Gook J S. Fe-based ferromagnetic glassy alloys with wide supercooled liquid region. Mater Trans JIM, 1995, 36 (9): 1180~1183
    [21] Inoue A, Zhang T, Itoi T et al. New Fe-Co-Ni-Zr-B amorphous alloys with wide supercooled liquid regions and good soft magnetic properties. Mater Trans JIM, 1997, 38 (4): 359~362
    [22] Lu Z P, Liu C T, Thompson J R et al. Structural amorphous steels. Phys Rev Lett, 2004, 92(24): 245503~245506
    [23] Inoue A, Nishiyama N, Matsuda T. Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40 mm in diameter by water quenching. Mater Trans JIM, 1996, 37 (2): 181~184
    [24] Schroers J, Johnson W L. Ductile bulk metallic glass. Phys Rev Lett, 2004, 93(25): 255506-1~255506-4
    [25] Zhang T, Inoue A. Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization. Mater Trans JIM, 1998, 39 (10): 1001~1006
    [26] Zhang T, Inoue A. Preparation of Ti-Cu-Ni-Si-B amorphous alloys with a large supercooled liquid region. Mater Trans JIM, 1999, 40 (4): 301~306
    [27] Akatsuka R, Zhang T, Koshiba H, et al. Preparation of new Ni-based amorphous alloys with a large supercooled liquid region. Mater Trans JIM, 1999, 40 (3): 258~261
    [28] Lee M H, Lee J Y, Bae D H et al. A devlopment of Ni-based alloys with enhanced plasticity. Intermetallics, 2003, 12(10-11): 1133~1137
    [29] Xu D H, Duan G, Johnson W L. Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys Rev Lett, 2004, 92(24): 245504-1~245504-4
    [30] Dai C L, Guo H, Xu J et al. A new centimeter-diameter Cu-based bulk metallic glass. Scripta Mater, 2006, 54(7): 1403~1408
    [31] Shen B, Koshiba H, Inoue A et al. Bulk glassy Co43Fe20Ta5.5B31.5 alloy with high glass-forming ability and good soft magnetic properties. Mater Trans, 2001, 42(10): 2136~2139
    [32] Ren Y L, Zuo J H, Qiu K Q et al. New Nd-based bulk metallic glass. Acta Metal Sinica, 2004, 40(3): 301~304
    [33] Chiriac H, Lupu N, Rao K V. Low field magnetic properties in bulk glassy Nd50Fe40Al10 hard magnets. Scripta Mater, 2001, 44(8-9): 1379~1382
    [34] Li H, Ghatu S, Gao X L et al. Negative strain rate sensitivity and compositional dependence of fracture strength in Zr/Hf based bulk metallic glasses. Scripta Mater, 2003, 49(11): 1087~1092
    [35] Zhang B, Zhao D Q, Wang W H et al. Amorphous metallic plastic. Phys Rev Lett, 2005, 94(15): 205502-1~205502-4
    [36] L?ffler, J?rg F. Bulk metallic glasses. Intermetallics, 2003, 11 (6): 529~540
    [37] Debenedtti P G, Stillinger F H. Supercooled liguids and the glass transition. Nature, 2001, 410(6825): 259~267
    [38] Turnbull D. Under what condition can a glass be formed?. Con temp Phys, 1969, 10(5): 473~488
    [39] Gibbs J W. Collected works. New York: Longmans, 1931: 55~56
    [40] Greer A L. Materials Science: Confusion by design. Nature, 1993, 366(6467): 303~304
    [41] Inoue A. Bulk glassy and nonequilibrium crystalline alloys by stabilization of supercooled liquid: fabrication, functional properties and applications (Part 1). Proc. Japan Acad., 2005, 81(B): 156~171
    [42] Inoue A. High strength bulk amorphous alloys with low critical cooling rates. Mater Trans JIM, 1995, 36(7): 866~875
    [43] Wang D, Li Y, Sun B B et al. Bulk metallic glass formation in the binary Cu-Zrsystem. Appl Phys Lett, 2004, 84 (20): 4029~4031.
    [44] Inoue A, Zhang T. Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method. Mater Trans JIM, 1996,37(2): 185~187
    [45] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater, 2000, 48 (1): 279~306
    [46] Lu Z P, Liu C T. Glass formation criteria for various glass-forming systems. Phys Rev Lett, 2003, 91(11): 115505-1~115505-4.
    [47] Inoue A, Kata K, Zhang T et al. La55Al25Ni20 amorphous alloy prepared by water quenching. Mater Trans JIM, 1989, 30(9): 722~727
    [48] Drehman A J, Greer A L, Turnbull D. Bulk formation of metallic glass: Pd40Ni40P20. Appl Phys Lett, 1982, 41(8): 716~719
    [49] Srivastava R M, Eckert E, Loser W et al. Cooling rate evaluation for bulk amorphous alloys from eutectic microstructures in casting processes. Mater Trans JIM, 2002, 43(7): 1670~1675
    [50] Nishiyama N, Inoue A. Flux treated Pd-Cu-Ni-P amorphous alloy having low critical cooling rate. MaterTrans JIM, 1997, 38(5): 464~472
    [51] Li Y. Easy glass formation in La- and Pd- based alloys by Bridgman solidification. Mater Sci Foru, 1999, 312-314(3): 247~252
    [52] 周飞, 卢柯. 非晶态合金条带高压复合法制备大块非晶态合金. 材料研究学报, 1997, 11(2): 127~130
    [53] Johnson W L. Bulk glass-forming metallic alloys: science and technology. MRS Bulletin, 1999, 24(10): 42~56
    [54] Telford M. The case for bulk metallic glass. Materials Today, 2004, 7(3): 36~43
    [55] Gilbert C J, Ritchie M R O, Johnson W L. Fracture toughness and fatigue-crack propagation in a Zr-Ti-Cu-Ni-Be bulk metallic glass. Appl Phys Lett, 1997, 71(4): 476~478
    [56] Lowhaphandu P, Lewandowski J J. Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be. Scripta Mater, 1998, 38(12): 1811~1817
    [57] Inoue A. Stabilization and high strain-rate superplasticity of metallic supercooled liquid. Mater Sci Eng A, 1999, A 267(2): 171~183
    [58] Nieh T G, Wardsworth J, Liu C T et al. Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region. Acta Mater, 2001, 49 (15): 2887~2896
    [59] Gilbert C J, Schroeder V, Ritchie R D. Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metall Mater Trans A, 1999, 30A(7): 1739~1753
    [60] 郭贻诚, 王震西.非晶态物理学.北京:科学出版社, 1984: 16~20
    [61] Pang S J, Zhang T, Kimura H et al. Corrosion behavior of Zr-(Nb-)Al-Ni-Cu glassy alloys. Mater Trans JIM, 2000, 41(11): 1490~1494.
    [62] Zhang T, Pang S J, Asami K et al. Glassy Ni-Ta-Ti-Zr(-Co) alloys with high thermal stability and high corrosion resistance. Mater Trans, 2003, 44(11): 2322~2325.
    [63] Inoue A. Bulk Amorphous Alloys: Practical Characteristics and Applications. Switzerland: Trans Tech Publication Ltd, 1999:141~150.
    [64] Inoue A, Takeuchi A. Recent progress in bulk glassy alloys. Mater Trans JIM, 2002, 43(8): 1892~1906
    [65] Inoue A, Gook J S. Fe-based feromagnetic glassy alloys with wide supercooled liquid region. Mater Trans JIM, 1995,36(9): 1180~1184
    [66] Saotome Y, Zhang T, Inoue A et al. Superplastic nanoforming of Pd-based amorphous alloy. Scripta Mater, 2001, 44(11): 1541~1545
    [67] Kim H S, Kato H, Inoue A et al. Microforming of bulk metallic glasses: Constitutive modelling and applications. Mater Trans, 2004, 45(4): 1228~1232.
    [68] Schroers J, Paton N. Amorphous metal alloys form like plastics. Advanced Mater Proc, 2006, January: 61~63
    [69] Kiminami C S, Basim N D, Kaufman M J et al. Challenges in the development of aluminum-based bulk amorphous alloys. Key Eng Mater, 2001, 189-191: 503~508.
    [70] Das J, Tang M B, Eckert J et al. “Work-hardenable“ ductile bulk metallic glass. Phys Rev Lett, 2005, 94(20): 205501-1~205501-4.
    [71] Liu L, Sun M, Chen Q et al. Crystallization, mechanical and corrosion properties of Zr-Cu-Ni-Al-Nb bulk glassy alloys. Acta Phys Sinica, 2006, 55(4): 1930~1935.
    [72] Bossuyt S, Demetriou M D, Greer A L et al. Transient deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids-a self-consistent dynamic free volume model. Mater Res Soc Symp Proc, 2003,754: 269~274.
    [73] Johnson W L, Jun L, Demetriou M D. Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids-a self consistent dynamic free volume model. Intermetallics, 2002, 10(11-12): 1039~1046.
    [74] Kelton K F. A new model for nucleation in bulk metallic glasses. Philos Mag Lett, 1998, 77(6): 337~343.
    [75] Wang D, Li Y, Sun B B et al. Bulk metallic glass formation in binary Cu-Zr system. Appl Phys Lett, 2004, 84(20): 4029~4031
    [76] Johnson W L, Samwer K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys Rev Lett, 2005, 95(19): 195501-1~195501-4.
    [77] Lewandosky J J, Wang W H, Greer A L. Intrinsic plasticity or brittleness of metallic glasses. Philos Mag Lett, 2005, 85(2): 77~87.
    [78] Scopigno T, Ruocco G, Sette F et al. Is the fragility embedded in the properties of its glass? Science, 2003, 302(31): 849~852.
    [79] Novikov V N, Sokolov A P et al. Poisson’s ratio and the fragility of glass-forming liquids. Nature, 2004, 431(7011): 961~963.
    [80] Dyre J C. Heirs of liquid treasures. Nature Mater, 2004, 3(11): 749~750.
    [81] Battezzati L. Is there a link between melt fragility and elastic properties of metallic glasses? Mater Trans, 2004, 45(4): 1228~1232.
    [82] Lind M L, Duan G, Johnson W L. Isoconfigurational elastic constants of a bulk metallic glass forming liquid near the glass transition and their relationship to liquid viscosity. Phys Rev Lett, 2006, in press.
    [83] Ichitsubo T, Matsubara E, Yamamoto T et al. Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses. Phys Rev Lett, 2005, 95(24): 245501-1~245501-4.
    [84] Wang J G, Choi BW, Nieh T G, Liu C T. Nano-scratch behavior of a bulk Zr-10Al-5Ti-17.9Cu-14.6Ni amorphous alloy. J Mater Res, 2000,15(4):913~922
    [85] Hiromoto S, Tsai A P, Hanawa T et al. Effect of chloride ion on the anodic polarization behavior of Zr65Al7.5Ni10Cu7.5 amorphous alloy in phosphate buffered solution. Corr Sci, 2000,42(9): 1651~1660.
    [86] Hiromoto S, Tsai A P, Hanawa T et al. Effect of PH on the polarization behaviorof Zr65Al7.5Ni10Cu7.5 amorphous alloy in a phosphate-buffered solution. Corr Sci, 2000,42(12): 2193~2200
    [87] Hiromoto S, Tsai A P, Hanawa T et al. Effect of surface finishing and dissolved oxygen on the anodic polarization behavior of Zr65Al7.5Ni10Cu7.5 amorphous alloy in phosphate buffered solution. Corr Sci, 2000,42(12): 2167~2185.
    [88] Horton J A, Parsell D E. Biomedical potential of a Zirconium-based bulk metallic glass. Mater Res Soc Symp Proc, 2003, 754: CC1.5.1~CC1.5.6.
    [89] Jin K F, Loffler J F. Bulk metallic glass formation in Zr-Cu-Fe-Al alloys. Appl Phys Lett, 2005, 86(24): 241909-1~241909-3.
    [90] Buzzi S, Jin K F, Loffler J F et al. Cytotoxicity of Zr-based bulk metallic glasses. Intermetallics, 2006, 14(7):729~734.
    [91] Peter W H, Buchanan R A, Liu C T et al. Localized corrosion behavior of a zirconium-based bulk metallic glass relative to its crystalline state. Intermetallics, 2002, 10(11-12): 1157~1162.
    [92] Mudali U K, Scudino S, Kuhn U et al. Polarization behavior of the Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 alloy in different microstructural states in acid solutions. Scripta Mater, 2004, 50(11): 1379~1384.
    [93] Raju V R, Kuhn U, Eckert J et al. Corrosion behavior of Zr-based bulk glass-forming alloys containing Nb or Ti. Mater Lett, 2002, 57(1): 173~177.
    [94] Liu L, Qiu C L, Zhou H et al. The effect of microalloying of Hf on the corrosion behavior of ZrAlCuNi bulk metallic glass. J Alloys Compd, 2005, 399(1-2): 144~148.
    [95] Qin C L, Asami K, Zhang T et al. Corrosion behavior of Cu-Zr-Ti-Nb bulk glassy alloys. Mater Trans, 2003, 44(4): 749-753.
    [96] Hanawa T. Metal ion release from metal implants. Mater Sci Eng C, 2004, 24(6-8): 745~752.
    [97] Inoue A, Shibata T, Zhang T. Effect of additional elements on glass transition behavior and glass formation tendency of Zr-Al-Cu-Ni alloys. Mater Trans JIM, 1995, 36(12): 1420~1426
    [98] Inoue A, Zhang T, Saida J, et al. Formation of icosahedral quasicrystalline phase in Zr-Al-Ni-Cu-M (M=Ag, Pd, Au or Pt) systems. Mater Trans JIM, 1999, 40 (10): 1181~1184
    [99] Bruck H A, Christman T, Rosakis A J, Johnson WL. Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys. Scr Metall Mater,1994,30(2):429~434.
    [100] Bruck H A, Rosakis A J, Johnson W L. Dynamic compressive behaviour of Beryllium bearing bulk metallic glasses. J Mater Res, 1996, 11 (2): 503~511
    [101] Kulik T. Nanocrystallization of metallic glasses. J Non-Cryst Solids, 2001, 287 (1-3): 145~161
    [102] Inoue A, Zhang T, Chen M W, et al. Ductile quasicrystalline alloys. Appl Phys Lett, 2000, 76 (8): 967~969
    [103] Saida J, Matsushita M, Inoue A. Nano icosahedral quasicrystals in Zr-based glassy alloys. Intermetallics, 2002, 10(11-12): 1089~1098
    [104] Inoue A, Zhang T, Chen M W et al. Formation and properties of Zr-based bulk quasicrystalline alloys with high strength and good ductility. J Mater Res, 2000, 15(10): 2195~2208
    [105] Saida J, Matsushita M, Li C. Effects of Ag and Pd on the mucleation and growth of the nano-icosahedral phase in Zr65Ni10Cu7.5Al7.5M10(M=Ag or Pd) metallic glasses. Philo Maga Lett, 2000, 80(11): 737~743
    [106] Xing L Q, Li Y, Ramesh K T et al. Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys Rev B, 2001, 64(3): 18021-1~18021-4
    [107] Hufnagel T C, Fan C, Ott R T et al. Controlling shear band behavior in metallic glasses through microstructural design. Intermetallics, 2002, 10(11-12): 1163~1166
    [108] Pampillo C A. Localized shear deformation in a glassy metal. Scr Metall, 1972, 6 (10): 915~917
    [109] Polk D E, Turnbull D. Flow of melt and glass forms of metallic alloys. Acta Metall, 1972, 20 (4): 493~498
    [110] Kanungo B P, Glade S C, Asoka-Kumar P et al. Characterization of free volume changes associated with shear band formation in Zr- and Cu-based bulk metallic glasses. Intermetallics, 2004, 12(10-11): 1073~1080
    [111] 肖纪美, 曹楚南. 材料腐蚀学原理. 北京:化学工业出版社,2002: 49
    [112] 李世谱. 生物医用材料导论. 武汉:武汉工业大学出版社,2000: 59
    [113] Eisenbarth E, Velten D, Uller M M et al. Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials, 2004, 25(26): 5705~5713
    [114] Helsen J A, Breme J. Metals as biomaterials. New York: Wiley, 1998: 30~40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700