用户名: 密码: 验证码:
生物碱类CFTR氯离子通道激活剂的筛选及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
囊性纤维化跨膜电导调节因子(cystic fibrosis transmembrane conductance regulator,CFTR)是一种受cAMP调节的氯离子通道。CFTR的表达非常广泛,主要参与电解质及液体的转运。该通道活动的异常与多种疾病的病理发生相关:CFTR氯离子通道功能丧失或活性降低可导致慢性胰腺炎、多囊肾病、男性不育、习惯性便秘和干眼病等;而功能的过度激活则可导致分泌性腹泻、多囊肾病等。CFTR氯离子通道高效、特异性调节剂对于研究CFTR相关疾病的病理机制和治疗具有重要价值。
     本文的目的是从生物碱中筛选野生型CFTR氯离子通道的激活剂并对其分子药理学特征进行系统研究。利用碘离子高度敏感的CFTR氯离子通道荧光测定细胞模型,对46种生物碱类化合物进行了筛选,得到了16种能够明显促进碘离子转运的活性化合物。对二氢辣椒素、辣椒素、茶碱、盐酸罂粟碱激活CFTR氯离子通道的分子药理学性质进行了系统研究。发现了(1)辣椒素和二氢辣椒素对CFTR离子通道活性的最大激活效率Vmax分别是0.4 mM/S和0.5 mM/S;它们与CFTR的亲和力分别是152±7.4μ?Μ和40.4±6.8μM;辣椒素和二氢辣椒素均不能激活?F508-CFTR氯离子通道活性,也不能纠正?F508-CFTR细胞质膜定位障碍;辣椒素和二氢辣椒素在CFTR上的结合位点可能与genistein在CFTR上的结合位点存在一定的重叠。辣椒素和二氢辣椒素激活CFTR氯离子通道活性可能是其导泻的生理活性的原因之一。(2)茶碱能够激活CFTR氯离子通道,Vmax值和Kd值分别是130±1.27μ?M和0.57±0.04 mM/S;茶碱对ΔF508-CFTR和G551D-CFTR的离子通道功能障碍均没有纠正活性,也不能纠正ΔF508-CFTR细胞质膜定位障碍;茶碱的上述活性与以往发现的其众多生物学活性之间的关系还不清楚。(3)盐酸罂粟碱对CFTR氯离子通道具有较强的激活作用,Vmax值为0.85 mM/s,Kd值为20μM;盐酸罂粟碱能够激活?F508-CFTR氯离子通道活性,但是对G551D-CFTR氯离子通道活性没有激活作用,其对?F508-CFTR氯离子通道激活作用的Vmax和Kd值分别为0.08 mM/s和40μM;盐酸罂粟碱与genistein在CFTR上的结合位点不存在重叠。盐酸罂粟碱的CFTR氯离子通道激活活性可能是其降压作用的原因之一。
     本研究在国际上首次以天然化合物生物碱为对象,筛选CFTR氯离子通道的天然激活剂,并发现了多种活性较强、结构多样的天然化合物。我们的研究为生物碱活性研究补充了新内容。首次对盐酸罂粟碱、二氢辣椒素、茶碱等生物碱类野生型CFTR氯离子通道激活剂进行了系统的分子药理学研究。首次提供证据显示CFTR氯离子通道作为盐酸罂粟碱、二氢辣椒素、茶碱等生物碱类化合物体内活性的分子靶点。
CFTR(cystic fibrosis transmembrane conductance regulator) is a cAMP dependent chloride channel. It is extensively expressed by epithelial cells lined airway, gastrointestinal tract, pancreatic, sweat gland, testis,et al, and plays key roles in transport of electrolyte and fluid. The abnormal activity of CFTR chloride channel is related to pathogenesis of several diseases. Malfunction will result in cystic fibrosis, chronic pancreatitis, male sterility, habitual constipation, keratoconjunctivitis sicca (KCS, also called dry eye syndrome). Over activation of CFTR is related to diarrhea, polycystic kidney disease (ADPKD). High affinity CFTR regulators are important in studying CFTR-related diseases and mechanisms involved.
     The purpose of this study is to identify natural alkaloid compounds that can stimulate activation of wild-type human CFTR (wt-CFTR) chloride channel and molecular pharmacological mechanisms related. An FRT cell line stably coexpressing wt-CFTR and the high halide sensitive YFP (YFP-H148Q) cell based assay were used in the study. 14 alkaloids that can stimulate iodide transport mediated by wt-CFTR were identified from 46 natural alkaloids, among which dihydrocapsaicin, capsaicin, theophylline, and papaverine HCl exhibit the highest activities. In this paper molecular pharmacological properties of these compounds were systematically investigated. We found that (1) dihydrocapsaicin, capsaicin can dependently actived wt-CFTR, with affinities of 152±7.4μ?Μand 40.4±6.8, respectively; with maximal potencies of 0.4 mM/S and 0.5 mM/S, respectively. None pf the compounds stimulatedΔF508-CFTR mediated iodide influx or corrected its misprocessing defect. Further investigation manifested that the capsaicinoids might share common binding site in CFTR with genbistein, known CFTR activator. CFTR activation activity might account part of laxative effect of capsaicinoids. (2) Theophylline also activated CFTR choloride channel, with Kd and Vmax values were 130±1.27μ?M and 0.57±0.04 mM/S, respectively. Theophylline had no effect on the most common CFTR mutation forms of CFTR (ΔF508-CFTR and G551D-CFTR), and it could not correct the misprocessing defect ofΔF508-CFTR. The relationship between CFTR activation activity of theophylline and its multiphysiological effect is not clear. (3) Papaverine HCl could stimulate both wt CFTR andΔF508-CFTR chloride channels, but not G551D-CFTR chloride channel, with Vmax values are 0.85 mM/s and 0.08 mM/s, respectively; Kd values are 20μM and 40μM, respectively. Initial studies showed that papaverine HCl did not share common binding site in CFTR with genbistein.
     We identified several CFTR activators from natural alkaloid compounds and systematically investigated their pharmacological properties. Our results integrated (in part) and supplemented activities of alkaloid compounds. Molecular pharmacological studies of several alkaloids (dihydrocapsaicin, capsaicin, theophylline, and papaverine HCl) showed that CFTR protein might be one of the molecule drug targets of these compounds.
引文
1. Rommens J M, Iannuzzi M C, Kerem B,et al.Identification of the cystic fibrosis gene: Chromosome walking and jumping[J]. Science, 1989, 245:1059-1065.
    2. Riordan J R,Rommens J M,Kerem B,et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA [J]. Science, 1989, 245: 1066-1073.
    3. Kerem B, Rommens J M, Buchanan J A,et al. Identification of the cystic fibrosis gene: Genetic analysis [J]. Science, 1989, 245: 1073-1080.
    4. Heged?s T, Aleksandrov A, Mengos A, Cui L, Jensen TJ, Riordan JR. Role of individual R domain phosphorylation sites in CFTR regulation by protein kinase A [J]. Biochim Biophys Acta. 2009 Mar 25.
    5. Berger H A, Anderson M P, Gregory R J, et al. Identification and regulation of the cystic fibrosis transmembrane conductance regulator-generated chloride channel [J]. J Clin Invest, 1991, 88: 1422-1431.
    6. Seavilleklein G, Amer N, Evagelidis A, Chappe F, Irvine T, Hanrahan JW, Chappe V. PKC phosphorylation modulates PKA-dependent binding of the R domain to other domains of CFTR [J]. Am J Physiol Cell Physiol. 2008 Nov; 295(5): C1366-1375.
    7. Anderson M P, Gregory R J, Thompson S, et al. Demonstration that CFTR is a chloride channel by alteration of its anion selectivity [J]. Science, 1991,253: 202-205.
    8. Cheung M, Akabas M H. Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment [J]. Biophys J, 1996, 70:2688-2695.
    9. Sheppard D N, Rich D P, Ostedgaard L S, et al. Mutations in CFTR associated with mild disease form Cl- channels with altered pore properties [J]. Nature, 1993, 362: 160-164.
    10. Zhou JJ, Fatehi M, Linsdell P. Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore [J]. Pflugers Arch. 2008, 457(2): 351-360.
    11. Mansoura M K, Smith S S, Choi A D,et al.Cystic fibrosis transmembrane conductance regulator (CFTR) anion binding as a probe of the pore[J]. Biophys J, 1998, 74:1320-1332.
    12. Szellas T, Nagel G. Apparent affinity of CFTR for ATP is increased by continuous kinase activity [J]. FEBS Lett. 2003, 535(1-3): 141-146.
    13. Tsai MF, Shimizu H, Sohma Y, Li M, Hwang TC.State-dependent modulation of CFTR gating by pyrophosphate [J]. J Gen Physiol. 2009, 133(4): 405-419.
    14. Hwang TC, Sheppard DN. Gating of the CFTR Cl- channel by ATP-driven nucleotide-binding domain dimerisation [J]. J Physiol. 2009 Mar 30. [Epub ahead of print].
    15. Cheung JC, Kim Chiaw P, Pasyk S, Bear CE.Molecular basis for the ATPase activity of CFTR [J]. ArchBiochem Biophys. 2008, 476(1): 95-100.
    16. Gunderson K L, Kopito R R. Conformational states of CFTR associated with channel gating: the role ATP binding and hydrolysis [J]. Cell, 1995, 82: 231-239.
    17. Ko Y H, Pederson P L. The first nucleotide binding fold of the cystic fibrosis transmembrane conductance regulator can function as an active ATPase [J]. J Biol Chem, 1995, 270: 22093-22096.
    18. Pereira MM, Parker J, Stratford FL, McPherson M, Dormer RL. Activation mechanisms for the cystic fibrosis transmembrane conductance regulator protein involve direct binding of cAMP [J]. Biochem J. 2007, 405(1): 181-189.
    19. Csanády L, Nairn AC, Gadsby DC.Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle [J]. J Gen Physiol. 2006, 128(5): 523-533.
    20. Cheung JC, Kim Chiaw P, Pasyk S, Bear CE. Molecular basis for the ATPase activity of CFTR [J]. Arch Biochem Biophys. 2008, 476(1): 95-100.
    21. Muallem D, Vergani P. Review. ATP hydrolysis-driven gating in cystic fibrosis transmembrane conductance regulator [J]. Philos Trans R Soc Lond B Biol Sci. 2009, 364(1514): 247-255.
    22. Revisiting cystic fibrosis transmembrane conductance regulator structure and function [J]. Hanrahan JW, Wioland MA. Proc Am Thorac Soc. 2004, 1(1): 17-21.
    23. Jentsch TJ, Stein V, Weinreich F, Zdebik AA. Molecular structure and physiological function of chloride channels [J]. Physiol Rev. 2002, 82(2): 503-568.
    24. Riordan JR. CFTR function and prospects for therapy [J]. Annu Rev Biochem. 2008, 77:701-726.
    25. Robert R, Norez C, Becq F. Disruption of CFTR chloride channel alters mechanical properties and cAMP-dependent Cl- transport of mouse aortic smooth muscle cells [J]. J Physiol, 2005, 568(Pt 2): 483-495.
    26. Grubb B R, Rogers T D, Kulaga H M, et al. Olfactory epithelia exhibit progressive functional and morphological defects in CF mice [J]. Am J Physiol Cell Physiol., 2007, 293(2): C574- C583.
    27. Robert R, Thoreau V, Norez C, et al. Regulation of the cystic fibrosis transmembrane conductance regulator channel by beta-adrenergic agonists and vasoactive intestinal peptide in rat smooth muscle cells and its role in vasorelaxation [J]. J Biol Chem, 2004, 279(20): 21160-21168.
    28. Gao Z, Sun H Y, Lau C P, et al. Evidence for cystic fibrosis transmembrane conductance regulator chloride current in swine ventricular myocytes [J]. J Mol Cell Cardiol, 2007, 42(1): 98-105.
    29. Hernández-González E O, Trevi?o C L, Castellano L E, et al. Involvement of CFTR in Mouse Sperm Capacitation[J]. J Biol Chem, 2007, 282(33): 24397-24406.
    30. Dif F, Marty C, Baudoin C, et al. Severe osteopenia in CFTR-null mice [J].Bone. 2004, 35(3):595-603.
    31. Zheng X Y, Chen G A, Wang H Y. Expression of cystic fibrosis transmembrane conductance regulator in human endometrium [J]. Hum Reprod, 2004, 19(12): 2933-2941.
    32. Brochiero E, Dagenais A, PrivéA, et al. Evidence of a functional CFTR Cl (-) channel in adult alveolar epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2004, 287(2): L382-L392.
    33. Ratjen F. Update in cystic fibrosis 2008 [J]. Am J Respir Crit Care Med. 2009, 179(6): 445-448.
    34. Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis [J]. Cell, 1993; 73:1251-1254.
    35. Tsui L C and Durie P. Genotype and phenotype in cystic fibrosis [J]. Hosp Pract (Off Ed), 1997, 15:115-142.
    36. Welsh M J, Smith A E: Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis [J]. Cell, 1993, 73:1251-1254.
    37. Zielenski J, Tsui L C. Cystic fibrosis: Genotypic and phenotypic variations [J]. Annu Rev Genet, 1995, 29:777-807.
    38. The cystic fibrosis genotype-phenotype consortium. Correlation between genotype and phenotype in cystic fibrosis [J]. N Engl J Med, 1993, 329: 1308-1313. 39-45
    39. Hamosh A, Rosenstein BJ, Cutting GR. CFTR nonsense mutations G542X and W1282X associated with severe reduction of CFTR mRNA in nasal epithelial cells [J]. Hum Mol Genet, 1992, 1: 542-544.
    40. Cheng SH, Gregory RJ, Marshall J, et al. Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis [J]. Cell, 1990, 63(4): 827-834.
    41. Strong TV, Smit LS, Turpin SV, et al. Cystic fibrosis gene mutations in two sisters with mild disease and normal sweat electrolyte levels [J]. N Eng J Med, 1991, 325:1630-1634.
    42. Anderson MP, Walsh MJ. Regulation by ATP and ADP of CFTR chloride channels that contain mutant nucleotide-binding domains [J]. Science, 1992, 257:1701-1704.
    43. Sheppard DN, Rich DP, Ostedgaard LS, et al. Mutations in CFTR associated with mild disease form Cl channels with altered pore properties [J]. Nature, 1993, 362:160-164.
    44. Highsmith WE Jr, Burch LH, Zhou Z, et al. Identification of a splice site mutation (2789-5G-A) associated with small anounts of normal CFTR mRNA and mild cystic fibrosis [J]. Hum Mutat, 1997, 9:332-338.
    45. Zielenski J, Markiewicz D, Lin SP, et al. Skipping of exon 12 as a consequence of a point mutation (1898-5G T) in the cystic fibrosis transmembrane conductance regulator gene found in a consanguineous Chinese family [J]. Clin Genet, 1995, 47:124-132.
    46. Greger R. Role of CFTR in the colon [J]. Annu Rev Physiol, 2000, 62:467-491.
    47. Kunzelmann K, Mall M, Briel M, et al. The cystic fibrosis transmembrane conductance regulator attenuates the endogenous Ca2+ activated Cl- conductance of Xenopus oocytes [J]. Pflugers Arch, 1997, 435:178-181.
    48. Mall M, Kunzelmann K, Hipper A, et al. Overexpression and cAMP stimulation of CFRR in Xenopus oocytes activates a chromanol-inhibitable K+ conductance [J]. Pflugers Arch, 1996, 432:516-522.
    49. Mall M, Hipper A, Greger R, et al. Wild type but notΔF508 CFTR inhibits Na+ conductance when coexpressed in Xenopus oocytes [J]. FEBS Lett, 1996, 381:47-52.
    50. McNicholas C M, Wang W, Ho K, et al. Regulation of ROMK1 K+ channelactivity involves phosphorylation processes [J]. Proc Natl Acad Sci USA, 1994, 91:8077-8081.
    51. Schreiber R, Greger R, Nitschke R, et al. Cystic fibrosis tranmembrane conductance regulator activateswater conductance in Xenopus oocytes [J]. Pflugers Arch, 1997, 434:841-847.
    52. Stuuts M J, Canessa C M, Olsen J C, et al. CFTR as a cAMP-dependent regulator of sodium channels. CFTR as a cAMP-dependent regulator of sodium channels [J]. Science. 1995, 269(5225): 847-850.
    53. Dif F, Marty C, Baudoin C, et al. Severe osteopenia in CFTR-null mice [J]. Bone. 2004, 35(3): 595-603.
    54. Zheng X Y, Chen G A, Wang H Y. Expression of cystic fibrosis transmembrane conductance regulator in human endometrium[J]. Hum Reprod, 2004, 19(12): 2933-2941.
    55. Brochiero E, Dagenais A, PrivéA, et al. Evidence of a functional CFTR Cl (-) channel in adult alveolar epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2004, 287(2): L382-L392.
    56. Robert R, Norez C, Becq F. Disruption of CFTR chloride channel alters mechanical properties and cAMP-dependent Cl- transport of mouse aortic smooth muscle cells [J]. J Physiol, 2005, 568(Pt 2): 483-495.
    57. Thiagarajah JR, Verkman AS. CFTR pharmacology and its role in intestinal fluid secretion [J]. Curr Opin Pharmacol. 2003, 3(6): 594-599.
    58. Tizzano EF, Buchwald M. CFTR expression and organ damage in cystic fibrosis [J]. Ann Intern Med. 1995, 123(4): 305-308.
    59. Flume PA, O'Sullivan BP, Robinson KA, et al. Cystic Fibrosis Foundation, Pulmonary Therapies Committee.Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health [J]. Am J Respir Crit Care Med. 2007, 176(10): 957-969.
    60. Jacquot J, Tabary O, Le Rouzic P, Clement A.Airway epithelial cell inflammatory signalling in cystic fibrosis [J]. Int J Biochem Cell Biol. 2008, 40(9): 1703-1715.
    61. Nichols D, Chmiel J, Berger M. Chronic inflammation in the cystic fibrosis lung: alterations in inter- and intracellular signaling [J]. Clin Rev Allergy Immunol. 2008 , 34(2):146-162.
    62. Elizur A, Cannon CL, Ferkol TW. Airway inflammation in cystic fibrosis [J]. Chest. 2008, 133(2): 489-495.
    63. Fischman D, Nookala VK. Cystic fibrosis-related diabetes mellitus: etiology, evaluation, and management [J]. Endocr Pract. 2008, 14(9): 1169-1179.
    64. Eggermont E, De Boeck K. Small-intestinal abnormalities in cystic fibrosis patients [J]. Eur JPediatr, 1991, 150(12): 824-828.
    65. Sigalas I, Dafopoulos K, Galazios G, Liberis V, Nikolaou P, Anastasiadis P. Fetal small bowel obstruction: report of two cases [J]. Clin Exp Obstet Gynecol. 2003, 30(2-3): 161-163.
    66. Stollman TH, de Blaauw I, Wijnen MH, van der Staak FH, Rieu PN, Draaisma JM, Wijnen RM. Decreased mortality but increased morbidity in neonates with jejunoileal atresia; a study of 114 cases over a 34-year period [J]. J Pediatr Surg. 2009, 44(1): 217-221.
    67. Knowles M R, M J Stutts, A Spock, et al. Abnormal ion permeation through cystic fibrosis respiratory epithelium [J]. Science, 1983, 221: 1067-1070.
    68. Quinton P M. Chloride impermeability in cystic fibrosis [J]. Nature, 1983, 301(5899): 421-422.
    69. Kinnman N, Lindblad A, Housset C, Buentke E, Scheynius A, Strandvik B, Hultcrantz R.Expression of cystic fibrosis transmembrane conductance regulator in liver tissue from patients with cystic fibrosis [J]. Hepatology. 2000, 32(2): 334-340.
    70. Banales JM, Prieto J, Medina JF. Cholangiocyte anion exchange and biliary bicarbonate excretion [J]. World J Gastroenterol. 2006, 12(22): 3496-3511.
    71. Pall H, Zielenski J, Jonas MM, DaSilva DA, Potvin KM, Yuan XW, Huang Q, Freedman SD.Primary sclerosing cholangitis in childhood is associated with abnormalities in cystic fibrosis-mediated chloride channel function [J].J Pediatr. 2007, 151(3): 255-259.
    72. Pall H, Zaman MM, Andersson C, Freedman SD.Decreased peroxisome proliferator activated receptor alpha is associated with bile duct injury in cystic fibrosis transmembrane conductance regulator-/- mice [J]. J Pediatr Gastroenterol Nutr. 2006, 42(3): 275-281.
    73. Wilson PD. Polycystic kidney disease. N Engl J Med. 2004, 350:151-164.
    74. Harris PC, Torres VE. Polycystic Kidney Disease. Annu Rev Med. 2008 Oct 23.
    75. Grantham JJ. Clinical practice. Autosomal dominant polycystic kidney disease [J]. N Engl J Med. 2008,359(14):1477-1485.
    76. Ibraghimov-Beskrovnaya O. Molecular pathogenesis of ADPKD and development of targeted therapeutic options [J]. Nephrol Dial Transplant. 2007, 22(12):3367-3370.
    77. Ibraghimov-Beskrovnaya O, Bukanov N.Polycystic kidney diseases: from molecular discoveries to targeted therapeutic strategies [J]. Cell Mol Life Sci. 2008, 65(4):605-619.
    78. Murcia NS, Sweeney WE, Jr, Avner ED. New insights into the molecular pathophysiology of polycystic kidney disease [J]. Kidney Int. 1999, 55: 1187-1197
    80. Morales MM, Falkenstein D, Lopes AG. The cystic fibrosis transmembrane regulator(CFTR) in the kidney [J]. An Acad Bras Ci. 2000, 72(3): 399-406
    81. Ye M, Grantham JJ. The secretion of fluid by renal cyst from patients with autosomal dominant polycystic kidney disease [J]. N Engl J Med. 1993, 329: 310-313
    82. Grantham JJ, Ye M, Gattone II VH, et al. In vitro fluid secretion by epithelium from polysystic kidneys [J]. J Clin Invest. 1995, 95:195-202
    83. Perso A, Devuyst O, Lannoy N, et al. CF gene and cystic fibrosis transmembrane conductance regulator expression in autosomal dominant polycystic kidney disease [J]. J Am Soc Nephrol. 2000, 11:2285-2296
    84. Hanaoka K, Guggino WB. Chloride and fluid secretion in polycystic kidney disease [J]. J Am Soc Nephrol. 1998, 9:903-916
    85. . Yamaguchi T, Pelling JC, Ramaswamy NT, et al. cAMP stimulates the in vitro proliferation of ranal cyst epithelial cells by activation the extracellular signal-regulated kinase pathway [J]. Kidney Int. 2000, 57:1460-1471
    86. Li HY, Findlay IA, Sheppard DN. The relationship between cell proliferation, Cl- secretion, and renal cyst growth: a study using CFTR inhibitors [J]. Kidney Int. 2004, 66: 1926-1938
    87. Sullivan LP, Wallace DP, Grantham JJ. Epithelial transport in polycystic kidney disease [J]. Physiol Rev. 1998, 78(4): 1165-1191.
    88. Conwell DL, Banks PA. Chronic pancreatitis. Curr Opin Gastroenterol [J]. 2008, 24(5): 586-90.
    89. Witt H, Apte MV, Keim V, Wilson JS. Chronic pancreatitis: challenges and advances in pathogenesis, genetics, diagnosis, and therapy [J]. Gastroenterology. 2007, 132: 1557–15737.
    90. Balakrishnan V, Nair P, Radhakrishnan L, Narayanan VA. Tropical pancreatitis—a distinct entity, or merely a type of chronic pancreatitis? [J]. Indian J Gastroenterol. 2006, 25:74–81.
    91. Gumbs AA.Obesity, pancreatitis, and pancreatic cancer [J]. Obes Surg. 2008 , 18(9):1183-1187.
    92. Ketikoglou I, Moulakakis A. Autoimmune pancreatitis [J]. Dig Liver Dis. 2005, 37:211–215.
    93. Witt H, Bhatia E. Genetic aspects of tropical calcific pancreatitis [J]. Rev Endocr Metab Disord. 2008, 9(3): 213-26.
    94. Vonlaufen A, Wilson JS, Apte MV. Molecular mechanisms of pancreatitis: current opinion [J]. J Gastroenterol Hepatol. 2008, 23(9): 1339-48.
    95. Chronic pancreatitis: Asia-Pacific consensus report [J]. J Gastroenterol Hepatol. 2002, 17(4): 508-518.
    96.王洛伟,李兆申,李淑德,陈浮.慢性胰腺炎全国多中心流行病学调查.胰腺病学. 2007, 7(1):1-5
    97. Lucrezio L, Bassi M, Migliori M, Bastagli L, Gullo L.Alcoholic pancreatitis: new pathogenetic insights [J]. Minerva Med. 2008, 99(4): 391-398.
    98. Sand J, Lankisch PG, Nordback I. Alcohol consumption in patients with acute or chronic pancreatitis [J]. Pancreatology. 2007, 7(2-3):147-56.
    99. Yadav D, Papachristou GI, Whitcomb DC. Alcohol-associated pancreatitis [J]. Gastroenterol Clin North Am. 2007, 36(2):219-38.
    100. Vonlaufen A, Wilson JS, Pirola RC, Apte MV. Role of alcohol metabolism in chronic pancreatitis. Alcohol Res Health. 2007;30(1):48-54.
    101. Uomo G, Manes G. Risk factors of chronic pancreatitis [J]. Dig Dis. 2007, 25(3):282-284.
    102. Witt H, Apte MV, Keim V, Wilson JS.Chronic pancreatitis: challenges and advances in pathogenesis, genetics, diagnosis, and therapy [J]. Gastroenterology. 2007, 132(4): 1557-73.
    103. Riordan JR, Rommens JM, Kerem BS, et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA [J]. Science. 1989, 245: 1066-1072
    104. Cohn JA. Reduced CFTR function and the pathobiology of idiopathic pancreatitis [J]. J Clin Gastroenterol. 2005, 39(4 Suppl 2):S70-77.
    105. Kerem E.Atypical CF and CF related diseases [J]. Paediatr Respir Rev. 2006, 7 Suppl 1:S144-146.
    106. Cohn JA, Mitchell RM, Jowell PS.The role of cystic fibrosis gene mutations in determining susceptibility to chronic pancreatitis [J]. Gastroenterol Clin North Am. 2004, 33(4):817-837,
    107. Cohn JA, Friedman KJ, Noone PG, Knowles MR, Silverman LM, Jowell PS. Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis [J]. N Engl J Med. 1998, 339:653–658.
    108. Sharer N, Schwarz M, Malone G, et al. Mutations of the cystic fibrosis gene in patients with chronic pancreatitis [J]. N Engl J Med. 1998, 339:645–652
    109. Ishiguro H, Steward MC, Naruse S, et al. CFTR Functions as a Bicarbonate Channel in Pancreatic Duct Cells [J]. J Gen Physiol. 2009 Feb 9. [Epub ahead of print]
    110. Walkowiak J, Lisowska A, Blaszczyński M. The changing face of the exocrine pancreas in cystic fibrosis: pancreatic sufficiency, pancreatitis and genotype [J]. Eur J Gastroenterol Hepatol. 2008, 20(3):157-160.
    111. Cohn JA, Neoptolemos JP, Feng J, et al. Increased risk of idiopathic chronic pancreatitis in cystic fibrosis carriers [J]. Hum Mutat. 2005, 26:303–307.
    112. Kitahara K, Kawa S, Katsuyama Y, Umemura T, Ozaki Y, Takayama M, Arakura N, Ota M.Microsatellite scan identifies new candidate genes for susceptibility to alcoholic chronic pancreatitis in Japanese patients [J]. Dis Markers. 2008, 25(3):175-180.
    113. Witt H, Bhatia E.Genetic aspects of tropical calcific pancreatitis [J]. Rev Endocr Metab Disord. 2008, 9(3): 213-226.
    114.Min Goo Lee1, Wooin Ahn1, Jin Ah Lee1, Joo Young Kim1, Joo Young Choi2, Orson W Moe3, Sharon L Milgram4, Shmuel Muallem2, Kyung Hwan Kim1Coordination of Pancreatic HCO3- Secretion by Protein-Protein Interaction between Membrane Transporters JOP [J]. J Pancreas (Online) 2001, 2(4 Suppl): 203-206.
    115. Hillesheim J, Tuo B, Jorna H, Houtsmuller AB, Shenolikar S, Weinman EJ, Donowitz M, Seidler U, de Jonge HR, Hogema BM.Cystic fibrosis transmembrane conductance regulator activation is reduced in the small intestine of Na+/H+ exchanger 3 regulatory factor 1 (NHERF-1)- but Not NHERF-2-deficient mice [J]. J Biol Chem. 2007, 8, 282(52): 37575-84.
    116. Sellers ZM, Mann E, Smith A, Hyun Ko K, Giannella R, Cohen MB, Barrett KE, Dong H. Heat-stable enterotoxin of Escherichia coli (STa) can stimulate duodenal HCO3- secretion via a novel GC-C- and CFTR-independent pathway [J]. FASEB J. 2008, 22(5): 1306-16.
    117. Canale-Zambrano JC, Poffenberger MC, Cory SM, Humes DG, Haston CK.Intestinal phenotype of variable-weight cystic fibrosis knockout mice.Am J Physiol Gastrointest Liver Physiol. 2007, 293(1):G222-9.
    118. Thiagarajah JR, Verkman AS.CFTR pharmacology and its role in intestinal fluid secretion [J].Curr Opin Pharmacol. 2003, 3(6):594-599.
    119. Sonawane ND, Hu J, Muanprasat C, Verkman AS.Luminally active, nonabsorbable CFTR inhibitors as potential therapy to reduce intestinal fluid loss in cholera [J]. FASEB J. 2006, 20(1): 130-2.
    120. Goodman BE, Percy WH.CFTR in cystic fibrosis and cholera: from membrane transport to clinical practice [J]. Adv Physiol Educ. 2005, 29(2): 75-82.
    121. Thiagarajah JR, Verkman AS.New drug targets for cholera therapy [J]. Trends Pharmacol Sci. 2005, 26(4):172-175.
    122. Li C, Dandridge KS, Di A, Marrs KL, Harris EL, Roy K, Jackson JS, Makarova NV, Fujiwara Y, Farrar PL, Nelson DJ, Tigyi GJ, Naren AP. Lysophosphatidic acid inhibits cholera toxin-induced secretory diarrhea through CFTR-dependent protein interactions [J]. J Exp Med. 2005, 202(7):975-986.
    123. Kashman Y, Gustafson K R, Fuller R W, et al. HIV inhibitory natural products. Part 7. The calanolides,a novel HIVinhibitory class of coumarin derivatives from the tropical rainforest tree,Calophyllum lanigerum [J]. J Med Chem, 1992, 35: 2735-2743.
    124. Dharmaratne HRW, Wanigasekera WMAP, Mata-Greenwood E, et al. Inhibition of human immunodeficiency virus type 1 reverse transcriptase activity by cordatolides isolated from Calophyllum cordato-oblongum [J]. Planta Med, 1998, 64:460-461.
    125. Dutta AK, Woo K, Doctor RB, Fitz JG, Feranchak AP.Extracellular nucleotides stimulate Cl- currents in biliary epithelia through receptor-mediated IP3 and Ca2+ release [J]. Am J Physiol Gastrointest Liver Physiol. 2008, 295(5):G1004-1015.
    126. Reddy MM, Quinton PM. Effect of anion transport blockers on CFTR in the human sweat duct [J]. J Membr Biol. 2002, 189(1):15-25.
    127. Sonawane ND, Muanprasat C, Nagatani R Jr, Song Y, Verkman AS.In vivo pharmacology and antidiarrheal efficacy of a thiazolidinone CFTR inhibitor in rodents [J].J Pharm Sci. 2005, 94(1):134-43.
    128. Seidler U, Singh A, Chen M, Cinar A, Bachmann O, Zheng W, Wang J, Yeruva S, Riederer B.Knockout mouse models for intestinal electrolyte transporters and regulatory PDZ adaptors: new insights into cystic fibrosis, secretory diarrhoea and fructose-induced hypertension [J]. Exp Physiol. 2009, 94(2):175-179.
    129. Verkman AS, Lukacs GL, Galietta LJ.CFTR chloride channel drug discovery--inhibitors as antidiarrheals and activators for therapy of cystic fibrosis [J]. Curr Pharm Des. 2006, 12(18):2235-2247.
    130. Fellay J, Boubaker K, Ledergerber B, et al. Prevalence of adverse events associated with potent antiretroviral treatment: Swiss HIV Cohort Study [J]. Lancet, 2001, 358: 1322-1327.
    131. Thiagarajah JR, Verkman AS. New drug targets for cholera therapy [J]. Trends Pharmacol Sci. 2005, 26(4): 172-175.
    132. Anguiano A, Oates RD, Amos JA, Dean M, Gerrard B, Stewart C, et al. Congenital bilateral absence of the vas deferens. A primarily genital form of cystic fibrosis [J]. JAMA. 1992, 267:1794-1797
    133. Osborne LR, Lynch M, Middleton PG, Alton EF, Geddes DM, Pryor JP, et al. Nasal epithelial ion transport and genetic analysis of infertile men with congenital bilateral absence of the vas deferens [J]. Hum Mol Genet. 1993, 2:1605-1609
    134. Anguiano A, Oates R D, Amos J, et al. Congential bilateral absence of the vas deferens. A primarily genital form of cystic fibrosis [J]. JAMA, 1992, 267: 1794-1797.
    135..Chillon M, Casals T, Mercier B, et al. Mutations in the cystic fibrosis gene in patients with congenital absence of the vas deferens[J]. N Engl J Med, 1995, 332: 1475-1480.
    136. Verkman AS, Lukacs GL, Galietta LJ.CFTR chloride channel drug discovery--inhibitors as antidiarrheals and activators for therapy of cystic fibrosis [J]. Curr Pharm Des. 2006, 12(18):2235-2247.
    137. Muanprasat C, Sonawane ND, Salinas D, Taddei A, Galietta LJ, Verkman AS.Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy[J]. J Gen Physiol. 2004, 124(2):125-37.118.
    138. Li H, Findlay IA, Sheppard DN.The relationship between cell proliferation, Cl- secretion, and renal cyst growth: a study using CFTR inhibitors [J]. Kidney Int. 2004, 66(5):1926-1938.
    139. Ma T, Thiagarajah JR, Yang H, Sonawane ND, Folli C, Galietta LJ, Verkman AS. Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion [J]. J Clin Invest, 2002, 110(11):1651-1658.
    140. Fuller M D, Zhang Z R, Cui G,et al. Inhibition of CFTR channels by a peptide toxin of scorpion venom[J]. Am J Physiol Cell Physiol, 2004, 287(5):C1328-C1341.
    141. Fuller M D, Zhang Z R, Cui G,et al. The block of CFTR by scorpion venom is state-dependent [J]. Biophys J, 2005, 89(6): 3960-3975.
    142. Fuller M D, Thompson C H, Zhang Z R, et al. State-dependent inhibition of CFTR chloride channels by a novel peptide toxin [J]. J Biol Chem, 2007, 282: 37545-37555.
    143. Linsdell P.Inhibition of cystic fibrosis transmembrane conductance regulator chloride channel currents by arachidonic acid [J]. J Physiol Pharmacol Linsdell P, 2000, 78(6): 490-499.
    144. Zhou J J, Linsdell P. Molecular mechanism of arachidonic acid inhibition of the CFTR chloride channel [J]. Eur J Pharmacol, 2007, 1,563(1-3): 88-91.
    145. Linsdell P. Eur J Pharmacol. Direct block of the cystic fibrosis transmembrane conductance regulator Cl- channel by butyrate and phenylbutyrate [J]. 2001, 411(3): 255-260.
    146. Gong X D, Linsdell P, Cheung K H, et al. Indazole inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels in rat epididymal epithelial cells [J]. Biol Reprod, 2002, 67(6): 1888-1896.
    147. Gong X D, Wong Y L, Leung G P, et al. Lonidamine and analogue AF2785 block the cyclic adenosine 3', 5'-monophosphate-activated chloride current and chloride secretion in the rat epididymis [J]. Biol Reprod, 2000, 63(3): 833-838.
    148. Gong X, Burbridge S M, Lewis A C, Mechanism of lonidamine inhibition of the CFTR chloride channe [J]. Br J Pharmacol, 2002, 137(6): 928-936.
    149. Fischer H, Machen T E, Widdicombe J H, et al. A novel extract SB-300 from the stem bark latex of Croton lechleri inhibits CFTR-mediated chloride secretion in human colonic epithelial cells [J]. J Ethnopharmacol, 2004, 93(2-3): 351-357.
    150. Pariwat P, Homvisasevongsa S, Muanprasat C, et al. A natural plant derived- dihydroisosteviol prevents cholera toxin-induced intestinal fluid secretion [J]. J Pharmacol Exp Ther, 2008, 324(2): 798-805.
    151. Hull J, Shackleton S, Harris A. Abnormal mRNA splicing resulting from three different mutations in the CFTR gene [J]. Hum Mol Genet, 1993, 2:689-692.
    152. Howard M, Frizzell R A, Bedwell D M. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations [J]. Nature Med, 1996, 4: 467-469.
    153. Bedwell D M, Kaenjak A, Benos D, et al. Suppression of a CFTR premature stop mutation in abronchial epithelial cell line [J]. Nature Med, 1997, 3: 1280-1284.
    154. Wilschanski M, Famini C, Blau H, et al. A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutation s[J]. Am J Respir Crit Care Med, 2000, 161: 860-865.
    155. Clancy J P, Bebok Z, Ruiz F, et al.Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis [J]. Am J Respir Crit Care Med, 2001, 163:1683-1692.
    156. Clancy J P, Bebok Z, Jones J, et al. A controlled trial of gentamicin to suppress premature stop codonsin CF patients [J]. Pediatr Pulmonol, 1999, 239-240.
    157. Wilschanski M, Yahav Y, Yaacov Y, et al. Gentamicin induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations [J]. N Engl J Med, 2003, 349: 1433-1441.
    158. Keeling K, Manuvakhova M, Bedwell D M.Structural features of aminoglycosides that mediate the suppression of premature stop mutations within disease models [J]. Pediatr Pulmonol, 1999, 19:239.
    159. The cystic fibrosis genotype-phenotype consortium. Correlation between genotype and phenotype in cystic fibrosis [J]. N Engl J Med, 1993, 329: 1308-1313.
    160. Zielenski J. Genotype and phenotype in cystic fibrosis [J].Respiration, 2000, 67(2):117-133.
    161. Hamosh A, Rosenstein B J, Cutting G R.CFTR nonsense mutations G542X and W1282X associated with severe reduction of CFTR mRNA in nasal epithelial cells[J]. Hum Mol Genet, 1992, 1:542-544.
    162. Thomas P J, Pedersen P L. Effects of theΔF508 mutation on the structure, function, and folding of the first nucleotide-binding domain of CFTR[J]. J Bioenerg Biomembr, 1993, 25:11-19.
    163. Cheng S H, Gregory R J, Marshall J, et al.Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis[J]. Cell, 1990, 63:827-834.
    164. Ward C L, Kopito R R. Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins [J]. J Biol Chem, 1994, 269(41):25710-25718.
    165. Ward C L, Omura S, Kopito R R.Degradation of CFTR by the ubiquitinproteasome pathway [J]. Cell, 1995, 83:121-127.
    166. Xiong X, Chong E, Skach W R. Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductanceregulator is linked to retrograde translocation from the ER membrane [J]. J Biol Chem, 1999, 274:2616-2624.
    167. Yang Y, Janich S,Cohn J A,et al. The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment [J]. Proc Natl Acad Sci, 1993, 90: 9480-9484.
    168.Brown C R, Hong-Brown L Q, Welch W J. Correcting temperature-sensitive protein folding defects [J].J Clin Invest, 1997, 99:1432-1444
    169. Egan M E, Schwiebert E M, Guggino W B: Differential expression of ORCC and CFTR induced by low temperature in CF airway epiethelial cells [J]. Am J Physiol, 1995, 268:C243-C251.
    170. Pedemonte N, Boido D, Moran O, Giampieri M, Mazzei M, Ravazzolo R, Galietta LJ.Structure-activity relationship of 1,4-dihydropyridines as potentiators of the cystic fibrosis transmembrane conductance regulator chloride channel [J]. Mol Pharmacol. 2007, 72(1): 197-207.
    171. Pedemonte N, Diena T, Caci E, Nieddu E, Mazzei M, Ravazzolo R, Zegarra-Moran O, Galietta LJ. Antihypertensive 1,4-dihydropyridines as correctors of the cystic fibrosis transmembrane conductance regulator channel gating defect caused by cystic fibrosis mutations [J]. Mol Pharmacol. 2005, 68(6):1736-1746
    172. Liu J, Liu L, Wang S, Xu L, Yu B, Lin, S, Hou S, Zhou N, Jin L, Yang H*. Dictamine stimulates cystic fibrosis transmembrane conductance regulator Cl- transport [J]. Chem. Res. Chinese U . 2007, 23(5): 554-557.
    173.林森,侯曙光,金伶伶,于波,杨红.荷叶碱对野生型和突变CFTR氯离子通道的激活作用[J].中国临床药理学与治疗学, 2008, 13(2):138-143
    174. Galietta LV, Jayaraman S, Verkman AS.Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists [j]. Am J Physiol Cell Physiol. 2001, 281(5): C1734-42.
    175. Yang H, Shelat AA, Guy RK, Gopinath VS, Ma T, Du K, Lukacs GL, Taddei A, Folli C, Pedemonte N, Galietta LJ, Verkman AS. Nanomolar Affinity Small Molecule Correctors of Defective {Delta}F508-CFTR Chloride Channel Gating[J]. J Biol Chem, 2003, 278(37): 35079-35085.
    176. Ma T, Vetrivel L, Yang H, Pedemonte N, Zegarra-Moran O, Galietta LJ, Verkman AS. High-affinity activators of cystic fibrosis transmembrane conductance regulator (CFTR) chloride conductance identified by high-throughput screening[J]. J Biol Chem, 2002, 277(40): 37235-37241.
    177. Barbero GF, Palma M, Barroso CG.Determination of capsaicinoids in peppers by microwave-assisted extraction-high-performance liquid chromatography with fluorescence detection [J]. Anal Chim Acta. 2006, 578(2): 227-33.
    178. Kozukue N, Han JS, Kozukue E, Lee SJ, Kim JA, Lee KR, Levin CE, Friedman M.Analysis of eight capsaicinoids in peppers and pepper-containing foods by high-performance liquid chromatography and liquid chromatography-mass spectrometry [J]. J Agric Food Chem. 2005, 53(23):9172-9181.
    179. Reilly CA, Crouc DJ, Yost GS, Fatah AA.Determination of capsaicin, dihydrocapsaicin, and nonivamide in self-defense weapons by liquid chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry [J]. J Chromatogr A. 2001, 912(2):259-67.
    180. Lee SS, Sohn YW, Yoo ES, Kim KH. Neurotoxicity and long lasting analgesia induced by capsaicinoids [J]. Toxicol Sci. 1991,16 Suppl 1:3-20.
    181. Moriarty D, Goldhill J, Selve N, O'Donoghue DP, Baird AW. Human colonic anti-secretory activity of the potent NK(1) antagonist, SR140333: assessment of potential anti-diarrhoeal activity in food allergy and inflammatory bowel disease [J]. Br J Pharmacol. 2001, 133(8): 1346-54.
    182. Ai T, Bompadre SG, Wang X, Hu S, Li M, Hwang TC. Capsaicin potentiates wild-type and mutant cystic fibrosis transmembrane conductance regulator chloride-channel currents [J]. Mol Pharmacol. 2004, 65(6): 1415-26.
    183. Reilly CA, Taylor JL, Lanza DL, Carr BA, Crouch DJ, Yost GS. Capsaicinoids cause inflammationand epithelial cell death through activation of vanilloid receptors [J]. Toxicol Sci. 2003, 73(1): 170-81.
    184. Hwang TC, Wang F, Yang IC, Reenstra WW. Genistein potentiates wild-type and delta F508-CFTR channel activity [J]. Am J Physiol. 1997, 273(3 Pt 1): C988-98.
    185. Kwak J, Wang MH, Hwang SW, Kim TY, Lee SY, and Oh U. Intracellular ATP increases capsaicin-activated channel activity by interacting with nucleotide-binding domains [J]. J Neurosci, 2000,20: 8298-8304.
    186. Egan ME, Pearson M, Weiner SA, Rajendran V, Rubin D, Glockner-Pagel J, Canny S, Du K, Lukacs GL, Caplan MJ. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects [J]. Science. 2004, 304(5670): 600-602.
    187. Berger AL, Randak CO, Ostedgaard LS, Karp PH, Vermeer DW, Welsh MJ. Curcumin stimulates cystic fibrosis transmembrane conductance regulator Cl- channel activity [J]. J Biol Chem. 2005,280(7): 5221-5226.
    188. Song Y, Sonawane ND, Salinas D, Qian L, Pedemonte N, Galietta LJ, Verkman AS.Evidence against the rescue of defective DeltaF508-CFTR cellular processing by curcumin in cell culture and mouse models [J]. J Biol Chem. 2004, 279(39): 40629-40633.
    189. Lim S, Tomita K, Caramori G, Jatakanon A, Oliver B, Keller A, Adcock I, Chung KF, Barnes PJ.Low-dose theophylline reduces eosinophilic inflammation but not exhaled nitric oxide in mild asthma [J]. Am J Respir Crit Care Med. 2001, 164(2): 273-276.
    190. Culpitt SV, de Matos C, Russell RE, Donnelly LE, Rogers DF, Barnes PJ.Effect of theophylline on induced sputum inflammatory indices and neutrophil chemotaxis in chronic obstructive pulmonary disease [J]. Am J Respir Crit Care Med. 2002, 165(10): 1371-1376.
    191. Aubier M, De Troyer A, Sampson M, Macklem PT, Roussos C. Aminophylline improves diaphragmatic contractility [J]. N Engl J Med. 1981, 305(5):249-252.
    192. Howell RE, Muehsam WT, Kinnier WJ. Mechanism for the emetic side effect of xanthine bronchodilators [J]. Life Sci. 1990, 46(8):563-568.
    193. Sutherland E.R., Cherniack R.M., Management of chronic obstructive pulmonary disease [J]. N. Engl. J. Med., 2004, 350, 2689-2697
    194. Wanner A. Effects of methylxanthines on airway mucociliary function [J]. Am J Med. 1985, 79(6A):16-21.
    195. Stigers K.D., Soth M.J. Designed molecules that fold to mimic protein secondary structures [J]. Current opinion in chemical Biology, 1999, 6, 714-723.
    196. Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS; GOLD Scientific Committee.Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary [J]. Am J Respir Crit Care Med. 2001, 163(5):1256-76.
    197. 1. Kuku, Y., Yonekawa, Y., Tsukahara, T., and Kazekawa, K. Superselective intra-arterial infusion of papaverine for the treatment of cerebral vasospasm after subarachnoid hemorrhage [J].J. Neurosurg.1992, 77, 842–847.
    198. McAuliffe, W., Townsend, M., Eskridge, J. M., Newell, D. W.,Grady, M. S., and Winn, H. R. Intracranial pressure changes induced during papaverine infusion for treatment of vasospasm [J]. J. Neurosurg. 1995, 83, 430–434.
    199. Liu JK, Tenner MS, Gottfried ON, Stevens EA, Rosenow JM, Madan N, MacDonald JD, Kestle JR, Couldwell WT. Efficacy of multiple intraarterial papaverine infusions for improvement in cerebral circulation time in patients with recurrent cerebral vasospasm [J]. J Neurosurg. 2004, 100(3):414-421.
    200. 1Angelo A. Izzo, Nicola Mascolo, *Marcello Costa & Francesco Capasso Effect of papaverine on synaptic transmission in the guinea-pig ileum [J]. J Neurosurg. 2005, 102(1):181 .
    201. Liu JK, Sayama CM, Shelton C, MacDonald JD. Transient facial nerve palsy after topical papaverine application during vestibular schwannoma surgery [J]. J Neurosurg. 2007, 107(5):1039-1042.
    202. Alkan E., Karatas, F, Sarica K.The effect of Papaverine hydrochloride on ureteral colic resistant to conventional treatment [J].Eur Urol Suppl 2006, 5(2):296.
    203. Onoue H, Kaito N, Akiyama M, Tomii M, Tokudome S, Abe T. Altered reactivity of human cerebral arteries after subarachnoid hemorrhage [J]. J Neurosurg. 1995, 83:510-515.
    204. Weir B. The pathophysiology of cerebral vasospasm [J]. Br J Neurosurg. 1995; 9:375-390
    205. Teunissen LL, Rinkel GJE, Algra A, van Gijn J. Risk factors for subarachnoid hemorrhage: a systematic review [J]. Stroke. 1996, 27:544-549.
    206. Disney L, Weir B, Grace M, and the Canadian Nimodipine Study Group. Factors influencing the outcome of aneurysm rupture in poor grade patients: a prospective series [J]. Neurosurgery. 1988, 23:1-9.
    207. Ohman J, Servo A, Heiskanen O. Risk factors for cerebral infarction in good-grade patients after aneurysmal subarachnoid hemorrhage and surgery: a prospective study [J]. J Neurosurg. 1991, 74:14-20.
    208. Abesh Kumar Bhattacharjee, Takeshi Kondoh, Tatsuya Nagashima, Mitsuru Ikeda, Kazumasa Ehara, and Norihiko Tamaki. Quantitative Analysis of Papaverine-Mediated Blood–Brain Barrier Disruption in Rats [J]. Biochem Biophys Res Commun. 2001, 289(2): 548-552.
    209. Kaku, Y., Yonekawa, Y., Tsukahara, T., and Kazekawa, K. Superselective intra-arterial infusion of papaverine for the treatment of cerebral vasospasm after subarachnoid hemorrhage [J].J. Neurosurg. 1992,.77, 842–847.
    210. McAuliffe, W., Townsend, M., Eskridge, J. M., Newell, D. W.,Grady, M. S., and Winn, H. R. Intracranial pressure changes induced during papaverine infusion for treatment of vasospasm [J]. J. Neurosurg. 1995, 83, 430–434.
    211. Jackson, W. F. Ion Channels and Vascular Tone [J]. Hypertension 2000, 35, 173-178 .
    212. Carl, A., Lee, H. K. & Sanders, K. M. Regulation of ion channels in smooth muscles by calcium [J]. Am. J. Physiol. 1996, 271: C9-C34 .
    213. Gadsby DC, Nagel G, Hwang T-C. The CFTR chloride channel of mammalian heart [J]. Annu RevPhysiol, 1995, 57:387–416.
    214. Levesque, P. C., Hart, P. J., Hume, J. R., Kenyon, J. L. & Horowitz, B. Expression of cystic fibrosis transmembrane regulator Cl- channels in heart [J]. Circ. Res. 1992, 71: 1002-1007.
    215. Horowitz, B., Tsung, S. S., Hart, P., Levesque, P. C. & Hume, J. R. Alternative splicing of CFTR Cl- channels in heart [J]. Am. J. Physiol. 1993, 264,:H2214-H2220.
    216. Gadsby, D. C., Nagel, G. & Hwang, T. C. The CFTR chloride channel of mammalian heart [J]. Annu. Rev. Physiol. 1995, 57: 387-416.
    217. Renaud Robert, Caroline Norez and Fr′ed′eric Becq Disruption of CFTR chloride channel alters mechanical properties and cAMP-dependent Cl– transport of mouse aortic smooth muscle cells [J]. J Physiol. 2005, 568(2): 483–495.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700