用户名: 密码: 验证码:
寡果糖对人源菌群仔猪肠道菌群结构和宿主代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人的胃肠道中定植着一个非常复杂的微生物菌群,其结构和功能与宿主的健康和疾病有非常密切的关系。益生元是一类人不能消化的食物成分,通过被大肠中的细菌发酵,调节肠道菌群的结构和代谢,改善宿主健康。寡果糖是一种被普遍应用的益生元,很多研究表明它可以促进双歧杆菌的生长,但还没有研究在系统水平上调查寡果糖对肠道菌群的结构和代谢、以及宿主代谢的影响。若直接以人为对象进行研究,存在很多不便,如难以标准化受试者的饮食、采样困难以及伦理问题;很多研究采用人源菌群(Human Flora-associated, HFA)大鼠/小鼠为模型,并取得大量成果,但啮齿类动物消化道的解剖和生理特征与人的显著不同,所得结果有较大的局限性。而猪的消化系统的生理结构与人的相似性很高,更适合构建人肠道菌群的动物模型。因此,本实验室在前期的工作中建立了HFA仔猪模型,证明人的肠道菌群可以在原本无菌的仔猪肠道内定植。本论文以HFA仔猪为模型,用分子生态学的方法研究寡果糖对肠道菌群的组成的影响,并用基于核磁共振(NMR)的代谢组学方法调查寡果糖对肠道菌群代谢和宿主代谢的影响。
     首先我们建立了针对人肠道菌群中最优势的细菌种群之一——柔嫩梭菌类群的类群特异性PCR-DGGE和克隆文库的方法。利用一对柔嫩梭菌类群特异性引物扩增得到239 bp的16S rRNA基因片段可以被DGGE很好地分离。11个健康人的粪便柔嫩梭菌类群DGGE图谱表明此类群的细菌组成具有宿主特异性;用DGGE对一个儿童的粪便柔嫩梭菌类群进行3年的监测,发现结构在前两年间有波动,而在第三年保持稳定。以一个成人的粪便总DNA为模板,用一个细菌通用的上游引物和一个柔嫩梭菌类群特异性的下游引物扩增1143 bp的16S rRNA基因片段,并克隆建库,挑取100个克隆。序列分析表明100个克隆均属于柔嫩梭菌类群;其中64%的克隆来自Faecalibacterium prausnitzii,6%来自Subdoligranulum variabile,2%是产丁酸细菌A2-207,28%来自未知菌种。通过对比克隆的239 bp片段在DGGE中的迁移位置和DGGE图谱中条带的位置,图谱中绝大多数条带的序列得到确定。结果表明柔嫩梭菌类群特异性DGGE和克隆文库是分析监测人肠道菌群中柔嫩梭菌类群的有效方法。
     为研究寡果糖对人源肠道菌群结构的影响,我们采集一27岁的健康男性的新鲜粪便样品制备菌悬液,接种到剖腹产的无菌的仔猪的肠道中,构建了HFA仔猪。10只初生的HFA仔猪被平均分到对照组和益生元组,对照组仔猪食用基本食谱,益生元组仔猪在基本食谱的基础上每天饲喂一定量的寡果糖,如此持续至37日龄。在12日龄、17日龄、25日龄和37日龄收集每只仔猪的粪便样品,并提取粪便总DNA,分别用类群特异性PCR-DGGE和实时定量PCR方法在不同时间点比较两组仔猪的拟杆菌属、双歧杆菌属和柔嫩梭菌类群的组成和数量。在四个时间点都没有观察到寡果糖对双歧杆菌的促进作用,这可能是由于本研究中的HFA仔猪肠道中的双歧杆菌丰度较高,益生元不容易对它们的数量产生显著的提高作用。但寡果糖主要影响了其他细菌:在12日龄,两种未知拟杆菌的水平被提高;25日龄,寡果糖提高了Subdoligranulum variabile的水平,抑制了属于柔嫩梭菌类群的一种未知细菌;37日龄,拟杆菌属的数量被寡果糖显著降低。此工作表明,寡果糖可以影响双歧杆菌之外的肠道细菌。我们发现寡果糖可以刺激S. variabile的生长,已经有研究证明此细菌具有重要的生理功能,所以在今后的工作中有必要将它分离出来并进行功能分析,研究它与益生元和人体健康之间的关系。
     接着,我们用基于NMR的代谢组学方法比较了HFA仔猪大肠不同区域内容物的代谢物组成,研究了大肠内菌群代谢的空间分布规律。用1H NMR图谱技术展示了10只37日龄的HFA仔猪的盲肠、近端结肠、远端结肠内容物和粪便中的生化组成,发现不同部位包含的代谢物种类相似,有很多细菌的代谢物,如短链脂肪酸、有机酸、酚酸、甲胺类物质、各种氨基酸等;也有来自食物、宿主分泌或来源尚未确定的物质,如碳水化合物、胆汁酸和核酸碱基。用多变量统计方法,主成分分析(Principle Component Analysis, PCA)、偏小二乘法(Partial Least Square Discrimination Analysis, PLS-DA)和正交偏小二乘法(Orthogonal Projection on Latent Structure, O-PLS)区分大肠不同区域的内容物和粪便的代谢物图谱,发现短链脂肪酸的含量从盲肠开始延大肠直至粪便逐渐降低,苯乙酸和3-羟基苯丙酸的含量在盲肠和近端结肠中明显高于远端结肠和粪便,支链氨基酸的含量从盲肠到粪便依次升高,糖苷类大分子的相对含量从盲肠到远端结肠逐渐升高。本研究表明,由于大肠不同部位的生理生态状况不同,肠道菌群的代谢活动也有差异。HFA仔猪大肠不同区段的内容物中代谢物的变化与文献报道的人类大肠内容物的生化组成的变化趋势相似,所以有潜力成为研究人肠道菌群代谢的有力模型。基于NMR的代谢组学方法可以快速展现肠道内容物的代谢物组成,反映肠道菌群代谢活动的概貌,可以用于监测肠道菌群的活动,研究外来干预(如益生元、益生素等)对菌群代谢的影响。粪便中的代谢物组成不完全等同于大肠内容物的情况,所以在下一步研究益生元对肠道菌群代谢的影响时,需要分析结肠内容物中的代谢物组成的变化。
     为研究寡果糖对肠道菌群和宿主代谢的影响,5只对照组和5只益生元组仔猪在12日龄、17日龄、25日龄和37日龄的粪便,以及37日龄的近端结肠内容物、远端结肠内容物和尿液被采集。用NMR展示这些样品的生化组成,用正交偏小二乘法(Orthogonal Projection on Latent Structure, O-PLS)比较两组仔猪的NMR图谱。在4个时间点两组仔猪粪便的生化组成没有显著区别。在37日龄,益生元组仔猪的近端结肠内容物中含有较高含量的低聚糖、葡萄糖、乙酸、丙酸和核酸碱基;但寡果糖主要影响了HFA仔猪远端结肠内容物的代谢物组成,提高了低聚糖、葡萄糖、乙酸、乳酸、核酸碱基和多种氨基酸的含量,降低了胆汁酸的含量;益生元组仔猪的尿液中含有较高水平的丙氨酸、甘氨酸、肌酸、磷酸肌酸、乳酸、柠檬酸,但尿囊素和尿素的含量较低,一些由肠道菌群或者由肠道菌群和宿主共代谢产生的代谢物,如二甲胺、苯乙酰甘氨酸、三甲胺、三甲胺氧化物、马尿酸和4-羟苯基乳酸的含量在两组仔猪尿液中有差异。从这些代谢变化推断,寡果糖主要在HFA仔猪远端结肠内发挥益生元功效:寡果糖被结肠菌群发酵产生短链脂肪酸,从而影响了宿主的能量代谢;寡果糖调节菌群对氨基酸的代谢,影响了宿主的氨基酸代谢,改善宿主机体的氮平衡。寡果糖降低结肠中胆汁酸的现象说明它有一定预防结肠癌的作用。寡果糖对结肠菌群/宿主的核酸代谢也有影响,但其机理还需要进一步研究。基于1H NMR的代谢组学技术可以用于监测营养干预对肠道菌群和宿主代谢的影响。
     本研究用HFA仔猪为模型,调查了寡果糖对肠道菌群的组成和代谢以及宿主代谢的影响,为下一步研究菌群结构和菌群功能、菌群代谢和宿主代谢之间的关系提供有益的思路和线索。
Human gastrointestinal tract harbors a diverse and complex microbiota whose composition and activities play important roles in host health and disease. Prebiotics are non-digestible food ingredients that modulate the structure and metabolism of gut microbiota by being fermented by colonic bacteria and thus improve host health. Fructo-oligosaccharides (FOS) are one type of prebiotics which is widely applied in food industry. Many studies demonstrated FOS stimulated the growth of bifidobacteria, but few studies systematically investigated its effects on the composition and activities of gut microflora, as well as the host metabolism. Studying prebiotic effects directly on human beings may have such difficulties as standardizing the diets of volunteers, collecting biopsy samples, and ethical issues etc.; as a consequence, Human Flora-Associated (HFA) mice/rat models are widely used to produce useful results, but the anatomy and physiology of rodent digestive tracts are significantly different from those of human, so the HFA rodent models have low relevance to human biology. Compared to rodents, pigs share more similarities with human in anatomical and physiological characteristics of the digestive system, so they can be better candidates for developing HFA model. Our lab have established HFA piglet model by demonstrating that the human-originated gut microbiota can colonize in the gut of ex-germfree piglets. In this dissertation, using HFA piglet model, we assessed the impacts of FOS on the structure of gut microbiota with microbial ecological techniques, and investigated the influences of FOS on the metabolism of the gut microbiota and the host with NMR based metabonomic methods.
     Before we studied the effects of FOS on the composition of gut microflora, a group-specific PCR-based denaturant gradient gel electrophoresis (DGGE) method was established and combined with group-specific clone library analysis to investigate the diversity of the Clostridium leptum subgroup in human feces. PCR products (239 bp in length) were amplified using C. leptum cluster-specific primers and were well separated by DGGE. DGGE patterns of fecal amplicons from 11 human individuals showed host-specific profiles; patterns of fecal samples collected from a child during 3 years demonstrated the structural succession of the population in the first two years and its stability in the third year. A clone library was constructed with 100 clones, consisting of 1,143 bp inserts of 16S rRNA gene fragments that were amplified from one adult fecal DNA with one forward bacterial universal primer and one reverse group-specific primer. Eighty-six clones produced the 239 bp C. leptum cluster-specific amplicons and the remaining 14 clones did not but still phylogenetically belong to the subgroup. Sixty-four percent of the clones were from Faecalibacterium prausnitzii, 6% from Subdoligranulum variabile, 2% from the butyrate-producing bacterium A2-207 and 28% from unknown species. The identity of most bands in the DGGE profiles of the same adult was determined via comigration analysis with the 86 clones which included the 239 bp group specific fragments. These results suggest that DGGE combined with clone library analysis is an effective technique for monitoring and analyzing the composition of C. leptum cluster in human gut flora.
     To study the influences of FOS on the structure of gut microbiota, fecal suspension was prepared from the fresh fecal sample collected from one healthy 27-year-old male adult donor and inoculated to ex-germfree piglets to produce HFA piglets. 10 newly born HFA piglets were evenly divided into 2 groups: 5 in control group being fed with basal diets, and 5 in prebiotic group having FOS added to the basal diets daily at the dose of 0.5 g/kg body weight/day. The feeding experiment lasted from day 1 to day 37 after the birth of piglets. Fecal samples on day 12, 17, 25 and 37 were collected from each piglet and fecal DNA was extracted. With group-specific PCR-DGGE and real-time PCR, the composition and amounts of Bacteroides genus, Bifidobcterium genus and C.leptum subgroup were compared between control and FOS-fed piglets. FOS did not change the composition or the amount of bifidobacteria, and the possible reason is the number of bifidobacteria in the gut of our HFA piglets was quite high, and thus it was difficult for FOS to produce significant bifidogenic effect. However, FOS mainly affected other bacteria: on day 12, two unknown bacteroides species were stimulated; on day 25, S. variabile was stimulated, and one unknown species from C.leptum subgroup was suppressed; on day 37, the amount of Bacteroides genus was decreased. Our work demonstrated that FOS can influence bacteria other than bifidobacteria in gut microbiota. We found for the first time that FOS stimulated the growth of S. variabile, which was revealed to actively interact with host metabolism, so it is necessary to isolate the bacteria in the future and study its relationship with prebiotics and host health.
     We compared the biochemical composition of contents in different regions of the large intestine of HFA piglets with NMR based metabonomic techniques, and studied the spatial distribution of the gut microbiota metabolism in different regions along the large intestine. Metabolites present in aqueous extracts of contents from the caecum, proximal colon, distal colon and faeces of 10 HFA piglets were profiled by 1H NMR spectroscopy. Many compounds originating from bacterial activities were detected, including short chain fatty acids (SCFAs), organic acids, phenolic compounds, amino acids, and amines; besides, nucleobases, bile acids, choline and glycosides were also identified in profiles. Principle Component Analysis (PCA), Partial Least Square Discrimination Analysis (PLS-DA) and Orthogonal Projection on Latent Structure (O-PLS) analysis were used to differentiate NMR profiles of different regions and revealed that the biochemical composition in gut contents changed significantly in different regions of the large intestine of HFA piglets. The levels of SCFAs decreased distally from cecum to feces; phenylacetate and 3-hydroxyphenylpropionate predominated in cecum and proximal colon but not in distal colon and feces; the amounts of branch chain amino acids and glycosides increased distally along the large intestine. Our results suggest that the endogenous microbiota metabolize differently in different compartments of the large bowel due to varied environmental factors along the large bowel, such as substrate availability and host gut physiology, etc. The patterns of biochemical changes along the large intestine of HFA piglets showed to be similar to those in human colon as reported in the literature, so our HFA piglets potentially can become an effective in vivo model for studies on the metabolism of human gut microbiota. The 1H NMR-based metabonomic techniques has a great potential to be used to monitor the changes in the metabolic activities of colonic microbiota in response to interventions such as prebiotics, probiotics, antibiotics and diseases. Besides, the biochemical composition of feces is different from that of large intestinal contents, so it is necessary to analyze the metabolites in colonic content samples when study the effects of prebiotics on the metabolism of gut microbiota at next step.
     In the last part, the influences of FOS on the metabolism of the gut microbiota and the host were studied with NMR-based metabonomic techniques. We collected feces from 5 control piglets and 5 FOS-fed piglets on day 12, 17, 25 and 37 after birth, as well as urine samples, and contents of proximal and distal colon from each animal on day 37. 1H NMR spectroscopy was applied to profile the metabolic composition of urine samples and aqueous extracts from feces and colonic contents. The Chemometric method, O-PLS was used to characterize the effects of FOS on the metabolism of the gut microflora and the host by comparing the NMR spectra of control and FOS-fed piglets. There is no statistically significant difference in fecal metabolite composition between two groups of piglets. In the proximal colon, FOS-fed piglets had higher levels of oligosaccharides, glucose, acetate, propionate and nucleobases than control animals. More marked differences between two groups were observed in distal colon: besides oligosaccharides, glucose, acetate, nucleobases, the quantities of lactate and amino acids were also increased by FOS treatment; the amount of bile acids was decreased. In the urine, FOS-fed piglets excreted more alanine, glycine, creatine and phosphocreatine, lactate, citrate, but less urea and allantoin; besides, FOS treatment also affected the quantities of some bacteria-origined metabolites in the urine such as dimethylamine, trimethylamine, trimethylamine N-oxide, phenylacetylglycine, hippurate and 4- hydroxyphenyl-lactate. As indicated by these results, FOS was fermented by the gut microbiota mainly in distal colon with the production of acetate and lactate, and the acids can be absorbed and utilized by the host as energy sources, and thus affected the energy metabolism of the host; FOS also modulated the amino acid metabolism of gut microbiota, and thus influenced the amino acid metabolism of the host and improved its N-balance; FOS was indicated to have a preventative effect on colon cancer by decreasing the amounts of bile acids in distal colon. The mechanism for the influence of FOS on the nucleic acid metabolism of the gut microbiota/host need to be further studied. The 1H NMR-based metabonomic techniques can be used to monitor the metabolic responses of colonic microbiota and the host to interventions such as prebiotics, probiotics, antibiotics and diseases.
     HFA piglet model was utilized in our study to systematically study the effects of the prebiotic ingredient FOS on the gut microbiota and host metabolism. Our results will provide helpful insight and guidance to understanding the relationship among the composition and metabolism of the gut microbiota, and the metabolism of host.
引文
1. Suau, A., et al., Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol, 1999. 65(11): p. 4799-807.
    2. Nicholson, J.K., E. Holmes, and I.D. Wilson, Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol, 2005. 3(5): p. 431-8.
    3. Backhed, F., et al., Host-bacterial mutualism in the human intestine. Science, 2005. 307(5717): p. 1915-20.
    4. Savage, D.C., Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol, 1977. 31: p. 107-33.
    5. Tannock, G.W., New perceptions of the gut microbiota: implications for future research. Gastroenterol Clin North Am, 2005. 34(3): p. 361-82, vii.
    6. O'Hara, A.M. and F. Shanahan, The gut flora as a forgotten organ. EMBO Rep, 2006. 7(7): p. 688-93.
    7. Goodacre, R., Metabolomics of a superorganism. J Nutr, 2007. 137(1 Suppl): p. 259S-266S.
    8. Gill, S.R., et al., Metagenomic analysis of the human distal gut microbiome. Science, 2006.
    312(5778): p. 1355-9.
    9. Xu, J., et al., A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science, 2003. 299(5615): p. 2074-6.
    10. Sonnenburg, J.L., et al., Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science, 2005. 307(5717): p. 1955-9.
    11. Backhed, F., et al., The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A, 2004. 101(44): p. 15718-23.
    12. Hooper, L.V. and J.I. Gordon, Commensal host-bacterial relationships in the gut. Science, 2001. 292(5519): p. 1115-8.
    13. Falk, P.G., et al., Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev, 1998. 62(4): p. 1157-70.
    14. Eckburg, P.B., et al., Diversity of the human intestinal microbial flora. Science, 2005. 308(5728): p. 1635-8.
    15. Nicholson, J.K. and I.D. Wilson, Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov, 2003. 2(8): p. 668-76.
    16. Song, Y., C. Liu, and S.M. Finegold, Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol, 2004. 70(11): p. 6459-65.
    17. Sartor, R.B., Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology, 2004. 126(6): p. 1620-33.
    18. Martin, F.P., et al., Transgenomic metabolic interactions in a mouse disease model: interactions of Trichinella spiralis infection with dietary Lactobacillus paracasei supplementation. J Proteome Res, 2006. 5(9): p. 2185-93.
    19. Cani, P.D., et al., Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia.Diabetologia, 2007. 50(11): p. 2374-83.
    20. Turnbaugh, P.J., et al., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006. 444(7122): p. 1027-31.
    21. Ley, R.E., et al., Microbial ecology: human gut microbes associated with obesity. Nature, 2006. 444(7122): p. 1022-3.
    22. Ley, R.E., et al., Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A, 2005. 102(31): p. 11070-5.
    23. Gibson, G.R. and M.B. Roberfroid, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr, 1995. 125(6): p. 1401-12.
    24. Cummings, J.H. and G.T. Macfarlane, The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol, 1991. 70(6): p. 443-59.
    25. Holdeman, L.V. and W.E. Moore, Roll-tube techniques for anaerobic bacteria. Am J Clin Nutr, 1972. 25(12): p. 1314-7.
    26. Hungate, R.E., The rumen and its microbes. 1966: New York: Academic Press.
    27. Tannock, G.W., The intestinal microflora, in Gut flora, nutrition, immunity and health, R. Fuller and G. Perdigon, Editors. 2003, Blackwell. p. 1-23.
    28. Moore, W.E. and L.V. Holdeman, Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl Microbiol, 1974. 27(5): p. 961-79.
    29. Tannock, G.W., et al., Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol, 2000. 66(6): p. 2578-88.
    30. Woese, C.R., Bacterial evolution. Microbiol Rev, 1987. 51(2): p. 221-71.
    31. Madigan, M.T., J.M. Martinko, and J. Parker, Brock Biology of Microorganisms. 9 ed. 2000: Prentice Hall.
    32. Olsen, G.J., et al., Microbial ecology and evolution: a ribosomal RNA approach. Annu Rev Microbiol, 1986. 40: p. 337-65.
    33. Konstantinidis, K.T. and J.M. Tiedje, Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A, 2005. 102(7): p. 2567-72.
    34. Thompson, J.R., et al., Genotypic diversity within a natural coastal bacterioplankton population. Science, 2005. 307(5713): p. 1311-3.
    35. Amann, R.I., W. Ludwig, and K.H. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995. 59(1): p. 143-69.
    36. Head, I.M., J.R. Saunders, and R.W. Pickup, Microbial Evolution, Diversity, and Ecology: A Decade of Ribosomal RNA Analysis of Uncultivated Microorganisms. Microb Ecol, 1998. 35(1): p. 1-21.
    37. Torsvik, V., L. Ovreas, and T.F. Thingstad, Prokaryotic diversity--magnitude, dynamics, and controlling factors. Science, 2002. 296(5570): p. 1064-6.
    38. Li, M., et al., Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A, 2008. 105(6): p. 2117-22.
    39. Hayashi, H., M. Sakamoto, and Y. Benno, Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods.Microbiol Immunol, 2002. 46(8): p. 535-48.
    40. Hayashi, H., M. Sakamoto, and Y. Benno, Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation. Microbiol Immunol, 2002. 46(12): p. 819-31.
    41. Hayashi, H., et al., Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiol Immunol, 2003. 47(8): p. 557-70.
    42. Dees, P.M. and W.C. Ghiorse, Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol Ecol, 2001. 35(2): p. 207-216.
    43. Fernandez, A., et al., How stable is stable? Function versus community composition. Appl Environ Microbiol, 1999. 65(8): p. 3697-704.
    44. Klocke, M., et al., Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst Appl Microbiol, 2007. 30(2): p. 139-51.
    45. Weidner, S., W. Arnold, and A. Puhler, Diversity of uncultured microorganisms associated with the seagrass Halophila stipulacea estimated by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol, 1996. 62(3): p. 766-71.
    46. Yi, S., et al., A culture-independent approach for studying microbial diversity in aerobic granules. Water Sci Technol, 2003. 47(1): p. 283-90.
    47. Ventura, M., et al., Molecular microbial analysis of Bifidobacterium isolates from different environments by the species-specific amplified ribosomal DNA restriction analysis (ARDRA). FEMS Microbiol Ecol, 2001. 36(2-3): p. 113-121.
    48. Zhang, X., et al., Microdiversity of phenol hydroxylase genes among phenol-degrading isolates of Alcaligenes sp. from an activated sludge system. FEMS Microbiol Lett, 2004. 237(2): p. 369-75.
    49. Muyzer, G., DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol, 1999. 2(3): p. 317-22.
    50. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993. 59(3): p. 695-700.
    51. Zoetendal, E.G., A.D. Akkermans, and W.M. De Vos, Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol, 1998. 64(10): p. 3854-9.
    52. Fischer, S.G. and L.S. Lerman, DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci U S A, 1983. 80(6): p. 1579-83.
    53. Muyzer, G. and K. Smalla, Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek, 1998. 73(1): p. 127-41.
    54. Zhang, X., et al., Optimized sequence retrieval from single bands of temperature gradientgel electrophoresis profiles of the amplified 16S rDNA fragments from an activated sludge system. J Microbiol Methods, 2005. 60(1): p. 1-11.
    55. Sekiguchi, H., et al., Succession of bacterial community structure along the Changjiang River determined by denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol, 2002. 68(10): p. 5142-50.
    56. Boon, N., et al., Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiology Ecology, 2002. 39: p. 101-112.
    57. Heuer, H., et al., Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol, 1997. 63(8): p. 3233-41.
    58. Requena, T., et al., Identification, detection, and enumeration of human bifidobacterium species by PCR targeting the transaldolase gene. Appl Environ Microbiol, 2002. 68(5): p. 2420-7.
    59. Walter, J., et al., Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol, 2001. 67(6): p. 2578-85.
    60. Walter, J., et al., Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol, 2000. 66(1): p. 297-303.
    61. Heilig, H.G., et al., Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol, 2002. 68(1): p. 114-23.
    62. Pang, X., et al., Molecular profiling of Bacteroides spp. in human feces by PCR-temperature gradient gel electrophoresis. J Microbiol Methods, 2005. 61(3): p. 413-7.
    63. Satokari, R.M., et al., Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol, 2001. 67(2): p. 504-13.
    64. Shen, J., et al., Molecular profiling of the Clostridium leptum subgroup in human fecal microflora by PCR-denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol, 2006. 72(8): p. 5232-8.
    65. Al-Soud, W.A., et al., Assessment of PCR-DGGE for the identification of diverse Helicobacter species, and application to faecal samples from zoo animals to determine Helicobacter prevalence. J Med Microbiol, 2003. 52(Pt 9): p. 765-71.
    66. Zhang, M., et al., Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis. J Clin Microbiol, 2007. 45(2): p. 496-500.
    67. Kaufmann, P., et al., Identification and quantification of Bifidobacterium species isolated from food with genus-specific 16S rRNA-targeted probes by colony hybridization and PCR. Appl Environ Microbiol, 1997. 63(4): p. 1268-73.
    68. Matsuki, T., et al., Distribution of bifidobacterial species in human intestinal microflora examined with 16S rRNA-gene-targeted species-specific primers. Appl Environ Microbiol, 1999. 65(10): p. 4506-12.
    69. Song, Y., et al., Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA. FEMS Microbiol Lett, 2000. 187(2): p. 167-73.
    70. Wang, R.F., W.W. Cao, and C.E. Cerniglia, PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl Environ Microbiol, 1996. 62(4): p. 1242-7.
    71. Liu, C., et al., Rapid identification of the species of the Bacteroides fragilis group by multiplex PCR assays using group- and species-specific primers. FEMS Microbiol Lett, 2003. 222(1): p. 9-16.
    72. Matsuki, T., et al., Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol, 2002. 68(11): p. 5445-51.
    73. Matsuki, T., et al., Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol, 2004. 70(12): p. 7220-8.
    74. Bubner, B. and I.T. Baldwin, Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep, 2004. 23(5): p. 263-71.
    75. Malinen, E., et al., Comparison of real-time PCR with SYBR Green I or 5'-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology, 2003. 149(Pt 1): p. 269-77.
    76. Kageyama, A., M. Sakamoto, and Y. Benno, Rapid identification and quantification of Collinsella aerofaciens using PCR. FEMS Microbiol Lett, 2000. 183(1): p. 43-7.
    77. Lyons, S.R., A.L. Griffen, and E.J. Leys, Quantitative real-time PCR for Porphyromonas gingivalis and total bacteria. J Clin Microbiol, 2000. 38(6): p. 2362-5.
    78. Matsuki, T., et al., Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. Appl Environ Microbiol, 2004. 70(1): p. 167-73.
    79. Sakamoto, M., et al., Rapid detection and quantification of five periodontopathic bacteria by real-time PCR. Microbiol Immunol, 2001. 45(1): p. 39-44.
    80. Tajima, K., et al., Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol, 2001. 67(6): p. 2766-74.
    81. Ott, S.J., et al., Quantification of intestinal bacterial populations by real-time PCR with a universal primer set and minor groove binder probes: a global approach to the enteric flora. J Clin Microbiol, 2004. 42(6): p. 2566-72.
    82. Rousselon, N., J.P. Delgenes, and J.J. Godon, A new real time PCR (TaqMan PCR) system for detection of the16S rDNA gene associated with fecal bacteria. J Microbiol Methods, 2004. 59(1): p. 15-22.
    83. Saito, Y., et al., Monitoring the cell number and viability of Lactobacillus helveticus GCL1001 in human feces by PCR methods. FEMS Microbiol Lett, 2004. 231(1): p. 125-30.
    84. Espy, M.J., et al., Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev, 2006. 19(1): p. 165-256.
    85. Sghir, A., et al., Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol, 2000. 66(5): p. 2263-6.
    86. Franks, A.H., et al., Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol, 1998. 64(9): p. 3336-45.
    87. Wei, G., et al., ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. J Microbiol Methods, 2004. 59(1): p. 91-108.
    88. Wang, R.F., et al., Design and evaluation of oligonucleotide-microarray method for the detection of human intestinal bacteria in fecal samples. FEMS Microbiol Lett, 2002. 213(2): p. 175-82.
    89. Flint, H.J., et al., Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol, 2007. 9(5): p. 1101-11.
    90. Finegold, S.M., V.L. Sutter, and G.E. Mathisen, Normal indigenous flora, in Human intestinal microflora in health and disease, D.J. Hentges, Editor. 1983, Academic Press, New York: N.Y. p. 3-31.
    91. Drasar, B.S. and P.A. Barrow, eds. Intestinal microbiology. 1985, American Society for Microbiology: Washington (DC).
    92. Miller, T.L. and M.J. Wolin, Enumeration of Methanobrevibacter smithii in human feces. Arch Microbiol, 1982. 131(1): p. 14-8.
    93. Lay, C., et al., Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ Microbiol, 2005. 7(7): p. 933-46.
    94. Zoetendal, E.G., et al., The Host Genotype Affects the Bacterial Community in the Human Gastronintestinal Tract. Microbial Ecology in Health and Disease, 2010. 13: p. 129-134.
    95. Palmer, C., et al., Development of the Human Infant Intestinal Microbiota. PLoS Biol, 2007. 5(7): p. 1556-1573.
    96. Tannock, G.W., Modification of the normal microbiota by diet, stress, antimicrobial agents, and probiotics, in Gastrointestinal Microbiology, R.I. Mackie, B.A. White, and R.E. Isaacson, Editors. 1997, Chapman and Hall New York: New York. p. 243-298.
    97. Peltonen, R., et al., Faecal microbial flora and disease activity in rheumatoid arthritis during a vegan diet. Br J Rheumatol, 1997. 36(1): p. 64-8.
    98. Schneider, S.M., et al., Total artificial nutrition is associated with major changes in the fecal flora. Eur J Nutr, 2000. 39(6): p. 248-55.
    99. Bartosch, S., et al., Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol, 2004. 70(6): p. 3575-81.
    100. Sakata, H., H. Yoshioka, and K. Fujita, Development of the intestinal flora in very low birth weight infants compared to normal full-term newborns. Eur J Pediatr, 1985. 144(2): p. 186-90.
    101. Zoetendal, E.G., et al., Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces.Appl Environ Microbiol, 2002. 68(7): p. 3401-7.
    102. Marteau, P., et al., Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol, 2001. 67(10): p. 4939-42.
    103. Jacobs, D.M., et al., (1)H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome. NMR Biomed, 2007.
    104. Blaut, M. and T. Clavel, Metabolic diversity of the intestinal microbiota: implications for health and disease. J Nutr, 2007. 137(3 Suppl 2): p. 751S-5S.
    105. Miller, T.L., G.A. Weaver, and M.J. Wolin, Methanogens and anaerobes in a colon segment isolated from the normal fecal stream. Appl Environ Microbiol, 1984. 48(2): p. 449-50.
    106. Hoskins, L.C. and E.T. Boulding, Mucin degradation in human colon ecosystems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. J Clin Invest, 1981. 67(1): p. 163-72.
    107. Cummings, J.H., et al., Fecal weight, colon cancer risk, and dietary intake of nonstarch polysaccharides (dietary fiber). Gastroenterology, 1992. 103(6): p. 1783-9.
    108. Macfarlane, S. and G.T. Macfarlane, Food and the large intestine, in Gut Flora, Nutrition, Immunity and Health, R. Fuller and G. Perdigon, Editors. 2003, Blackwell. p. 24-51.
    109. Englyst, H.N., et al., Measurement of resistant starch in vitro and in vivo. Br J Nutr, 1996. 75(5): p. 749-55.
    110. Cummings, J.H., Short chain fatty acids in the human colon. Gut, 1981. 22(9): p. 763-79.
    111. Macfarlane, G.T. and C. Allison, Utilisation of protein by human gut bacteria. FEMS Microbiol. Ecol., 1986. 38: p. 19-24.
    112. Macfarlane, G.T., J.H. Cummings, and C. Allison, Protein degradation by human intestinal bacteria. J Gen Microbiol, 1986. 132(6): p. 1647-56.
    113. Macfarlane, G.T., et al., Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements. FEMS Microbiology Letters, 1992. 101: p. 81-88.
    114. Gibson, G.R., S. Macfarlane, and G.T. Macfarlane, Metabolic interactions involving sulphate-reducing and methanogenic bacteria in the human large intestine. FEMS Microbiology Ecology, 1993. 12: p. 117-125.
    115. Smith, E.A. and G.T. Macfarlane, Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiology Ecology, 1998. 25: p. 355-368.
    116. Magee, E.A., et al., Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am J Clin Nutr, 2000. 72(6): p. 1488-94.
    117. Roediger, W.E., Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut, 1980. 21(9): p. 793-8.
    118. Siavoshian, S., et al., Butyrate and trichostatin A effects on the proliferation/differentiation of human intestinal epithelial cells: induction of cyclin D3 and p21 expression. Gut, 2000. 46(4): p. 507-14.
    119. Gibson, P.R., et al., Contrasting effects of butyrate on the expression of phenotypic markers of differentiation in neoplastic and non-neoplastic colonic epithelial cells in vitro. JGastroenterol Hepatol, 1992. 7(2): p. 165-72.
    120. Wong, J.M., et al., Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol, 2006. 40(3): p. 235-43.
    121. Demigne, C. and C. Remesey, Short chain fatty acids and hepatic metabolism, in Short chain fatty acids, J.H. Binder, J.H. Cummings, and K.H. Soergel, Editors. 1994, Kluwer Academic publishers: London. p. 272-282.
    122. Illman, R.J., et al., Hypocholesterolaemic effects of dietary propionate: studies in whole animals and perfused rat liver. Ann Nutr Metab, 1988. 32(2): p. 95-107.
    123. Lin, H.C. and W.J. Visek, Colon mucosal cell damage by ammonia in rats. J Nutr, 1991. 121(6): p. 887-93.
    124. Kikugawa, K. and T. Kato, Formation of a mutagenic diazoquinone by interaction of phenol with nitrite. Food Chem Toxicol, 1988. 26(3): p. 209-14.
    125. Roediger, W.E., et al., Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology, 1993. 104(3): p. 802-9.
    126. Summerton, J., et al., Effect of deoxycholic acid on the tumour incidence, distribution, and receptor status of colorectal cancer in the rat model. Digestion, 1985. 31(2-3): p. 77-81.
    127. McBain, A.J. and G.T. Macfarlane, Ecological and physiological studies on large intestinal bacteria in relation to production of hydrolytic and reductive enzymes involved in formation of genotoxic metabolites. J Med Microbiol, 1998. 47(5): p. 407-16.
    128. Drasar, B.S., A.G. Renwick, and R.T. Williams, The role of the gut flora in the metabolism of cyclamate. Biochem J, 1972. 129(4): p. 881-90.
    129. Chang, Y.C. and M.G. Nair, Metabolism of daidzein and genistein by intestinal bacteria. J Nat Prod, 1995. 58(12): p. 1892-6.
    130. Rowland, I.R., et al., Interindividual variation in metabolism of soy isoflavones and lignans: influence of habitual diet on equol production by the gut microflora. Nutr Cancer, 2000. 36(1): p. 27-32.
    131. Bowey, E., H. Adlercreutz, and I. Rowland, Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food Chem Toxicol, 2003. 41(5): p. 631-6.
    132. Hill, M.J., Intestinal flora and endogenous vitamin synthesis. Eur. J. Cancer Prev., 1997. 6(Suppl 1): p. S43-S45.
    133. Bhattacharyya, D.K., O. Kwon, and R. Meganathan, Vitamin K2 (menaquinone) biosynthesis in Escherichia coli: evidence for the presence of an essential histidine residue in o-succinylbenzoyl coenzyme A synthetase. J Bacteriol, 1997. 179(19): p. 6061-5.
    134. Bentley, R. and R. Meganathan, Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev, 1982. 46(3): p. 241-80.
    135. Gibson, G.R., J.H. Cummings, and G.T. Macfarlane, Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine. J Appl Bacteriol, 1988. 65(3): p. 241-7.
    136. Gibson, G.R., G.T. Macfarlane, and J.H. Cummings, Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J Appl Bacteriol, 1988. 65(2): p. 103-11.
    137. Smith, E.A. and G.T. Macfarlane, Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol, 1996. 81(3): p. 288-302.
    138. Smith, E.A. and G.T. Macfarlane, Studies on Amine Production in the Human Colon: Enumeration of Amine forming Bacteria and Physiological Effects of Carbohydrate and pH. Anaerobe, 1996. 2(5): p. 285.
    139. Macfarlane, G.T., G.R. Gibson, and J.H. Cummings, Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol, 1992. 72(1): p. 57-64.
    140. Macfarlane, G.T., S. Macfarlane, and G.R. Gibson, Validation of a Three-Stage Compound Continuous Culture System for Investigating the Effect of Retention Time on the Ecology and Metabolism of Bacteria in the Human Colon. Microb Ecol, 1998. 35(2): p. 180-7.
    141. Gibson, G.R., et al., Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews, 2004. 17: p. 259-275.
    142. Flickinger, E.A., J. Van Loo, and G.C. Fahey, Jr., Nutritional responses to the presence of inulin and oligofructose in the diets of domesticated animals: a review. Crit Rev Food Sci Nutr, 2003. 43(1): p. 19-60.
    143. Roberfroid, M., Prebiotics: the concept revisited. J Nutr, 2007. 137(3 Suppl 2): p. 830S-7S.
    144. Wang, X. and G.R. Gibson, Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J Appl Bacteriol, 1993. 75(4): p. 373-80.
    145. Bouhnik, Y., et al., Effects of fructo-oligosaccharides ingestion on fecal bifidobacteria and selected metabolic indexes of colon carcinogenesis in healthy humans. Nutr Cancer, 1996. 26(1): p. 21-9.
    146. Kleessen, B., et al., Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am J Clin Nutr, 1997. 65(5): p. 1397-402.
    147. Gibson, G.R., et al., Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology, 1995. 108(4): p. 975-82.
    148. Djouzi, Z. and C. Andrieux, Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora. Br J Nutr, 1997. 78(2): p. 313-24.
    149. Kleessen, B., L. Hartmann, and M. Blaut, Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. Br J Nutr, 2003. 89(5): p. 597-606.
    150. Bouhnik, Y., et al., The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr, 2004. 80(6): p. 1658-64.
    151. Bouhnik, Y., et al., The capacity of short-chain fructo-oligosaccharides to stimulate faecal bifidobacteria: a dose-response relationship study in healthy humans. Nutr J, 2006. 5: p. 8.
    152. Roberfroid, M.B., J.A. Van Loo, and G.R. Gibson, The bifidogenic nature of chicory inulin and its hydrolysis products. J Nutr, 1998. 128(1): p. 11-9.
    153. Apajalahti, J.H., et al., Culture-independent microbial community analysis reveals that inulin in the diet primarily affects previously unknown bacteria in the mouse cecum. ApplEnviron Microbiol, 2002. 68(10): p. 4986-95.
    154. Rao, A.V., Dose-response effects of inulin and oligofructose on intestinal bifidogenesis effects. J Nutr, 1999. 129(7 Suppl): p. 1442S-5S.
    155. Cummings, J.H., G.T. Macfarlane, and H.N. Englyst, Prebiotic digestion and fermentation. Am J Clin Nutr, 2001. 73(2 Suppl): p. 415S-420S.
    156. Luo, J., et al., Chronic consumption of short-chain fructooligosaccharides by healthy subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism. Am J Clin Nutr, 1996. 63(6): p. 939-45.
    157. Licht, T.R., et al., Dietary carbohydrate source influences molecular fingerprints of the rat faecal microbiota. BMC Microbiol, 2006. 6: p. 98.
    158. Campbell, J.M., G.C. Fahey, Jr., and B.W. Wolf, Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J Nutr, 1997. 127(1): p. 130-6.
    159. Alles, M.S., et al., Fate of fructo-oligosaccharides in the human intestine. Br J Nutr, 1996. 76(2): p. 211-21.
    160. Stone-Dorshow, T. and M.D. Levitt, Gaseous response to ingestion of a poorly absorbed fructo-oligosaccharide sweetener. Am J Clin Nutr, 1987. 46(1): p. 61-5.
    161. Brighenti, F., et al., Comparison of lactulose and inulin as reference standard for the study of resistant starch fermentation using hydrogen breath test. Ital J Gastroenterol, 1995. 27(3): p. 122-8.
    162. Buddington, R.K., et al., Dietary supplement of neosugar alters the fecal flora and decreases activities of some reductive enzymes in human subjects. Am J Clin Nutr, 1996. 63(5): p. 709-16.
    163. Brennan-Craddock, W.E., et al., Development changes to gut microflora metabolism in mice. J Appl Bacteriol, 1992. 73(2): p. 163-7.
    164. Pool-Zobel, B.L., Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data. Br J Nutr, 2005. 93 Suppl 1: p. S73-90.
    165. Bolognani, F., et al., Effect of lactobacilli, bifidobacteria and inulin on the formation of aberrant crypt foci in rats. Eur J Nutr, 2001. 40(6): p. 293-300.
    166. Femia, A.P., et al., Antitumorigenic activity of the prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis on azoxymethane-induced colon carcinogenesis in rats. Carcinogenesis, 2002. 23(11): p. 1953-60.
    167. Pierre, F., et al., Short-chain fructo-oligosaccharides reduce the occurrence of colon tumors and develop gut-associated lymphoid tissue in Min mice. Cancer Res, 1997. 57(2): p. 225-8.
    168. Taper, H.S. and M. Roberfroid, Influence of inulin and oligofructose on breast cancer and tumor growth. J Nutr, 1999. 129(7 Suppl): p. 1488S-91S.
    169. Taper, H.S. and M.B. Roberfroid, Inhibitory effect of dietary inulin or oligofructose on the development of cancer metastases. Anticancer Res, 2000. 20(6B): p. 4291-4.
    170. Taper, H.S. and M.B. Roberfroid, Inulin/oligofructose and anticancer therapy. Br J Nutr, 2002. 87 Suppl 2: p. S283-6.
    171. Hoentjen, F., et al., Reduction of colitis by prebiotics in HLA-B27 transgenic rats isassociated with microflora changes and immunomodulation. Inflamm Bowel Dis, 2005. 11(11): p. 977-85.
    172. Lindsay, J.O., et al., Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn's disease. Gut, 2006. 55(3): p. 348-55.
    173. Buddington, K.K., J.B. Donahoo, and R.K. Buddington, Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. J Nutr, 2002. 132(3): p. 472-7.
    174. Oli, M.W., B.W. Petschow, and R.K. Buddington, Evaluation of fructooligosaccharide supplementation of oral electrolyte solutions for treatment of diarrhea: recovery of the intestinal bacteria. Dig Dis Sci, 1998. 43(1): p. 138-47.
    175. Kleessen, B., et al., Feeding resistant starch affects fecal and cecal microflora and short-chain fatty acids in rats. J Anim Sci, 1997. 75(9): p. 2453-62.
    176. Kok, N., et al., Involvement of lipogenesis in the lower VLDL secretion induced by oligofructose in rats. Br J Nutr, 1996. 76(6): p. 881-90.
    177. Fiordaliso, M., et al., Dietary oligofructose lowers triglycerides, phospholipids and cholesterol in serum and very low density lipoproteins of rats. Lipids, 1995. 30(2): p. 163-7.
    178. Tahiri, M., et al., Five-week intake of short-chain fructo-oligosaccharides increases intestinal absorption and status of magnesium in postmenopausal women. J Bone Miner Res, 2001. 16(11): p. 2152-60.
    179. Beynen, A.C., et al., Faecal bacterial profile, nitrogen excretion and mineral absorption in healthy dogs fed supplemental oligofructose. J Anim Physiol Anim Nutr (Berl), 2002. 86(9-10): p. 298-305.
    180. Ohta, A., et al., Dietary fructooligosaccharides change the concentration of calbindin-D9k differently in the mucosa of the small and large intestine of rats. J Nutr, 1998. 128(6): p. 934-9.
    181. Turnbaugh, P.J., et al., Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe, 2008. 3(4): p. 213-23.
    182. Daubioul, C.A., et al., Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese zucker rats. J Nutr, 2000. 130(5): p. 1314-9.
    183. Kahn, B.B. and J.S. Flier, Obesity and insulin resistance. J Clin Invest, 2000. 106(4): p. 473-81.
    184. Cani, P.D., et al., Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes, 2007. 56(7): p. 1761-1772.
    185. Gibson, G.R., J.H. Cummings, and G.T. Macfarlane, Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl Environ Microbiol, 1988. 54(11): p. 2750-5.
    186. Rumney, C.J. and I.R. Rowland, In vivo and in vitro models of the human colonic flora. Crit Rev Food Sci Nutr, 1992. 31(4): p. 299-331.
    187. Le Blay, G., et al., Enhancement of butyrate production in the rat caecocolonic tract by long-term ingestion of resistant potato starch. Br J Nutr, 1999. 82(5): p. 419-26.
    188. Le Blay, G., et al., Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in cecal butyrate inrats. J Nutr, 1999. 129(12): p. 2231-5.
    189. Mitsuoka, T., Recent trends in research on intestinal flora. Bifido Microflora, 1982. 1: p. 3-24.
    190. Rowland, I.R., et al., Enzyme activities of the hindgut microflora of laboratory animals and man. Xenobiotica, 1986. 16(6): p. 519-23.
    191. Ducluzeau, R., M. Ladire, and P. Raibaud, [Effect of the ingestion of wheat bran on the fecal microbial flora of human donors and of recipient gnotoxenic mice, and on the barrier effects exerted by these flora against various potentially pathogenic microorganisms]. Ann Microbiol (Paris), 1984. 135A(2): p. 303-18.
    192. Hazenberg, M.P., M. Bakker, and A. Verschoor-Burggraaf, Effects of the human intestinal flora on germ-free mice. J Appl Bacteriol, 1981. 50(1): p. 95-106.
    193. Hirayama, K., S. Kawamura, and T. Mitsuoka, Development and stability of human faecal flora in the intestine of ex-germ-free mice. Microbial Ecology in Health and Disease, 1991. 4: p. 95-99.
    194. Raibaud, P., et al., Implantation of bacteria from the digestive tract of man and various animals into gnotobiotic mice. Am J Clin Nutr, 1980. 33(11 Suppl): p. 2440-7.
    195. Maejima, K., et al., Bacterial flora of ex-germfree mice after oral inoculation of feces from various species of conventional animals. Jikken Dobutsu, 1981. 30(2): p. 157-60.
    196. Hirayama, K., et al., Development of intestinal flora of human-flora-associated (HFA) mice in the intestine of their offspring. Exp Anim, 1995. 44(3): p. 219-22.
    197. Hirayama, K., Ex-germfree mice harboring intestinal microbiota derived from other animal species as an experimental model for ecology and metabolism of intestinal bacteria. Exp Anim, 1999. 48(4): p. 219-27.
    198. Hirayama, K., et al., Comparison of composition of faecal microbiota and metabolism of faecal bacteria among 'human-flora-associated' mice inoculated with faeces from six different human donors. Microbial Ecology in Health and Disease, 1995. 8: p. 199-211.
    199. Mallett, A.K., et al., The use of rats associated with a human faecal flora as a model for studying the effects of diet on the human gut microflora. J Appl Bacteriol, 1987. 63(1): p. 39-45.
    200. Rumney, C.J., I.R. Rowland, and I.K. O'Neill, Conversion of IQ to 7-OHIQ by gut microflora. Nutr Cancer, 1993. 19(1): p. 67-76.
    201. Hirayama, K. and K. Itoh, Human flora-associated (HFA) animals as a model for studying the role of intestinal flora in human health and disease. Curr Issues Intest Microbiol, 2005. 6(2): p. 69-75.
    202. Hirayama, K., et al., Effects of human intestinal flora on mutagenicity of and DNA adduct formation from food and environmental mutagens. Carcinogenesis, 2000. 21(11): p. 2105-11.
    203. Tamura, M., et al., Effects of human intestinal flora on plasma and caecal isoflavones, and effects of isoflavones on the composition and metabolism of flora in human flora-associated (HFA) mice. Microbial Ecology in Health and Disease, 2004. 16: p. 18-22.
    204. Gérard, P., et al., Gnotobiotic rats harboring human intestinal microbiota as a model for studying cholesterol-to-coprostanol conversion. FEMS Microbiology Ecology, 2004. 47: p.337-343.
    205. Oozeer, R., et al., Lactobacillus casei is able to survive and initiate protein synthesis during its transit in the digestive tract of human flora-associated mice. Appl Environ Microbiol, 2002. 68(7): p. 3570-4.
    206. Wilcks, A., et al., Persistence of DNA studied in different ex vivo and in vivo rat models simulating the human gut situation. Food Chem Toxicol, 2004. 42(3): p. 493-502.
    207. Pecquet, S., A. Andremont, and C. Tancrede, Selective antimicrobial modulation of the intestinal tract by norfloxacin in human volunteers and in gnotobiotic mice associated with a human fecal flora. Antimicrob Agents Chemother, 1986. 29(6): p. 1047-52.
    208. Kleessen, B., L. Hartmann, and M. Blaut, Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Br J Nutr, 2001. 86(2): p. 291-300.
    209. Roland, N., S. Rabot, and L. Nugon-Baudon, Modulation of the biological effects of glucosinolates by inulin and oat fibre in gnotobiotic rats inoculated with a human whole faecal flora. Food Chem Toxicol, 1996. 34(8): p. 671-7.
    210. Kleessen, B. and M. Blaut, Modulation of gut mucosal biofilms. Br J Nutr, 2005. 93 Suppl 1: p. S35-40.
    211. Rowland, I.R. and R. Tanaka, The effects of transgalactosylated oligosaccharides on gut flora metabolism in rats associated with a human faecal microflora. J Appl Bacteriol, 1993. 74(6): p. 667-74.
    212. Rogers, A.B. and J.G. Fox, Inflammation and Cancer. I. Rodent models of infectious gastrointestinal and liver cancer. Am J Physiol Gastrointest Liver Physiol, 2004. 286(3): p. G361-6.
    213. Imaoka, A., et al., Improvement of human faecal flora-associated mouse model for evaluation of the functional foods. J Appl Microbiol, 2004. 96(4): p. 656-63.
    214. Martin, F.P., et al., A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol, 2007. 3: p. 112.
    215. Pang, X., et al., Inter-species transplantation of gut microbiota from human to pigs. The ISME Journal, 2007. 1: p. 156-162.
    216.张彬and李丽立,论微型猪资源的开发利用—实验动物化.家畜生态, 1994. 15(4): p. 41-44.
    217. Garthoff, L.H., et al., The Autosow raised miniature swine as a model for assessing the effects of dietary soy trypsin inhibitor. Food Chem Toxicol, 2002. 40(4): p. 487-500.
    218. Book, S.A. and L.K. Bustad, The fetal and neonatal pig in biomedical research. J Anim Sci, 1974. 38(5): p. 997-1002.
    219. Hood, L., et al., Systems biology and new technologies enable predictive and preventative medicine. Science, 2004. 306(5696): p. 640-3.
    220.唐惠儒and王玉兰,代谢组研究.生命科学, 2007. 19(3): p. 272-280.
    221. Nicholson, J.K., J.C. Lindon, and E. Holmes, 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999. 29(11): p. 1181-9.
    222. Lindon, J.C., et al., Metabonomics technologies and their applications in physiologicalmonitoring, drug safety assessment and disease diagnosis. Biomarkers, 2004. 9(1): p. 1-31.
    223.薛松, ed.有机结构分析. 2005,中国科学技术大学出版社.
    224.王小雪,代谢组学方法研究家猫在不同营养干预下机体的代谢应答(硕士论文), in药学院. 2008,上海交通大学:上海. p. 12.
    225. Holmes, E., et al., Automatic data reduction and pattern recognition methods for analysis of 1H nuclear magnetic resonance spectra of human urine from normal and pathological states. Anal Biochem, 1994. 220(2): p. 284-96.
    226. Nicholson, J.K. and I.D. Wilson, High resolution proton NMR spectroscopy of biological fluids. Prog. Nucl. Magn. Reson. Spectrosc., 1989. 21: p. 449-501.
    227. Lindon, J.C., J.K. Nicholson, and J.R. Everett, NMR spectroscopy of biofluids. Annu. Rep. NMR. Spec., 1999. 38: p. 1-88.
    228. Nicholson, J.K., et al., The challenges of modeling mammalian biocomplexity. Nat Biotechnol, 2004. 22(10): p. 1268-74.
    229. Nicholson, J.K., et al., 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem, 1995. 67(5): p. 793-811.
    230. Foxall, P.J., et al., Analysis of biological fluids using 600 MHz proton NMR spectroscopy: application of homonuclear two-dimensional J-resolved spectroscopy to urine and blood plasma for spectral simplification and assignment. J Pharm Biomed Anal, 1993. 11(1): p. 21-31.
    231. Marchesi, J.R., et al., Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res, 2007. 6(2): p. 546-51.
    232. Saric, J., et al., Species variation in the fecal metabolome gives insight into differential gastrointestinal function. J Proteome Res, 2008. 7(1): p. 352-60.
    233. Wang, Y., et al., Spectral editing and pattern recognition methods applied to high-resolution magic-angle spinning 1H nuclear magnetic resonance spectroscopy of liver tissues. Anal Biochem, 2003. 323(1): p. 26-32.
    234. Bollard, M.E., et al., A study of metabolic compartmentation in the rat heart and cardiac mitochondria using high-resolution magic angle spinning 1H NMR spectroscopy. FEBS Lett, 2003. 553(1-2): p. 73-8.
    235. Moka, D., et al., Biochemical classification of kidney carcinoma biopsy samples using magic-angle-spinning 1H nuclear magnetic resonance spectroscopy. J Pharm Biomed Anal, 1998. 17(1): p. 125-32.
    236. Cheng, L.L., et al., Evaluating human breast ductal carcinomas with high-resolution magic-angle spinning proton magnetic resonance spectroscopy. J Magn Reson, 1998. 135(1): p. 194-202.
    237. Millis, K.K., et al., Gradient, high-resolution, magic-angle spinning nuclear magnetic resonance spectroscopy of human adipocyte tissue. Magn Reson Med, 1997. 38(3): p. 399-403.
    238. Cheng, L.L., et al., Correlation of high-resolution magic angle spinning proton magnetic resonance spectroscopy with histopathology of intact human brain tumor specimens. Cancer Res, 1998. 58(9): p. 1825-32.
    239. Cloarec, O., et al., Statistical total correlation spectroscopy: an exploratory approach forlatent biomarker identification from metabolic 1H NMR data sets. Anal Chem, 2005. 77(5): p. 1282-9.
    240. Clayton, T.A., et al., Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature, 2006. 440(7087): p. 1073-7.
    241. Brindle, J.T., et al., Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med, 2002. 8(12): p. 1439-44.
    242. Dumas, M.E., et al., Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A, 2006. 103(33): p. 12511-6.
    243. Stella, C., et al., Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res, 2006. 5(10): p. 2780-8.
    244. Howells, S.L., et al., An investigation of tumor 1H nuclear magnetic resonance spectra by the application of chemometric techniques. Magn Reson Med, 1992. 28(2): p. 214-36.
    245. Ghauri, F.Y., et al., NMR spectroscopy of human post mortem cerebrospinal fluid: distinction of Alzheimer's disease from control using pattern recognition and statistics. NMR Biomed, 1993. 6(2): p. 163-7.
    246. Yang, J., et al., Artificial neural network classification based on high-performance liquid chromatography of urinary and serum nucleosides for the clinical diagnosis of cancer. J Chromatogr B Analyt Technol Biomed Life Sci, 2002. 780(1): p. 27-33.
    247. Wang, Y., et al., Metabonomic investigations in mice infected with Schistosoma mansoni: an approach for biomarker identification. Proc Natl Acad Sci U S A, 2004. 101(34): p. 12676-81.
    248. Moolenaar, S.H., et al., Defect in dimethylglycine dehydrogenase, a new inborn error of metabolism: NMR spectroscopy study. Clin Chem, 1999. 45(4): p. 459-64.
    249. Yang, J., et al., Discrimination of Type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. J Chromatogr B Analyt Technol Biomed Life Sci, 2004. 813(1-2): p. 53-8.
    250. Dumas, M.E., et al., Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP Study. Anal Chem, 2006. 78(7): p. 2199-208.
    251. Holmes, E., et al., Human metabolic phenotype diversity and its association with diet and blood pressure. Nature, 2008. 453(7193): p. 396-400.
    252. Wang, Y., et al., Experimental metabonomic model of dietary variation and stress interactions. J Proteome Res, 2006. 5(7): p. 1535-42.
    253. Wang, Y., et al., A metabonomic strategy for the detection of the metabolic effects of chamomile (Matricaria recutita L.) ingestion. J Agric Food Chem, 2005. 53(2): p. 191-6.
    254. Solanky, K.S., et al., Application of biofluid 1H nuclear magnetic resonance-based metabonomic techniques for the analysis of the biochemical effects of dietary isoflavones on human plasma profile. Anal Biochem, 2003. 323(2): p. 197-204.
    255. Wang, Y., et al., Metabonomic investigations of aging and caloric restriction in a life-long dog study. J Proteome Res, 2007. 6(5): p. 1846-54.
    256. Rezzi, S., et al., Nutritional metabonomics: applications and perspectives. J Proteome Res, 2007. 6(2): p. 513-25.
    257. Martin, F.P., et al., Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol, 2008. 4: p. 157.
    258. Rezzi, S., et al., Human metabolic phenotypes link directly to specific dietary preferences in healthy individuals. J Proteome Res, 2007. 6(11): p. 4469-77.
    259. Wang, Y., et al., Metabolomic strategy for the classification and quality control of phytomedicine: a case study of chamomile flower (Matricaria recutita L.). Planta Med, 2004. 70(3): p. 250-5.
    260. Bailey, N.J., et al., Prediction of anti-plasmodial activity of Artemisia annua extracts: application of 1H NMR spectroscopy and chemometrics. J Pharm Biomed Anal, 2004. 35(1): p. 117-26.
    261. Tannock, G.W., et al., Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans. Appl Environ Microbiol, 2004. 70(4): p. 2129-36.
    1. Collins, M.D., et al., The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol, 1994. 44(4): p. 812-26.
    2. Ben-Amor, K., et al., Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis. Appl Environ Microbiol,2005. 71(8): p. 4679-89.
    3. Eckburg, P.B., et al., Diversity of the human intestinal microbial flora. Science, 2005. 308(5728): p. 1635-8.
    4. Hayashi, H., M. Sakamoto, and Y. Benno, Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol, 2002. 46(8): p. 535-48.
    5. Hayashi, H., et al., Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol, 2005. 54(Pt 11): p. 1093-101.
    6. Suau, A., et al., Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol, 1999. 65(11): p. 4799-807.
    7. Pryde, S.E., et al., The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett, 2002. 217(2): p. 133-9.
    8. Franks, A.H., et al., Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol, 1998. 64(9): p. 3336-45.
    9. Lay, C., et al., Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ Microbiol, 2005. 7(7): p. 933-46.
    10. Sghir, A., et al., Quantification of bacterial groups within human fecal flora by oligonucleotide probe hybridization. Appl Environ Microbiol, 2000. 66(5): p. 2263-6.
    11. Saunier, K., et al., Enumeration of bacteria from the Clostridium leptum subgroup in human faecal microbiota using Clep1156 16S rRNA probe in combination with helper and competitor oligonucleotides. Syst Appl Microbiol, 2005. 28(5): p. 454-64.
    12. Matsuki, T., et al., Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol, 2004. 70(12): p. 7220-8.
    13. Pang, X., et al., Molecular profiling of Bacteroides spp. in human feces by PCR-temperature gradient gel electrophoresis. J Microbiol Methods, 2005. 61(3): p. 413-7.
    14. Requena, T., et al., Identification, detection, and enumeration of human bifidobacterium species by PCR targeting the transaldolase gene. Appl Environ Microbiol, 2002. 68(5): p. 2420-7.
    15. Satokari, R.M., et al., Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol, 2001. 67(2): p. 504-13.
    16. Walter, J., et al., Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol, 2001. 67(6): p. 2578-85.
    17. Walter, J., et al., Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol, 2000. 66(1): p. 297-303.
    18. Heilig, H.G., et al., Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol, 2002. 68(1): p. 114-23.
    19. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993. 59(3): p. 695-700.
    20. Kumar, S., K. Tamura, and M. Nei, MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform, 2004. 5(2): p. 150-63.
    21. Nubel, U., et al., Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol, 1996. 178(19): p. 5636-43.
    22. Barcenilla, A., et al., Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol, 2000. 66(4): p. 1654-61.
    23. Defnoun, S., et al., Papillibacter cinnamivorans gen. nov., sp. nov., a cinnamate-transforming bacterium from a shea cake digester. Int J Syst Evol Microbiol, 2000. 50 Pt 3: p. 1221-8.
    24. Roediger, W.E., The colonic epithelium in ulcerative colitis: an energy-deficiency disease? Lancet, 1980. 2(8197): p. 712-5.
    25. Hague, A., B. Singh, and C. Paraskeva, Butyrate acts as a survival factor for colonic epithelial cells: further fuel for the in vivo versus in vitro debate. Gastroenterology, 1997. 112(3): p. 1036-40.
    26. Van Dyke, M.I. and A.J. McCarthy, Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl Environ Microbiol, 2002. 68(4): p. 2049-53.
    27. Suzuki, M.T. and S.J. Giovannoni, Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl Environ Microbiol, 1996. 62(2): p. 625-30.
    28. Zoetendal, E.G., A.D. Akkermans, and W.M. De Vos, Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol, 1998. 64(10): p. 3854-9.
    29. Felske, A., et al., Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl Environ Microbiol, 1998. 64(3): p. 871-9.
    30. Sekiguchi, H., et al., A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnology Letters, 2001. 23: p. 1205-1208.
    31. Jackson, C.R., E.E. Roden, and P.F. Churchill, Denaturing Gradient Gel Electrophoresis Can Fail to Separate 16S rDNA Fragments with Multiple Base Differences. Molecular Biology Today, 2000. 1: p. 49-51.
    32. Felske, A., et al., Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology, 1997. 143 (Pt 9): p. 2983-9.
    33. Reysenbach, A.L., et al., Differential amplification of rRNA genes by polymerase chainreaction. Appl Environ Microbiol, 1992. 58(10): p. 3417-8.
    34. von Wintzingerode, F., U.B. Gobel, and E. Stackebrandt, Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev, 1997. 21(3): p. 213-29.
    35. Wilson, K.H. and R.B. Blitchington, Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol, 1996. 62(7): p. 2273-8.
    36. Duncan, S.H., et al., Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol, 2002. 52(Pt 6): p. 2141-6.
    37. Holmstrom, K., et al., Subdoligranulum variabile gen. nov., sp. nov. from human feces. Anaerobe, 2004. 10(3): p. 197-203.
    1. Gordon, H.A. and L. Pesti, The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol Rev, 1971. 35(4): p. 390-429.
    2. Strober, W., I. Fuss, and P. Mannon, The fundamental basis of inflammatory bowel disease. J Clin Invest, 2007. 117(3): p. 514-21.
    3. Guarner, F., Enteric flora in health and disease. Digestion, 2006. 73 Suppl 1: p. 5-12.
    4. Collins, M.D. and G.R. Gibson, Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr, 1999. 69(5): p. 1052S-1057S.
    5. Gibson, G.R. and X. Wang, Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J Appl Bacteriol, 1994. 77(4): p. 412-20.
    6. Gibson, G.R., et al., Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews, 2004. 17: p. 259-275.
    7. Gibson, G.R. and M.B. Roberfroid, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr, 1995. 125(6): p. 1401-12.
    8. Roberfroid, M., Prebiotics: the concept revisited. J Nutr, 2007. 137(3 Suppl 2): p. 830S-7S.
    9. Van Nuenen, M.H.M.C., et al., The Metabolic Activity of Fecal Microbiota from Healthy Individuals and Patients with Inflammatory Bowel Disease. Digestive Diseases and Sciences, 2004. 49: p. 485-491.
    10. Roberfroid, M.B., J.A. Van Loo, and G.R. Gibson, The bifidogenic nature of chicory inulin and its hydrolysis products. J Nutr, 1998. 128(1): p. 11-9.
    11. Kaplan, H. and R.W. Hutkins, Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl Environ Microbiol, 2000. 66(6): p. 2682-4.
    12. Campbell, J.M., G.C. Fahey, Jr., and B.W. Wolf, Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J Nutr, 1997. 127(1): p. 130-6.
    13. Kruse, H.P., B. Kleessen, and M. Blaut, Effects of inulin on faecal bifidobacteria in human subjects. Br J Nutr, 1999. 82(5): p. 375-82.
    14. Bouhnik, Y., et al., Effects of fructo-oligosaccharides ingestion on fecal bifidobacteria andselected metabolic indexes of colon carcinogenesis in healthy humans. Nutr Cancer, 1996. 26(1): p. 21-9.
    15. Flint, H.J., et al., Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol, 2007. 9(5): p. 1101-11.
    16. Apajalahti, J.H., et al., Culture-independent microbial community analysis reveals that inulin in the diet primarily affects previously unknown bacteria in the mouse cecum. Appl Environ Microbiol, 2002. 68(10): p. 4986-95.
    17. Djouzi, Z. and C. Andrieux, Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora. Br J Nutr, 1997. 78(2): p. 313-24.
    18. Bouhnik, Y., et al., The capacity of short-chain fructo-oligosaccharides to stimulate faecal bifidobacteria: a dose-response relationship study in healthy humans. Nutr J, 2006. 5: p. 8.
    19. Gibson, G.R., et al., Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology, 1995. 108(4): p. 975-82.
    20. Le Blay, G.M., et al., Raw potato starch and short-chain fructo-oligosaccharides affect the composition and metabolic activity of rat intestinal microbiota differently depending on the caecocolonic segment involved. J Appl Microbiol, 2003. 94(2): p. 312-20.
    21. Wang, X. and G.R. Gibson, Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J Appl Bacteriol, 1993. 75(4): p. 373-80.
    22. Tannock, G.W., et al., Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol, 2000. 66(6): p. 2578-88.
    23. Amann, R.I., W. Ludwig, and K.H. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995. 59(1): p. 143-69.
    24. Kleessen, B., L. Hartmann, and M. Blaut, Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Br J Nutr, 2001. 86(2): p. 291-300.
    25. Probert, H.M. and G.R. Gibson, Investigating the prebiotic and gas-generating effects of selected carbohydrates on the human colonic microflora. Lett Appl Microbiol, 2002. 35(6): p. 473-80.
    26. Probert, H.M., et al., Polydextrose, lactitol, and fructo-oligosaccharide fermentation by colonic bacteria in a three-stage continuous culture system. Appl Environ Microbiol, 2004. 70(8): p. 4505-11.
    27. Tuohy, K.M., et al., The prebiotic effects of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides--a human volunteer study. Br J Nutr, 2001. 86(3): p. 341-8.
    28. Tannock, G.W., et al., Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans. Appl Environ Microbiol, 2004. 70(4): p. 2129-36.
    29. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993. 59(3): p. 695-700.
    30. Heuer, H., et al., Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol, 1997. 63(8): p. 3233-41.
    31. Boon, N., et al., Evaluation of nested PCR-DGGE (denaturing gradient gel electrophoresis) with group-specific 16S rRNA primers for the analysis of bacterial communities from different wastewater treatment plants. FEMS Microbiology Ecology, 2002. 39: p. 101-112.
    32. Garthoff, L.H., et al., The Autosow raised miniature swine as a model for assessing the effects of dietary soy trypsin inhibitor. Food Chem Toxicol, 2002. 40(4): p. 487-500.
    33. Pang, X., et al., Inter-species transplantation of gut microbiota from human to pigs. Isme J, 2007. 1(2): p. 156-62.
    34. Suau, A., et al., Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol, 1999. 65(11): p. 4799-807.
    35.庞小燕,人菌群相关(Human Flora-associated, HFA)实验仔猪的建立及其分子生态学研究(博士学位论文), in生命科学技术学院. 2005,上海交通大学:上海. p. 81-83.
    36. Wei, G., et al., ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. J Microbiol Methods, 2004. 59(1): p. 91-108.
    37. Zoetendal, E.G., A.D. Akkermans, and W.M. De Vos, Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol, 1998. 64(10): p. 3854-9.
    38. Pang, X., et al., Molecular profiling of Bacteroides spp. in human feces by PCR-temperature gradient gel electrophoresis. J Microbiol Methods, 2005. 61(3): p. 413-7.
    39. Nielsen, D.S., et al., Case study of the distribution of mucosa-associated Bifidobacterium species, Lactobacillus species, and other lactic acid bacteria in the human colon. Appl Environ Microbiol, 2003. 69(12): p. 7545-8.
    40. Shen, J., et al., Molecular profiling of the Clostridium leptum subgroup in human fecal microflora by PCR-denaturing gradient gel electrophoresis and clone library analysis. Appl Environ Microbiol, 2006. 72(8): p. 5232-8.
    41. Book, S.A. and L.K. Bustad, The fetal and neonatal pig in biomedical research. J Anim Sci, 1974. 38(5): p. 997-1002.
    42. Hidaka, H., et al., Effects of fructo-oligosaccharides on intestinal flora and human health. Bifidobacteria Microflora, 1986. 5: p. 37-50.
    43. Rycroft, C.E., et al., Fermentation properties of gentio-oligosaccharides. Lett Appl Microbiol, 2001. 32(3): p. 156-61.
    44. Satokari, R.M., et al., Polymerase chain reaction and denaturing gradient gel electrophoresis monitoring of fecal bifidobacterium populations in a prebiotic and probiotic feeding trial. Syst Appl Microbiol, 2001. 24(2): p. 227-31.
    45. Holmstrom, K., et al., Subdoligranulum variabile gen. nov., sp. nov. from human feces. Anaerobe, 2004. 10(3): p. 197-203.
    46. Li, M., et al., Symbiotic gut microbes modulate human metabolic phenotypes. Proc NatlAcad Sci U S A, 2008. 105(6): p. 2117-22.
    47. Lewis, S., S. Burmeister, and J. Brazier, Effect of the prebiotic oligofructose on relapse of Clostridium difficile-associated diarrhea: a randomized, controlled study. Clin Gastroenterol Hepatol, 2005. 3(5): p. 442-8.
    48. Knol, J., et al., Increase of faecal bifidobacteria due to dietary oligosaccharides induces a reduction of clinically relevant pathogen germs in the faeces of formula-fed preterm infants. Acta Paediatr Suppl, 2005. 94(449): p. 31-3.
    49. Duncan, S.H., et al., Effects of alternative dietary substrates on competition between human colonic bacteria in an anaerobic fermentor system. Appl Environ Microbiol, 2003. 69(2): p. 1136-42.
    50. Roberfroid, M.B., Prebiotics: preferential substrates for specific germs? Am J Clin Nutr, 2001. 73(2 Suppl): p. 406S-409S.
    51. Konstantinov, S.R., et al., Specific response of a novel and abundant Lactobacillus amylovorus-like phylotype to dietary prebiotics in the guts of weaning piglets. Appl Environ Microbiol, 2004. 70(7): p. 3821-30.
    52. Buddington, R.K., et al., Dietary supplement of neosugar alters the fecal flora and decreases activities of some reductive enzymes in human subjects. Am J Clin Nutr, 1996. 63(5): p. 709-16.
    53. Williams, C.H., S.A. Witherly, and R.K. Buddington, Influence of dietary Neosugar on selected bacteria groups of the human fecal microbiota. Microb Ecol Health Dis, 1994. 7: p. 91-97.
    54. Brennan-Craddock, W.E., et al., Development changes to gut microflora metabolism in mice. J Appl Bacteriol, 1992. 73(2): p. 163-7.
    55. Bouhnik, Y., et al., The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr, 2004. 80(6): p. 1658-64.
    56. Mitsuoka, T., H. Hidaka, and T. Eida, Effect of fructo-oligosaccharides on intestinal microflora. Nahrung, 1987. 31(5-6): p. 427-36.
    57. Rao, A.V., Dose-response effects of inulin and oligofructose on intestinal bifidogenesis effects. J Nutr, 1999. 129(7 Suppl): p. 1442S-5S.
    1. Cummings, J.H., et al., The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am J Clin Nutr, 1979. 32(10): p. 2094-101.
    2. Cummings, J.H. and G.T. Macfarlane, The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol, 1991. 70(6): p. 443-59.
    3. Macfarlane, G.T., J.H. Cummings, and C. Allison, Protein degradation by human intestinal bacteria. J Gen Microbiol, 1986. 132(6): p. 1647-56.
    4. Macfarlane, G.T., et al., Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements. FEMS Microbiology Letters, 1992. 101: p. 81-88.
    5. Metges, C.C., Contribution of microbial amino acids to amino acid homeostasis of the host. J Nutr, 2000. 130(7): p. 1857S-64S.
    6. Macfarlane, S. and G.T. Macfarlane, Food and the large intestine, in Gut Flora, Nutrition, Immunity and Health, R. Fuller and G. Perdigon, Editors. 2003, Blackwell. p. 24-51.
    7. Gibson, S.A., et al., Significance of microflora in proteolysis in the colon. Appl Environ Microbiol, 1989. 55(3): p. 679-83.
    8. Macfarlane, G.T., G.R. Gibson, and J.H. Cummings, Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol, 1992. 72(1): p. 57-64.
    9. Smith, E.A. and G.T. Macfarlane, Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiology Ecology, 1998. 25: p. 355-368.
    10. Humblot, C., et al., 1H nuclear magnetic resonance spectroscopy-based studies of the metabolism of food-borne carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline by human intestinal microbiota. Appl Environ Microbiol, 2005. 71(9): p. 5116-23.
    11. Nicholson, J.K., E. Holmes, and I.D. Wilson, Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol, 2005. 3(5): p. 431-8.
    12. Nicholson, J.K. and I.D. Wilson, Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov, 2003. 2(8): p. 668-76.
    13. Nicholson, J.K., et al., Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov, 2002. 1(2): p. 153-61.
    14. Rezzi, S., et al., Nutritional metabonomics: applications and perspectives. J Proteome Res, 2007. 6(2): p. 513-25.
    15. Dumas, M.E., et al., Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proc Natl Acad Sci U S A, 2006. 103(33): p. 12511-6.
    16. Lindon, J.C., E. Holmes, and J.K. Nicholson, Metabonomics and its role in drug development and disease diagnosis. Expert Rev Mol Diagn, 2004. 4(2): p. 189-99.
    17. Nicholson, J.K., J.C. Lindon, and E. Holmes, 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999. 29(11): p. 1181-9.
    18. Jacobs, D.M., et al., (1)H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome. NMR Biomed, 2007.
    19. Marchesi, J.R., et al., Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res, 2007. 6(2): p. 546-51.
    20. Saric, J., et al., Species variation in the fecal metabolome gives insight into differential gastrointestinal function. J Proteome Res, 2008. 7(1): p. 352-60.
    21. Raibaud, P., et al., Implantation of bacteria from the digestive tract of man and various animals into gnotobiotic mice. Am J Clin Nutr, 1980. 33(11 Suppl): p. 2440-7.
    22. Maejima, K., et al., Bacterial flora of ex-germfree mice after oral inoculation of feces from various species of conventional animals. Jikken Dobutsu, 1981. 30(2): p. 157-60.
    23. Rumney, C.J. and I.R. Rowland, In vivo and in vitro models of the human colonic flora. Crit Rev Food Sci Nutr, 1992. 31(4): p. 299-331.
    24. Garthoff, L.H., et al., The Autosow raised miniature swine as a model for assessing the effects of dietary soy trypsin inhibitor. Food Chem Toxicol, 2002. 40(4): p. 487-500.
    25. Pang, X., et al., Inter-species transplantation of gut microbiota from human to pigs. Isme J, 2007. 1(2): p. 156-62.
    26. Cloarec, O., et al., Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem, 2005. 77(5): p. 1282-9.
    27. Trygg, J. and S. Wold, O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter. Journal of Chemometrics, 2003. 17: p. 53-64.
    28. Cloarec, O., et al., Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in 1H NMR spectroscopic metabonomic studies. Anal Chem, 2005. 77(2): p. 517-26.
    29. Nicholson, J.K., et al., 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem, 1995. 67(5): p. 793-811.
    30. Nicholls, A.W., R.J. Mortishire-Smith, and J.K. Nicholson, NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chem Res Toxicol, 2003. 16(11): p. 1395-404.
    31. Smith, E.A. and G.T. Macfarlane, Studies on Amine Production in the Human Colon: Enumeration of Amine forming Bacteria and Physiological Effects of Carbohydrate and pH. Anaerobe, 1996. 2(5): p. 285.
    32. Chacko, A. and J.H. Cummings, Nitrogen losses from the human small bowel: obligatory losses and the effect of physical form of food. Gut, 1988. 29(6): p. 809-15.
    33. Adibi, S.A. and D.W. Mercer, Protein digestion in human intestine as reflected in luminal, mucosal, and plasma amino acid concentrations after meals. J Clin Invest, 1973. 52(7): p. 1586-94.
    34. Summerskill, W.H. and E. Wolpert, Ammonia metabolism in the gut. Am J Clin Nutr, 1970. 23(5): p. 633-9.
    35. Smith, E.A. and G.T. Macfarlane, Formation of Phenolic and Indolic Compounds by Anaerobic Bacteria in the Human Large Intestine. Microb Ecol, 1997. 33(3): p. 180-8.
    36. Macfarlane, G.T. and C. Allison, Utilisation of protein by human gut bacteria. FEMS Microbiology Ecology, 1986. 38: p. 19-24.
    37. Cummings, J.H., Short chain fatty acids in the human colon. Gut, 1981. 22(9): p. 763-79.
    38. Rubinstein, R., A.V. Howard, and O.M. Wrong, In vivo dialysis of faeces as a method ofstool analysis. IV. The organic anion component. Clin Sci, 1969. 37(2): p. 549-64.
    39. Cummings, J.H., et al., Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut, 1987. 28(10): p. 1221-7.
    40. Asatoor, A.M. and M.L. Simenhoff, The origin of urinary dimethylamine. Biochim Biophys Acta, 1965. 111(2): p. 384-92.
    41. Smith, J.L., J.S. Wishnok, and W.M. Deen, Metabolism and excretion of methylamines in rats. Toxicol Appl Pharmacol, 1994. 125(2): p. 296-308.
    42. Zhang, A.Q., S.C. Mitchell, and R.L. Smith, Fate of dimethylamine in rat and mouse. Xenobiotica, 1994. 24(12): p. 1215-21.
    43. Owen, R.W., Faecal steroids and colorectal carcinogenesis. Scand J Gastroenterol Suppl, 1997. 222: p. 76-82.
    44. Zoetendal, E.G., A.D. Akkermans, and W.M. De Vos, Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol, 1998. 64(10): p. 3854-9.
    45. Wei, G., et al., ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts. J Microbiol Methods, 2004. 59(1): p. 91-108.
    46. Wrong, O., et al., In Vivo Dialysis Of Faeces As A Method Of Stool Analysis. I. Technique And Results In Normal Subjects. Clin Sci, 1965. 28: p. 357-75.
    47. Owens, C.W. and W. Padovan, Quantitative method for estimating fecal amino acids. Clin Chem, 1975. 21(10): p. 1437-40.
    48. Macfarlane, G.T., S. Macfarlane, and G.R. Gibson, Validation of a Three-Stage Compound Continuous Culture System for Investigating the Effect of Retention Time on the Ecology and Metabolism of Bacteria in the Human Colon. Microb Ecol, 1998. 35(2): p. 180-7.
    49. Smith, E.A. and G.T. Macfarlane, Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol, 1996. 81(3): p. 288-302.
    50. Pullan, R.D., et al., Thickness of adherent mucus gel on colonic mucosa in humans and its relevance to colitis. Gut, 1994. 35(3): p. 353-9.
    51. Sakata, T. and W. von Engelhardt, Luminal mucin in the large intestine of mice, rats and guinea pigs. Cell Tissue Res, 1981. 219(3): p. 629-35.
    52. Hoskins, L.C. and E.T. Boulding, Mucin degradation in human colon ecosystems. Evidence for the existence and role of bacterial subpopulations producing glycosidases as extracellular enzymes. J Clin Invest, 1981. 67(1): p. 163-72.
    53. Macfarlane, S., E.J. Woodmansey, and G.T. Macfarlane, Colonization of mucin by human intestinal bacteria and establishment of biofilm communities in a two-stage continuous culture system. Appl Environ Microbiol, 2005. 71(11): p. 7483-92.
    54. Mekhjian, H.S., S.F. Phillips, and A.F. Hofmann, Colonic absorption of unconjugated bile acids: perfusion studies in man. Dig Dis Sci, 1979. 24(7): p. 545-50.
    55. Juste, C., et al., Intestinal absorption of bile acids in the pig. Role of distal bowel. Dig DisSci, 1988. 33(1): p. 67-73.
    1. Gordon, H.A. and L. Pesti, The gnotobiotic animal as a tool in the study of host microbial relationships. Bacteriol Rev, 1971. 35(4): p. 390-429.
    2. Strober, W., I. Fuss, and P. Mannon, The fundamental basis of inflammatory bowel disease. J Clin Invest, 2007. 117(3): p. 514-21.
    3. Guarner, F., Enteric flora in health and disease. Digestion, 2006. 73 Suppl 1: p. 5-12.
    4. Collins, M.D. and G.R. Gibson, Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am J Clin Nutr, 1999. 69(5): p. 1052S-1057S.
    5. Roberfroid, M., Prebiotics: the concept revisited. J Nutr, 2007. 137(3 Suppl 2): p. 830S-7S.
    6. Gibson, G.R., et al., Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition Research Reviews, 2004. 17: p. 259-275.
    7. Van der Meulen, R., L. Avonts, and L. De Vuyst, Short fractions of oligofructose are preferentially metabolized by Bifidobacterium animalis DN-173 010. Appl Environ Microbiol, 2004. 70(4): p. 1923-30.
    8. Roberfroid, M.B., J.A. Van Loo, and G.R. Gibson, The bifidogenic nature of chicory inulin and its hydrolysis products. J Nutr, 1998. 128(1): p. 11-9.
    9. Gibson, G.R. and M.B. Roberfroid, Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr, 1995. 125(6): p. 1401-12.
    10. Cummings, J.H., G.T. Macfarlane, and H.N. Englyst, Prebiotic digestion and fermentation. Am J Clin Nutr, 2001. 73(2 Suppl): p. 415S-420S.
    11. Macfarlane, G.T., H. Steed, and S. Macfarlane, Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J Appl Microbiol, 2008. 104(2): p. 305-44.
    12. Nicholson, J.K., E. Holmes, and I.D. Wilson, Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol, 2005. 3(5): p. 431-8.
    13. Nicholson, J.K. and I.D. Wilson, Opinion: understanding 'global' systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov, 2003. 2(8): p. 668-76.
    14. Nicholson, J.K., et al., Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov, 2002. 1(2): p. 153-61.
    15. Rezzi, S., et al., Nutritional metabonomics: applications and perspectives. J Proteome Res, 2007. 6(2): p. 513-25.
    16. Brindle, J.T., et al., Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat Med, 2002. 8(12): p. 1439-44.
    17. Holmes, E., et al., Automatic data reduction and pattern recognition methods for analysis of
    1H nuclear magnetic resonance spectra of human urine from normal and pathological states. Anal Biochem, 1994. 220(2): p. 284-96.
    18. Lindon, J.C., et al., Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers, 2004. 9(1): p. 1-31.
    19. Lindon, J.C., E. Holmes, and J.K. Nicholson, Metabonomics and its role in drug development and disease diagnosis. Expert Rev Mol Diagn, 2004. 4(2): p. 189-99.
    20. Nicholson, J.K., J.C. Lindon, and E. Holmes, 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 1999. 29(11): p. 1181-9.
    21. Lederberg, J., Infectious history. Science, 2000. 288(5464): p. 287-93.
    22. Martin, F.P., et al., A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Mol Syst Biol, 2007. 3: p. 112.
    23. Nicholson, J.K., Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol, 2006. 2: p. 52.
    24. Kleessen, B., et al., Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am J Clin Nutr, 1997. 65(5): p. 1397-402.
    25. Tannock, G.W., et al., Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans. Appl Environ Microbiol, 2004. 70(4): p. 2129-36.
    26. Gibson, G.R., et al., Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology, 1995. 108(4): p. 975-82.
    27. Bouhnik, Y., et al., Effects of fructo-oligosaccharides ingestion on fecal bifidobacteria and selected metabolic indexes of colon carcinogenesis in healthy humans. Nutr Cancer, 1996. 26(1): p. 21-9.
    28. Djouzi, Z. and C. Andrieux, Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora. Br J Nutr, 1997. 78(2): p. 313-24.
    29. Kleessen, B., L. Hartmann, and M. Blaut, Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Br J Nutr, 2001. 86(2): p. 291-300.
    30. Cummings, J.H. and G.T. Macfarlane, The control and consequences of bacterial fermentation in the human colon. J Appl Bacteriol, 1991. 70(6): p. 443-59.
    31. Topping, D.L. and P.M. Clifton, Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev, 2001. 81(3): p. 1031-64.
    32. Pang, X., et al., Inter-species transplantation of gut microbiota from human to pigs. Isme J, 2007. 1(2): p. 156-62.
    33. Garthoff, L.H., et al., The Autosow raised miniature swine as a model for assessing the effects of dietary soy trypsin inhibitor. Food Chem Toxicol, 2002. 40(4): p. 487-500.
    34. Cloarec, O., et al., Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Anal Chem, 2005. 77(5): p. 1282-9.
    35. Trygg, J. and S. Wold, O2-PLS, a two-block (X-Y) latent variable regression (LVR) method with an integral OSC filter. Journal of Chemometrics, 2003. 17: p. 53-64.
    36. Cloarec, O., et al., Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarkerchanges in 1H NMR spectroscopic metabonomic studies. Anal Chem, 2005. 77(2): p. 517-26.
    37. Marchesi, J.R., et al., Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. J Proteome Res, 2007. 6(2): p. 546-51.
    38. Nicholson, J.K., et al., 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem, 1995. 67(5): p. 793-811.
    39. Nicholls, A.W., R.J. Mortishire-Smith, and J.K. Nicholson, NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chem Res Toxicol, 2003. 16(11): p. 1395-404.
    40. Saric, J., et al., Species variation in the fecal metabolome gives insight into differential gastrointestinal function. J Proteome Res, 2008. 7(1): p. 352-60.
    41. Wang, Y., et al., Metabonomic investigations of aging and caloric restriction in a life-long dog study. J Proteome Res, 2007. 6(5): p. 1846-54.
    42. Jacobs, D.M., et al., (1)H NMR metabolite profiling of feces as a tool to assess the impact of nutrition on the human microbiome. NMR Biomed, 2007.
    43. Felske, A., et al., Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology, 1997. 143 (Pt 9): p. 2983-9.
    44. Rossi, M., et al., Fermentation of fructooligosaccharides and inulin by bifidobacteria: a comparative study of pure and fecal cultures. Appl Environ Microbiol, 2005. 71(10): p. 6150-8.
    45. Gibson, G.R. and X. Wang, Regulatory effects of bifidobacteria on the growth of other colonic bacteria. J Appl Bacteriol, 1994. 77(4): p. 412-20.
    46. Hinton, A., Jr. and M.E. Hume, Synergism of lactate and succinate as metabolites utilized by Veillonella to inhibit the growth of Salmonella typhimurium and Salmonella enteritidis in vitro. Avian Dis, 1995. 39(2): p. 309-16.
    47. Nigatu, A. and B.A. Gashe, Inhibition of spoilage and food-borne pathogens by lactic acid bacteria isolated from fermenting tef (Eragrostis tef) dough. Ethiop Med J, 1994. 32(4): p. 223-9.
    48. Presser, K.A., D.A. Ratkowsky, and T. Ross, Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Appl Environ Microbiol, 1997. 63(6): p. 2355-60.
    49. Scholz-Ahrens, K.E. and J. Schrezenmeir, Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J Nutr, 2007. 137(11 Suppl): p. 2513S-2523S.
    50. Abrams, S.A., et al., A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am J Clin Nutr, 2005. 82(2): p. 471-6.
    51. Wong, J.M., et al., Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol, 2006. 40(3): p. 235-43.
    52. Cani, P.D., et al., Oligofructose promotes satiety in healthy human: a pilot study. Eur J Clin Nutr, 2006. 60(5): p. 567-72.
    53. Owen, R.W., Faecal steroids and colorectal carcinogenesis. Scand J Gastroenterol Suppl, 1997. 222: p. 76-82.
    54. Fadden, K. and R.W. Owen, Faecal steroids and colorectal cancer: the effect of lactulose on faecal bacterial metabolism in a continuous culture model of the large intestine. Eur J Cancer Prev, 1992. 1(2): p. 113-27.
    55. Chacko, A. and J.H. Cummings, Nitrogen losses from the human small bowel: obligatory losses and the effect of physical form of food. Gut, 1988. 29(6): p. 809-15.
    56. Smith, E.A. and G.T. Macfarlane, Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiology Ecology, 1998. 25: p. 355-368.
    57. Adibi, S.A. and D.W. Mercer, Protein digestion in human intestine as reflected in luminal, mucosal, and plasma amino acid concentrations after meals. J Clin Invest, 1973. 52(7): p. 1586-94.
    58. Summerskill, W.H. and E. Wolpert, Ammonia metabolism in the gut. Am J Clin Nutr, 1970. 23(5): p. 633-9.
    59. Smith, E.A. and G.T. Macfarlane, Formation of Phenolic and Indolic Compounds by Anaerobic Bacteria in the Human Large Intestine. Microb Ecol, 1997. 33(3): p. 180-8.
    60. Metges, C.C., Contribution of microbial amino acids to amino acid homeostasis of the host. J Nutr, 2000. 130(7): p. 1857S-64S.
    61. Fuller, M.F. and P.J. Reeds, Nitrogen cycling in the gut. Annu Rev Nutr, 1998. 18: p. 385-411.
    62. Duggal, S.K. and B.O. Eggum, Urinary creatinine and creatine excretion in pigs in relation to body weight and nitrogen balance. J Sci Food Agric, 1978. 29(8): p. 683-8.
    63. D'Mello, J.P., D.G. Peers, and C.T. Whittemore, Utilization of dried microbial cells grown on methanol in a semi-purified diet for growing pigs. Br J Nutr, 1976. 36(3): p. 403-19.
    64. Lopes, S.O., et al., Effects of dexamethasone application in growing pigs on hormones, N-retention and other metabolic parameters. J Vet Med A Physiol Pathol Clin Med, 2004. 51(3): p. 97-105.
    65. O'Keefe, S.J., et al., Why do African Americans get more colon cancer than Native Africans? J Nutr, 2007. 137(1 Suppl): p. 175S-182S.
    66. Giovannucci, E., Modifiable risk factors for colon cancer. Gastroenterol Clin North Am, 2002. 31(4): p. 925-43.
    67. Le Blay, G.M., et al., Raw potato starch and short-chain fructo-oligosaccharides affect the composition and metabolic activity of rat intestinal microbiota differently depending on the caecocolonic segment involved. J Appl Microbiol, 2003. 94(2): p. 312-20.
    68. Cummings, J.H., et al., Digestion and physiological properties of resistant starch in the human large bowel. Br J Nutr, 1996. 75(5): p. 733-47.
    69. Morita, T., et al., Psyllium shifts the fermentation site of high-amylose cornstarch toward the distal colon and increases fecal butyrate concentration in rats. J Nutr, 1999. 129(11): p. 2081-7.
    70. Alles, M.S., et al., Fate of fructo-oligosaccharides in the human intestine. Br J Nutr, 1996. 76(2): p. 211-21.
    [1] Hooper L V, Gordon J I. Commensal host-bacterial relationships in the gut [J]. Science, 2001, 292(5519):1115~1118.
    [2] Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiol Rev, 1995, 59(1):143~169.
    [3] Zoetendal E G, Akkermans A D, De Vos W M. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria [J]. Appl Environ Microbiol, 1998, 64(10): 3854~3859.
    [4] Suau A, Bonnet R, Sutren M, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut [J]. Appl Environ Microbiol, 1999, 65(11):4799~4807.
    [5] Matsuki T, Watanabe K, Fujimoto J, et al. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces [J]. Appl Environ Microbiol, 2004, 70(12):7220~7228.
    [6] Saunier K, Rouge C, Lay C, et al. Enumeration of bacteria from the Clostridium leptum subgroup in human faecal microbiota using Clep1156 16S rRNA probe in combination with helper and competitor oligonucleotides [J]. Syst Appl Microbiol, 2005, 28(5):454~464.
    [7] LaGier M J, Joseph L A, Passaretti T V, et al. A real-time multiplexed PCR assay for rapid detection and differentiation of Campylobacter jejuni and Campylobacter coli [J]. Molecular and Cellular Probes, 2004, 18(4):275~282.
    [8] Wei G, Pan L, Du H, et al. ERIC-PCR fingerprinting-based community DNA hybridization to pinpoint genome-specific fragments as molecular markers to identify and track populations common to healthy human guts [J]. J Microbiol Methods, 2004, 59(1): 91~108.
    [9] Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Appl Environ Microbiol, 1993, 59(3): 695~700.
    [10] Thompson J R, Marcelino L A, Polz M F. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by 'reconditioning PCR' [J]. Nucleic Acids Res, 2002, 30(9):2083~2088.
    [11] McOrist A L, Jackson M, Bird A R. A comparison of five methods for extraction of bacterial DNA from human faecal samples [J]. J Microbiol Methods, 2002, 50(2):131~139.
    [12] Zoetendal E G, Ben-Amor K, Akkermans A D, et al. DNA isolation protocols affect the detection limit of PCR approaches of bacteria in samples from the human gastrointestinal tract [J]. Syst Appl Microbiol, 2001, 24(3):405~410.
    [13] Hooper L V, Midtvedt T, Gordon J I. How host-microbial interactions shape the nutrient environment of the mammalian intestine [J]. Annu Rev Nutr, 2002, 22:283~307.
    [14] Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora [J]. Science, 2005, 308(5728):1635~1638.
    [15] Yu Z T, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples [J]. BioTechniques, 2004, 36:808~812.
    [16]刘建华,陈杖榴,李云,等。肠道菌群多样性变性梯度凝胶电泳分析法的建立[J].中国兽医科技, 2005, 35(6):445~449.
    [17] Li M, Gong J, Cottrill M, et al. Evaluation of QIAamp DNA Stool Mini Kit for ecological studies of gut microbiota [J]. J Microbiol Methods, 2003, 54(1):13~20.
    [18] Ben-Amor K, Heilig H, Smidt H, et al. Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis [J]. Appl Environ Microbiol, 2005, 71(8):4679~4689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700