用户名: 密码: 验证码:
220-500kV线路后备保护配置及整定计算原则简化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
继电保护是保障现代大型电网安全运行的基础。后备保护的作用是在主保护拒动时代替主保护动作。现有的后备保护整定规程颁布于1994年,当时视为高端保护的微机保护目前已成为高压线路的基本配置,后备保护的重要性有所降低,所以后备保护的配置及整定计算原则也应作相应改变。本文即针对继电保护配置及整定计算原则的简化问题展开研究。
     本文综述了电网继电保护发展历程及现状,阐述了后备保护整定原则简化的重要意义及可行性。在此基础上,进行了后备保护定值分析,以西北330kV电网为例,在多种运行方式下对各线路后备保护整定计算,分析计算结果,用实际的统计数据来说明按现有规程整定时后备保护定值中存在的问题。
     然后就江西、贵州、云南、西北和河北等五个地区的具体整定规程进行比较分析,并介绍了国内各地线路后备保护整定计算原则简化的情况,各地区的具体简化原则及简化后的运行效果。
     提出了一种基于节点阻抗矩阵快速求取高段保护范围的新方法。该算法利用了节点阻抗矩阵在网络拓扑变化时改动量小的优点,根据故障情况直接推导出求取保护范围的解析式,代入相应参数得出结果。计算量小,结果准确,涉及互感线路时无需特殊处理。该算法用于整定计算中能改善定值性能,也可用于不同原理保护间的配合。
     基于前面几章的结论,提出了几种零序电流保护简化方案及改进方案,分析了各方案的利弊,解决了原则简化后变压器零序电流保护与线路保护之间的配合问题;分析了距离保护的保护机理及规程,介绍了感受阻抗计算方法,提出了距离保护的简化方案,并强调了原则简化后强化管理措施的必要性。
     最后,简要介绍了反时限保护的原理,保护类型,特点以及国内反时限保护装置的概况,研究了反时限的整定及反时限与定时限保护的配合整定,提出了一种反时限与定时限相结合的零序电流保护方案,并通过算例验证了该方案的可行性。
Protection Relays are the basis of safeguarding modern large scale power grid. Backup relays’functions are operating when main relays fail to operate. The latest regulations of backup relays’coordination were published in 1994, when micro-computer relays were regarded as high-level relays. Now, they’re just basic protecting scheme for high-voltage transmission line. The importance of backup relays has been declined, so the protecting scheme and coordination regulations of backup relays should be changed corresponding to this situation. This paper studied on predigesting protecting scheme and regulations of relay coordination.
     This paper made a summery of developmental history and status quo of protection relay in power grid, explained the importance and feasibility of predigesting back-up protecting scheme and coordination regulations. On this basis this paper analysed the settings of backup relays. The Xibei Rigional 330kV power grid was taken as an example to demonstrate the defects of current coordination regulations with practical statistics. And the coordination regulations of Jiangxi, Guizhou, Yunnan, Xibei and Hebei provincial power grid are compared in order to learn from others’strong points to offset one’s weakness.
     This paper introduced domecratic situation of predigesting coordination regulations, include several grids’practical regulations in detail and their performance.
     This paper proposed a novel method for caculating coverage of zero-sequence relays based on node impendance matrix. A node impedance matrix has a smaller change than a node admittance matrix when the network topology changes. This algorithm uses this advantage of node impedance matrix, directly derives the analytic function of protect coverage corresponding to failure of the system. This algorithm can get a more precise result through less calculation, and needn’t special treatment when some related lines are mutual inductance lines. This method can improve settings’performance and make it more convient for coordination between inhomogeneous relays.
     Based on conclusions of previous chapters, the paper listed several schemes of predigesting zero-sequence relays, analysed both advantages and disadvantages of each scheme, resolved coordinational problems between zero-sequence relays of transformers and transmission lines after predigestion. This paper also analysed principles and regulations of distance relays, introduced apparent impendance caculating method, proposed a scheme of predigesting distance relays and emphasized on strengthening supervisory measures after predigestion.
     Finally, this paper briefly discussed the principles of inverse-time relays, including types, characteristics and domestic situations of inverse-time relays, researched on setting inverse-time relays and coordination between inverse-time and definite-time relays, proposed a new protecting scheme which combined inverse-time and definite-time relays, and validated its feasibility through a sample.
引文
[1]中华人民共和国电力工业部. DL/T 559-94 220-500kV电网继电保护装置运行整定规程. 1994.
    [2]常风然,张洪.微机保护的定值计算.电网技术,2000,24(12):74-77.
    [3]毛锦庆,王澎.从简化整定计算论线路的微机型机电保护装置.电力自动化设备,2004,24(11): 94-98.
    [4]崔家佩,等.电力系统继电保护与安全自动装置整定计算.北京:水利电力出版社,1993.
    [5]廖晓玉,张太升,等.继电保护整定计算的简化.继电器. 2003, 31(8): 67-71.
    [6]张太升,鄢安河,等.关于500kV牡郑线的绝缘地线对零序参数影响的研究继电器. 2001, 29(3): 27-30.
    [7]方天宇.微机保护整定运行若干问题探讨.继电器, 2004, 32(6): 76-78.
    [8]李银红,段献忠.电力系统线路保护整定计算一体化系统.电力系统自动化, 2003, 27(9): 66-69.
    [9]陈永琳.电力系统继电保护的计算机整定计算.北京:中国电力出版社,1997.
    [10]曹国臣,蔡国伟,王海军.继电保护整定计算方法存在的问题与解决对策.中国电机工程学报. 2003, 23(10): 51-56.
    [11]曹国臣,李娟,等.继电保护运行整定中分支系数计算方法研究.继电器, 1999, 27(2):5-9.
    [12]李银红,段献忠.继电保护整定计算中形成简单回路的方法.中国电机工程学报,2003,23(1):21-25.
    [13]张锋,李银红,段献忠.电力系统继电保护整定计算中运行方式的组合问题.继电器, 2002, 30(7):23-26.
    [14]李银红,石东源,等.继电保护计算机整定的断点计算方法的改进.华中理工大学学报, 1999, 27(7): 57-59.
    [15]石东源,李银红,等.电力系统故障计算中互感线路的处理.中国电机工程学报. 2002, 22(7): 58-61.
    [16]杨奕.超高压电网后备保护的配置及整定中的一些问题.继电器.29(3):16-19.
    [17]谈杏全,程小平.高压电网短路曲线和零序保护范围的研究.电力自动化设备,1997, 17(1):31-33.
    [18]朱晓华,吴捷.继电保护整定中的短路电流计算问题.电网技术, 2000, 24(10): 19-22.
    [19]孙鸣,单永梅.补偿法在继电保护整定计算中的应用.电网技术, 2003, 27(7): 28-31.
    [20]曹国臣.继电保护整定计算中故障计算的通用方法.电网技术, 2002, 26(12): 24-29.
    [21]王广学.电力系统接地故障点分析计算方法.电力系统自动化, 1986, 10(7): 34-39.
    [22]贺家李,宋从矩.电力系统继电保护原理.北京:中国电力出版社, 1994.
    [23]黄彦全,肖建,等.新型微机反时限电流保护时间-电流特性的工程应用.电力系统自动化, 2003, 27(23):71-73.
    [24]中华人民共和国能源部. DL 400-91继电保护和安全自动装置技术规程. 1991.
    [25]王广学,俸玲,李晓娟.电力系统输电线路接地距离保护整定计算研究.电网技术. 2002, 26(2): 49~53.
    [26]汪萍. 220kV线路保护整定计算的简化实践.华东电力, 2004, 32(9): 60-62.
    [27]尹项根,曾克娥.电力系统继电保护原理与应用.武汉:华中科技大学出版社,2001.
    [28]龚序,刘江平.具有零序互感的多回输电线路接地距离保护二段整定计算研究.电网技术, 1994, 18(3): 28-34.
    [29]许惠敏.多互感线路接地距离保护计算方法的探讨.电力系统自动化. 1996, 20(6): 53-56.
    [30]程晓平.简化距离保护整定计算方法.电力自动化设备. 2001, 21(10): 48-50.
    [31]李银红,段献忠.基于感受量的接地距离保护整定方法探讨.电网技术. 2003, 27(8): 64~67.
    [32]毛锦庆,屠黎明,等.从加强主保护简化后备保护论变压器微机型继电保护装置.电力系统自动化, 2005, 29(18):1-7.
    [33] Single Input Energizing Quantity Measuring Relays with Dependant or Independent Time. IEC Publication 255-3, 1989.
    [34]伍叶凯,邹东霞.适用于输电线路的单片机反时限过流保护.继电器,1996,24(4):21-25.
    [35]吴红斌,丁明,李生虎.曲线拟合法在反时限过流继电器中的应用.继电器,2003,31(6): 35-36.
    [36] IEEE Standard Inverse-Time Characteristic Equations for Overcurrent Relays,IEEE Trans. On Power Delivery,1999,14(3):868~872.
    [37] G. Benmouyal. Design of a Digital Multi-Curve Time Overcurrent Relays. IEEE Trans. On Power Delivery, 1990,5(4):1725~1731.
    [38]刘为,范春菊,等.配电网输电线路反时限过流保护探讨.继电器, 2003, 31(3): 23-25.
    [39] J.L. Blackburn. Applied Protective Relaying. Westinghouse Electric Corporation. 1979.
    [40] G. Benmouyal. Some Aspects of the Digital Implementation of Protection Time Functions. IEEE Trans. On Power Delivery, 1990,5(4):1705~1713.
    [41] G. Benmouyal. Testing Dynamic characteristics of Overcurrent Relays.‘Communications, Computers and Power in the Modern Environment.’Conference Proceedings., IEEE, 1993,350~355.
    [42]窦乘国,彭鹏,等.微机式反时限过电流保护整定配合的辅助计算软件.电力自动化设备. 1998, 18(4): 9~11.
    [43]王梅义,吴竞昌,蒙定中.大电网技术.北京:水利电力出版社, 1991.
    [44] Alberto J.Urdaneta, Luis G.Perez, Harold Restrepo. Optimal coordination of directional overcurrent relays considering dynamic changes in the network topology. IEEE Transactions on Power Delivery, 1997, 12(4): 1458~1463.
    [45] Luis G.Perez, Alberto J.Urdaneta. Optimal coordination of directional overcurrent relays considering definite time backup relaying. IEEE Transactions on Power Delivery, 1999, 14(4): 1276~1284.
    [46] Luis G.Perez, Alberto J.Urdaneta. Optimal computation of distance relays second zone timing in a mixed protection scheme with directional overcurrent relays. IEEE Transactions on Power Delivery, 2001, 16(3): 385~388.
    [47] Luis G. Perez, Alberto J.Urdaneta, et al. Comparison of time coordination feasibility criteria for a subtransmission system protection scheme. 0-7803-4434-0/98. 1998, IEEE.
    [48] C.W.So, K.K.Li, K.T.Lai, K.Y.Fung. Applications of genetic algorithm for overcurrent relay coordination. IEE 6th international conference on developments in power systemprotection. 1997: 66-69.
    [49] C.W.So, K.K.Li, K.T.Lai, K.Y.Fung. Application of genetic algorithm to overcurrent relay grading coordination. Proceedings of the 4th international conference on advances in power system control, operation and management. 1997: 283-287.
    [50]李爱国.多粒子群协同优化算法.复旦学报, 2004, 43(5): 923-925.
    [51] Antonio S. Braga, Joao Tome Saraiva. Coordination of overcurrent directional relays in meshed networks using the simplex method. Electrotechnical Conference, 1996, Vol 3: 1535-1538.
    [52] Bijoy Chattopdhyay, M.S. Sachdev. An on-line relay coordination algorithm for adaptive protection using linear programming technique. IEEE Transactions on Power Delivery,1996,11(1): 165-173.
    [53] Alberto J.Urdaneta, Ramon Nadira, Luis G.Perez Jimenez. Optimal coordination of directional overcurrent relays in interconnected power systems. IEEE Transactions on Power Delivery, 1988, 3(3): 903~911.
    [54] Alberto J.Urdaneta, Luis G.Perez, et al. Consideration of the transient configurations in the optimal coordination problem of directional overcurrent relays. Devices, Circuits and Systems, 1995, Proceedings of the 1995 First IEEE International Caracas: 169-173.
    [55] Alberto J.Urdaneta, Harold Restrepo, et al. Coordination of directional overcurrent relay timing using linear programming. IEEE Transactions on Power Delivery, 1996, 11(2): 122~129.
    [56] R. Ramaswami, P.F. McGuire. Integrated coordination and short circuit analysis for system protection. IEEE Transactions on Power Delivery,1992,7(3): 1112-1120.
    [57] L. Jenkins, H.P. Khincha, et al. An application of functional dependencies to the topological analysis of protection schemes. Transactions on Power Delivery,1992,7(1): 77-83.
    [58] C.F.Henville. Combined use of definite and inverse time overcurrent elements assists in transmission line ground relay coordination. IEEE Transactions on Power Delivery, 1993, 8(3): 925~932.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700