用户名: 密码: 验证码:
熔融缩聚合成聚乳酸及原位聚合改性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
资源危机和生态问题引发了全世界对于可持续发展材料的研究热潮,聚乳酸以其良好的生物相容性和可降解性成为高分子材料研究的热点之一。
     制备聚乳酸较成熟的工艺是丙交酯开环聚合,但开环聚合法工艺路线长,产物成本高,限制了聚乳酸的广泛应用。如何控制工艺路线,降低材料成本,是聚乳酸广泛应用迫切需要解决的问题,本文以耐热级L-LA为原料,直接熔融缩聚合成较高分子量聚乳酸,减少了制取中间产物丙交酯的过程,研究聚乳酸的低成本合成技术,以实现聚乳酸类产物的应用。
     直接熔融缩聚合成的均聚物聚乳酸分子量较低,质脆,热稳定性差,本文选用亚磷酸三苯酯(TPPi)对其进行扩链增粘,碱处理后经MAPP接枝的植物纤维对其进行原位聚合改性,期望在降低聚乳酸成本的同时,提高其性能。
     本文首先对催化剂种类、催化剂用量、乳酸的预聚合条件、聚合时间、聚合温度、TPPi的扩链工艺等反应条件对聚乳酸分子量的影响进行了研究,为植物纤维原位聚合改性PLA可降解材料提供理论数据。在确定制备高分子量聚乳酸的熔融缩聚最佳工艺条件之后,将处理和未处理的植物纤维在乳酸预聚合后加入到反应体系中,之后的聚合工艺条件不变,制得植物纤维原位聚合改性的PLA可降解材料。采用红外光谱(IR)、凝胶渗透色谱(GPC)、拉伸测试机、示差扫描量热仪(DSC)、热失重(TGA)、扫描电镜(SEM)等,探讨了植物纤维的加入、接枝处理、含量对基体聚乳酸的重均分子量和结构,材料的力学性能、热性能和降解性能的影响,并结合材料颜色的变化情况发现,植物纤维经过接枝处理后、加入质量分数为乳酸预聚物的0.2%时,产物颜色较浅,各项性能较优,其拉伸强度、断裂伸长率、开始热分解温度较纯PLA分别提高了14.07%、21.35%、9.75%,但冲击强度却较纯PLA仅提高了1.32%。通过对材料热降解和水降解的研究发现,改性植物纤维的加入使得材料的降解性能较纯PLA有所下降。
Polylactic acid (PLA) has been the research focus of macromolecule chemistry with its wonderful biologic compatibility and biodegradable properties.
     The conventional produce of PLA is a ring-opening polymerization, but this method limits its widespread application because of the long route and the high cost. How to control the process route and reduce material costs are the main factors to expand the application of PLA. Using L-LA that resists heat as raw material, we studied on the synthesis of polylactic acid by low-cost technology to realize its widely applications.
     PLA prepared by direct melt polycondensation is still limited in applications due to its low molecular weight, intrinsic brittleness, and poor thermal stability. Accordingly, we study on the effect of triphenyl phosphite (TPPi) enhancing the intrinsic viscosity of PLA, and the modification of PLA by in situ polymerization process with the plant fibers that graft MAPP after alkali treatment as modifier. Expect for the costs of PLA are reduced, while the performance of PLA.are improved.
     First of all, the melt condensation polymerization conditions for the polylactic acid had been discussed such as types and dosage of catalysts, prepolymerization, the reaction time and temperature, TPPi, which was the fundamental theory for the preparation of the modification of PLA by in situ polymerization process with the plant fibers. After the optimum conditions of high molecular weight Poly(lactic acid)(PLA) polymers by melt polycondensation were confirmed, the modified and unmodified plant fibers were added to the reaction system behind the prepolymerization of lactic acid, then the polymerization conditions remain unchanged. Then several instruments such as infrared spectrum (IR), gel permeation chrom- atography (GPC), tensile testing machine, differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), scanning electron microscope(SEM) and so on had been employed in this study. The effect of the addition of modified and unmodified plant fibers and their content on the molecular weight and structure of polylactic acid and properties of the composites including mechanical properties, thermal properties and degradation properties was discussed. Besides, the color of the composites was investigated. The results showed that when the content of plant fibers modified with MAPP is 0.2%, the product’s color was shallow, meanwhile, the properties of the product was superior. At the moment, the tensile strength, the elongation at break, the temperature of starting thermal-decomposition increased by 14.07%, 21.35%, 9.75% than pure PLA, respectively. But the impact strength reduced by 5.26%. According to study on the thermal and water degradation of product, the degradation character- istic of product decreased with the addition of modified plant fibers. Whereas the ma- terial’s vicat softening temperature is approximately 38℃, it could be used as the fixed material of bone fracture.
引文
[1]任杰.可降解与吸收材料[M],化学工业出版社,2003:2.
    [2]李雅明,卢伟,杨钢,等.聚乳酸的改性研究及应用[J].胶体与聚合物,2009,27(1):45-47.
    [3]赵丹,冯辉霞,陈娜丽,等.聚乳酸的合成工艺及应用研究[J].应用化工,2009,38(1):128-130.
    [4]王军,张健.聚乳酸的合成及其在生物医药领域的应用进展[J].化学与生物工程,2008,25(7):5-9.
    [5]张颜.直接缩合法制备可生物降解材料聚乳酸的研究[D].浙江大学硕士论文,2002.
    [6]侯晓娜,汪朝阳,赵海军,等.氨基酸改性聚乳酸[J].高分子通报,2007,5:48-53.
    [7]王龙海.原位聚合法制备全生物降解苎麻纤维增强PLLA/PCL复合材料及其性能的研究[D].东华大学硕士论文,2006.
    [8]刘俊,刘义荣.聚乳酸的合成及应用[J].生物医学工程学杂志,2001,2(18):285-287.
    [9] Lalla JK, Chung N. Biodegradable polymer polylactic acid Part 1:synthesis, evaluation and structure elucidation[J]. Indian Drugs, 1990, 10(27): 516.
    [10]朱留沙,严希康.生物可降解材料-聚乳酸的研究与开发进展[J].上海医药情报研究,2009,43:43-47.
    [11] Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid)[J]. 2008, 33: 820-852.
    [12]张颜.直接缩合法制备可生物降解材料聚乳酸的研究[D].浙江大学硕士论文,2002.
    [13] Kricheldorf HR. Synthesis and application of polylactides[J]. Chemosphere ,2001 ,43 (1) : 49-54.
    [14] Garlotta D. A Literature Review of Poly (Lactic Acid) [J]. Journal of Polymers and the Environment, 2001, 9(3): 63-84.
    [15]朱久进,王远亮,全学军,等.乳酸合成丙交酯的研究现状[J].化学世界,2005,(3):173-176.
    [16] Jerome R, Jacobson S. Poly lactide (PLA): a NewWay of Production[J]. Polymer eng and sci, 1999,39: 1311-1319.
    [17]王勤,张娟.乳酸缩聚反应动力学[J].应用化学,1994,1(11):76-79.
    [18]王珍萍,周科朝,周涛.乳酸直接缩聚制备聚乳酸的动力学[J]. 2007,2(12):87-90.
    [19] Gupta M C, Deshmukh V G. Thermal oxidative degradation of poly-lactic acid[J].Colloid&Polymer Science, 1982, 260: 308-311.
    [20]史铁钧,董智贤.聚乳酸的性能、合成方法及应用[J].化工新型材料,2000,29(5):13-16.
    [21] Ajioka M, Enomoto K, Suzuki K, et a1. Basic properties of polylactic acid produced by the direct condensationpolym erization of lactic acid[J]. Bulletin of Chemical Society Japan, 1995, 68: 2125-2131.
    [22] Kim KW. , Woo SI. Synthesis of high-molecular-weight poly(L-lactic acid) by direct polycondensation[J]. Macromolecular Chemistry and Physics, 2002, 203(15): 2245-2250.
    [23]赵耀明,张军,麦杭珍.直接缩合法合成聚乳酸的研究[J].合成纤维,2001,30(3):3-8.
    [24]黎莉,唐颂超.溶液共沸法直接合成较高相对分子质量的聚乳酸[J].华东理工大学学报(自然科学版),2006,18(6):672-675.
    [25]王征,王婷,赵学明.直接缩合法合成低相对分子质量聚乳酸的研究[J].离子交换与吸附,2000,33(1):48.
    [26]曹丹.聚乳酸/SiO2纳米复合材料的原位聚合法制备与表征[D].浙江大学,2007.
    [27] Hiltunen K, J ukka V. Use of different diols in the synthesis of low-molecular-weight lactic-acid-based telechelic prepolymers[J]. Journal of Applied Polymer Science, 1998, 67(6): 1017-1023.
    [28] Moon S I, Lee C W, Miyamoto M, et al. Melt polycondensation of L-lactic acid with Sn(II) catalysts activated by various proton acids: A direct manufacturing route to high molecular weight Poly(L-lactic acid)[J].Journal of Polymer Science Part A:Polymer Chemistry, 2000, 38(9): 1673-1679.
    [29]汪朝阳,赵耀明,麦杭珍,等.熔融聚合法直接合成聚乳酸的研究[J].合成纤维,2002,31(2):11-13.
    [30]杨青芳,张爱军,梁建锋,等.熔融阶梯缩聚法合成聚乳酸[J].高分子材料科学与工程,2009,2(25):17-20.
    [31]秦志忠,杨白琴,曹雪琴.生物降解材料-聚乳酸直接合成研究[J].合成技术及应用,2001,15(1):169-172.
    [32]任杰,王秦峰,张乃文.熔融聚合法制备聚乳酸[J].塑料工业,2004,32(5):1-4.
    [33]彭丽佳,苏涛.可作缓释剂的低聚乳酸合成法[J].广西化工,1998,27(2):5-7.
    [34] Moon SI, Lee CW, Taniguchi I, et al. Melt/Solid Polycondensationof L-lactic acid: an alternative route to Poly(L-lactic acid)with high molecular weight, Polymer, 2001, 42(11): 5059-5062.
    [35]杨斌.绿色塑料聚乳酸[M],化学工业出版社,2007:60.
    [36] Seung-Hwan L, Siqun W. Biodegradable polymers/ bamboo fiber biocomposite with bio-based coupling agent [J]. Composites Part A , 2006, 37(1): 80-91.
    [37]曹勇,合田公一.绿色复合材料的研究进展[J].复合材料学报,2007,21(2):119-125.
    [38] Lee S H , Ohkita T, Kitagawa K, et al . Mechanical and thermal flow properties of wood fiber-biodegradable polymers composites[J]. J Appl Polym Sci , 2003, 90: 1900-1905.
    [39]王春红,王瑞.竹原纤维增强聚乳酸完全可降解材料的性能研究[J].工程塑料应用,2008,36(1):8-9.
    [40] Oksman K, Skirfvars M, Selin J F. Natural fibres as reinforcement in polylactic acid (PLA) composites[J]. Composites Science and Technology, 2003, 63(9): 1317.
    [41] Edwin B, Isabelle P, Nicolas M ,et al. Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications?[J]. Composites Science and Technology, 2007, 67(3): 462-470.
    [42] Shanks R, Hodzic A, Ridderhof D. Composites of poly(lactic acid) with flax fibers modified by interstitial polymerization[J]. Journal of Applied Polymer Science, 2006, 99(5): 2305-2313.
    [43]王春红,王瑞.亚麻落麻纤维/聚乳酸基完全可降解复合材料的成型工艺[J].复合材料学报,2008,25(2):63-67.
    [44] Takashi N, Koichi H, Masaru K, et al. Kenaf reinforced biodegradable composite[J]. Composites Science and Technology, 2003, 63 (9): 1281-1286.
    [45] Shinji O. Mechanical properties of kenaf fibers and kenaf/PLA composites[J]. Mechanics of Materials, 2008, (40): 446-452.
    [46]曹勇,吴义强,合田公一.洋麻增强复合材料的开发和应用[J].高分子材料科学与工程,2008,24(7):11-15.
    [47] David P, Tom L A, Walt her B P, et al. Biodegradable composites based on L-polylactide and jute fibres[J]. CompositesScience and Technology, 2003, 63 (9): 1287-1296.
    [48]袁利华,韩建,徐国平.可降解PLA/黄麻新型复合材料的制备与力学性能[J].浙江理工大学学报,2007,24(1):29-30.
    [49] Chen DK, Li J, Ren J. Study on sound absorption property of ramie fiber reinforced poly(L-lactic acid) composites: Morphology and properties[J].Composites Part A:Applied Science and Manufacturing , 2010, 41(8): 1012-1018.
    [50]王龙海.原位聚合法制备全生物降解苎麻纤维增强PLLA/PCL复合材料及其性能的研究[D].东华大学硕士论文,2006.
    [51] Lovino R, Zullo R, Rao M A, et al. Biodegradation of poly(lactic acid) /starch/coir biocomposites under controlled composting conditions [J]. Polymer Degradation andStability,2008,93(1):147-157.
    [52]胡庆军,崔韦,龚兴厚,等.原位聚合PLA/HA复合材料的性能研究[J].塑料工业,2006,34(2):23-26.
    [53] P.Marie-Ame’lie, A.Micha e′l, D.Philippe,et al. New Nanocomposite Materials Based on Plasticized Poly(L-Lactide) and Organo-Modified Montmorillonites:Thermal and Morphological Study[J]. Polymer. 2003, 44: 443-450.
    [54]任现文,江明.交联度对原位聚合法制备聚合物胶束性质的影响及相应的空心球制备[J].高等学校化学学报,2006,27(12):2422-2425.
    [55]车晶,秦凡杨荣杰.聚乳酸/蒙脱土纳米复合材料的原位聚合及表征[J].材料工程,2011,1:28-32.
    [56]刘立柱,马红杰,朱兴松,等.聚乳酸/纳米二氧化硅复合材料分子量的影响因素[J].高分子材料与工程,2008, 24(7):63-65.
    [57]解英,吴宏武.表面处理方法对植物纤维增强高分子基复合材料性能的影响评述[J].化工进展,2010,29(7):1256-1262.
    [58]赵义平,刘敏江,张环.热塑性树脂/植物纤维复合材料的纤维改性方法[J].中国塑料,2001,15(12):17-20.
    [59] Rong Min Zhi, Zhang Ming Qiu, Liu Yuan,et al. The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites[J]. Composites Science and Technology, 2001, 61(10): 1437-1447.
    [60]李新功,吴义强,郑霞,等.植物纤维与生物降解塑料界面相容性研究进展[J]. 2009,37(7):86-89.
    [61] BisandaETN. The effect of alkali treatment on the adhesion characteristics of sisal-fibers[J]. Journal of Applied Polymer Seience,2000, 7: 33-339.
    [62] Leonard Y, Mwaikambo, Martin P. Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization[J]. Journal of Applied Polymer Science, 2002, 84(12): 2222-2234.
    [63] Piedad Gnan, Saioa Garbizu, Rodrigo Llano-Ponte, et al. Surface rnodification of sisal fibers:Effects on the mechanical and thermal properties of their epoxy composites[J].Polymer Composites,2005,26(2):121-127.
    [64]曹勇,柴田信一.甘蔗渣的碱处理对纤维增强全降解复合材料的影响[J].复合材料学报,2006,23(3):60-66.
    [65]赵强,蒲俊文.超声波处理对植物纤维的影响研究进展[J].中华纸业,2008,15:62-67.
    [66] Dieu TV, Phai LT, Ngoc PM, et al. Study on preparation of polymer composites based on polypropylene reinforced by jute fibers[J]. JSME international journal,series A, 2004, 47(4):547.
    [67] Huda MS, Drzal LT, Mohanty AK, et al. Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid)(PLA)and kenaf fibers[J]. Composites Science and Technology,2008,68(2): 424-432.
    [68] Lee SH , Ohkita T. Bamboo fiber (BF)-filled poly(butylenes succinate) bio-composite effect of BF-e-MA on the properties and crystallization kinetics[J]. Holzforschung, 2004b, 58 (5): 537-543.
    [69] Lee SH, Ohkita T, Kitagawa K. Eco-composite from poly(lactic acid) and bamboo fiber[J]. Holzforschung , 2004a, 58 (5): 529-536.
    [70]华东理工大学,郭卫红,李冰,董蓉,等.一种生物质基聚乳酸复合材料的制备方法[P]. CN101570624A,2009.
    [71]同济大学,任杰,于涛,杨铭,等.一种天然纤维增强聚乳酸复合材料及其制备方法[P]. CN101200579A,2008.
    [72]马晓妍.聚乳酸及其共聚物的制备和降解性能研究[D].北京化工大学,2004.
    [73]陈小锋,张政朴.聚乳酸直接合成的研究[J].化学试剂,2004,26(3):143-147.
    [74]秦志忠,秦传香,曹雪琴.聚乳酸的直接合成研究(Ⅱ)[J].合成技术及应用,2003,3(18):1-2.
    [75] Tsuji H, Muramatsu H. Blends of Aliphatic Polyesters: V Non-enzymatic and Enzymatic Hydrolysis of Blends from Hydrophobic Poly(l-lactide) and Hydrophilic Poly(vinyl alcohol),Polymer Degradation and Stability, 2001, 71: 403-413.
    [76]北京理工大学,杨荣杰,谢吉星.一种直接制备高分子量聚乳酸的方法[P]. CN101007867A,2007.
    [77]张春红.废纸-废旧HDPE复合材料的制备研究[D].昆明理工大学硕士论文,2008.
    [78]王亚亮,杨敏鸽,王俊勃,等.苎麻纤维增强复合材料的研究现状[J].材料导报,2008,5(22):342-345.
    [79]揣成智,李树,崔永岩,等.软木纤维增强PP复合材料的研究[J].塑料科技,2001,1(141):11-16.
    [80]罗晓斌,朱定一,石丽敏.基于接触角法计算固体表面张力的研究进展[J].科学技术与工程,2007,19(7):4997-5004.
    [81]肖加余,张小静.高性能天然纤维复合材料及其制品研究与开发现状[J].玻璃钢/复合材料,2000,(2):38-43.
    [82] Takahashi K, Taniguchi I, Miyamoto M, et al. Melt/solid polycondensation of glycolic acid to obtion high-molecular-weight poly(glycolic acid)[J], 2000, 41: 8725-8728.
    [83]杨斌.绿色塑料聚乳酸[M].化学工业出版社,2007:197.
    [84]曾幸荣,吴振耀,侯有军,等.高分子近代测试分析技术[M].华南理工大学出版社,2007:46-56;132-147.
    [85]袁龙飞,甄卫军,徐月,等.聚乳酸/蒙脱石复合材料的溶液插层法制备及其性能表征[J].硅酸盐通报,2009,4(28):679-685.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700