用户名: 密码: 验证码:
基于包络线调制的非接触电能传输模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在非接触电能传输系统中,传统的电能传输模式存在整体效率低、控制复杂、输入功率因数低、功率密度小、成本较高等缺点,在很大程度上限制了非接触电能传输技术的推广和应用。本文以国家自然科学基金项目为依托,针对传统传输模式存在的问题,旨在提出一种基于包络线调制机理的能量传输模式,并围绕该模式对几种典型非接触电能传输系统结构进行研究,提出相应结构下的新型电路拓扑及控制方式。本文主要进行了以下几个方面的研究工作:
     1.分析了传统供电方式存在的不足和非接触电能传输技术研究的必要性,并综述了国内外理论研究和产业化现状。分析了传统非接触电能传输模式存在的问题,阐明了本文的研究目的、内容和意义。
     2.提出了基于包络线调制机理的非接触电能传输模式,该模式以负载电能形式为目标,采用载波调制技术,实现电能变换与传输。论文系统分析研究了该模式机理、系统基本框架及相关关键技术,并以全桥串联谐振电路为例从理论上研究了包络线调制传输模式的可行性;对比分析了该模式的优点。
     3.分析了采用传统传输模式的AC-AC型非接触电能传输系统存在的缺点,研究了包络线调制传输模式下的系统结构。提出了一种新型AC-DC-AC变换拓扑,对采用该拓扑的AC-AC型非接触电能传输系统的初级回路和次级回路的工作模态进行了分析,研究给出了该拓扑实现软开关的条件和系统动态解析模型。对该拓扑进行了仿真分析和实验验证。
     4.分析了传统传输模式下DC-AC型非接触电能传输系统存在的缺点,并提出了基于包络线调制模式的系统结构,简化了系统电路拓扑和控制方式,提升了系统整体效率和系统功率密度。以不对称DC-AC拓扑为例,研究了该结构实现包络线调制的方式,并利用状态空间法建立了系统的稳态模型,进行了仿真分析和实验验证。
     5.提出了基于包络线调制传输模式的AC-DC型非接触电能传输系统结构,给出了一种适用于该结构的能量注入式AC-AC变换拓扑,分析了该拓扑的系统特性。提出了能量临界平衡的判定方法、包络线预估方法及相应的最优控制策略,并进行了仿真分析和实验验证。
     6.提出了一种新的电流型CPT系统电路拓扑,以实现输入电压及系统耦合参数不变时包络线的宽范围调幅。建立了该系统的稳态等效模型,并在此基础上推导出了系统控制特性和关键参数的计算方法,并进行了仿真分析和实验验证,为系统的设计与分析提供了理论依据。
     本论文的主要创新性贡献在于:
     1.提出了一种基于包络线调制机理的非接触电能传输模式。该模式面向负载电能形式需求,采用电能载波与调制技术,实现非接触电能传输。解决了传统传输模式下系统功率因数低、功率密度不高等问题,提高了系统效率,拓展了非接触电能传输技术的应用领域。
     2.基于Buck和Boost思路,结合电流型CPT系统的特点提出了一种能够灵活控制系统传输功率的变换拓扑,实现了包络线幅值的宽范围调节,大大提高了负载适应能力。该拓扑可以推广到一般的电能变换应用中。
     3.提出了一种谐振能量控制策略,通过实时调节谐振回路能量注入模式,实现AC-AC高频变换拓扑的恒幅包络线调制。该策略可推广应用于其它类型包络线的调制。
In contactless power transfer (CPT) systems, the disadvantages of traditional power transfer mode have limited the application of CPT technology. The main disadvantages include low efficiency, complicated control, low input power factor, low power density, high cost and so on. To overcome these disadvantages, this paper presented a novel power transfer mode based on an envelope modulation method, funded by National Natural Science Foundation of China. Several typical CPT systems are studied for the novel power transfer mode. And corresponding circuit topology and control methods are optimized according to different power supply demands. The main works of the paper include:
     1. The drawbacks of direct contact power supply mode and the necessity of developing CPT technology are analyzed. The fundamental theory and research status introduction (include theory and industrialization) have been reviewed. And the research aim, contents and significance are given based on drawbacks analysis of the traditional contactless power transfer mode.
     2. A novel energy transfer mode based on envelope modulation is presented. This mode achieves power conversion and transfer by carrier modulation technology according to load power requirements. The fundamental theory, the basic system structures and the relative key techniques are studied in detail. A full bridge series tuned resonant circuit is taken for example to investigate the feasibility of this envelope modulation mode. The advantages of this envelope modulation mode are presented compared with the traditional power transfer mode.
     3. The drawbacks of AC-AC type CPT system with traditional power transfer mode are analyzed. The system structure under envelope modulation transfer mode is studied. A novel AC-DC-AC conversion topology is proposed. In an AC-AC type CPT system with this proposed topology, the operating modes of both primary and secondary resonant tanks are analyzed. And the soft-switching condition of this topology and the system dynamic analytical model are obtained consequently. Both simulation and experiment results verifies the proposed topology.
     4. The drawbacks of DC-AC type CPT system with traditional power transfer mode are analyzed and a system structure under envelope modulation transfer mode is proposed. In the proposed structure, the system circuits and control strategy are simplified, and the systematic efficiency and the power density are promoted. An asymmetric DC-AC topology is taken for consideration to study the envelope modulation mechanism. The system steady-state model is built up with state space method and verified by both simulation and experiment results.
     5. An AC-DC type CPT system structure based on envelope modulation mode is presented. An energy injection AC-AC type topology is proposed for the structure. Its system characteristics are analyzed. The energy critical equilibrium criterion, envelope prediction method and optimal control strategy are presented in sequence. Simulation and experiment results verify the analysis results.
     6. A novel circuit topology for current-fed CPT system is proposed to realize wide magnitude envelope modulating on the condition that input voltage and couple parameters are constant. The steady-state equivalent model is built up, based on which, the control characteristics and key parameters design formulas are derived and verified by both experiment and simulation results. The theoretical results are helpful for system design and analysis.
     The main contributions of this paper are as follows.
     1. A contactless power transfer mode based on envelope modulation technology is presented. This mode is load power requirement oriented. Power carrier and modulating technology is employed to achieve contactless power transfer. The disadvantages of traditional power transfer mode, such as low power factor, low power density etc., are overcome and the systematic efficiency is increased. With the proposed modulation technology, the application fields of CPT technology are extended.
     2. A converter topology, which can realize flexible control of transferred power, is proposed according to Buck and Boost principles and the current-fed CPT system characteristics. The envelope magnitude can realize wide range adjustment with the proposed topology. Therefore, the load adaptive ability of the system is extended greatly. The topology can also be applied to general power conversions.
     3. A novel control strategy of the resonant power is proposed which realizes constant magnitude envelope modulation in an AC-AC high frequency conversion topology by adjusting the injected power of the resonant tank dynamically. The strategy can also be applied to other type envelope modulations.
引文
[1]孙跃,王智慧,戴欣等.非接触电能传输系统的频率稳定性研究[J].电工技术学报, 2005, (11).
    [2] Eun-Soo K, Sung-In K, Kwang-Ho Y, et al. A contactless power supply for photovoltaic power generation system[A]. Applied Power Electronics Conference and Exposition, 2008. APEC 2008. Twenty-Third Annual IEEE, 2008, 2008:1910~1913.
    [3] Sergeant P, Van B A. Inductive coupler for contactless power transmission[J]. Electric Power Applications, IET, 2008, 2(1): 1~7.
    [4]戴欣,孙跃.单轨行车新型供电方式及相关技术分析[J].重庆大学学报, 2003, 26(1): 50-53.
    [5] Hu A P, Chen Z J, Hussmann S, et al. A dynamically on-off controlled resonant converter designed for coalmining battery charging applications [A]. Proceedings of PowerCon 2002. International Conference on Power System Technology[C]. 2002. 1039~10442.
    [6] Boys J T, Elliott G A, Covic G A. An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pickups [J]. IEEE Transactions on Power Electronics, 2007, 22(1): 333~335.
    [7] Green A W, Boys J T. 10kHz inductively coupled power transfer-concept and control[A]. Fifth International Conference on Power Electronics and Variable-Speed Drives[C]. 1994. 694~699.
    [8] Covic G A, Boys J T, Kissin M L, et al. A three-phase inductive power transfer system for roadway-powered vehicles[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3370~3378.
    [9] Madawala U K, Thrimawithana D J, Nihal K. An ICPT-supercapacitor hybrid system for surge-free power transfer[J]. IEEE Transactions on Industrial Electronics, 2007, 54(6): 3287~3297.
    [10] Wang C S, Stielau O H, Covic G A. Design considerations for a contactless electric vehicle battery charger[J]. IEEE Transactions on Industrial Electronics, 2005, 52(5): 1308~1314.
    [11] Chwei-Sen W, Covic G A, Stielau O H. Investigating an LCL load resonant inverter for inductive power transfer applications[J]. IEEE Transactions on Power Electronics, 2004, 19(4): 995~1002.
    [12] Boys J T, Covic G A, Elliott G A. pick-up transformer for ICPT applications[J]. Electronics Letters, 2002, 38(21): 1276~1278.
    [13] Covic G A, Elliott G, Stielau O H, et al. The design of a contact-less energy transfer system -for a people mover system[J]. 2000 International Conference on Power System Technology, Vols I-Iii, Proceedings, 2000, : 79~84.
    [14] Hao L L, Hu A P, Jinfeng G, et al. Development of a direct AC-AC converter based on a DSPACE platform[A]. Power System Technology, 2006. PowerCon 2006. International Conference on[C]. 2006. 1~6.
    [15] Li H L, Hu A P, Covic G A, et al. Optimal coupling condition of IPT system for achieving maximum power transfer[J]. Electronics Letters, 2009, 45(1): 76~77.
    [16] Elliott G A, Covic G A, Kacprzak D, et al. A new concept: asymmetrical pick-ups for inductively coupled power transfer monorail systems[J]. IEEE Transactions on Magnetics, 2006, 42(10): 3389~3391.
    [17] Kacprzak D, Kacprzak D, Covic G A, et al. An improved magnetic design for inductively coupled power transfer system pickups[A]. Power Engineering Conference, 2005. IPEC 2005. The 7th International[C]. 2005. 1133~1136.
    [18] Hu A P, Covic G A, Boys J T. Direct ZVS start-up of a current-fed resonant inverter[J]. IEEE Transactions on Power Electronics, 2006, 21(3): 809~812.
    [19] Hu A P, Boys J T, Covic G A. Frequency analysis and computation of a current-fed resonant converter for ICPT power supplies[A]. Power System Technology, 2000. Proceedings. PowerCon 2000. International Conference on[C]. 2000. 327~332.
    [20] Boys J T, Covic G A, James J E. Switching frequencies in inductively coupled power transfer systems[J]. IPEC 2003: Proceedings of the 6th International Power Engineering Conference, Vols 1 and 2, 2003, : 686~691.
    [21] Hu A P, Hussmann S. A phase controlled variable inductor designed for frequency stabilization of current fed resonant converter power supplies[J]. Ipec 2003: Proceedings of the 6th International Power Engineering Conference, Vols 1 and 2, 2003, : 175~180.
    [22] James J, Boys J, Covic G. A variable inductor based tuning method for ICPT pickups[A]. Power Engineering Conference, 2005. IPEC 2005. The 7th International[C]. 2005. 1142~1146.
    [23] Covic G A, James J E, Boys J T. Analysis of a series tuned ICPT pick-up using DC transformer modeling methods[J]. Ipec 2003: Proceedings of the 6th International Power Engineering Conference, Vols 1 and 2, 2003, : 305~310.
    [24] Boys J T, Covic G A, Yongxiang X. DC analysis technique for inductive power transfer pick-ups[J]. Power Electronics Letters, IEEE, 2003, 1(2): 51~53.
    [25] Xu Y X, Boys J T, Covic G A. Modeling and controller design of ICPT pick-ups[J]. Proceedings of PowerCon 2002. International Conference on Power System Technology[C].2002. 1602~1606.
    [26] Boys J T, Hu A P, Covic G A. Critical Q analysis of a current-fed resonant converter for ICPT applications[J]. Electronics Letters, 2000, 36(17): 1440~1442.
    [27] Madawala U K, Stichbury J, Walker S. Contactless power transfer with two-way communication[A]. Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE[C]. 2004. 3071~3075.
    [28] Hu A P, Hussmann S. Improved power flow control for contactless moving sensor applications[J]. Power Electronics Letters, IEEE, 2004, 2(4): 135~138.
    [29] Si P, Hu A P, Hsu J W, et al. Wireless power supply for implantable biomedical device based on primary input voltage regulation[A]. Industrial Electronics and Applications, 2007. ICIEA 2007. 2nd IEEE Conference on[C]. 2007. 235~239.
    [30] Hsu J U, Hu A P, Si P, et al. Power flow control of a 3-D wireless power pick-up[A]. ICIEA 2007. 2nd IEEE Conference on Industrial Electronics and Applications[C]. 2007. 2172~2177.
    [31] Ping S, Hu A P, Malpas S, et al. A frequency control method for regulating wireless power to implantable devices[J]. IEEE Transactions on Biomedical Circuits and Systems, 2008, 2(1): 22~29.
    [32] Boys J T, Covic G A, Green A W. Stability and control of inductively coupled power transfer systems[J]. Electric Power Applications, IEE Proceedings , 2000, 147(1): 37~43.
    [33] Chwei-Sen W, Covic G A, Stielau O H. Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems[J]. IEEE Transactions on Industrial Electronics, 2004, 51(1): 148~157.
    [34] Chwei-Sen W, Covic G A, Stielau O H. General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems[A]. Industrial Electronics Society, 2001. IECON '01. The 27th Annual Conference of the IEEE[C]. 2001. 1049~1054.
    [35] Hu A P. Selected resonant converters for IPT power supplies[Ph.D]. Auckland: The University of Auckland, 2001.
    [36] Sekitani T, Takamiya M, Noguchi Y, et al. A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches[J]. Nature Materials, 2007, 6(6): 413~417.
    [37] Papastergiou K D, Macpherson D E. An airborne radar power supply with contactless transfer of energy-part I: rotating transformer[J]. IEEE Transactions on industrial electronics, 2007, 54(5): 2874~2884.
    [38] Zhihui Wang, Yue Sun, Yugang Su, et al. Study on soft-switched inversion topology of contactless power transfer system[A]. WCICA 2008. 7th World Congress on IntelligentControl and Automation [C]. 2008. 3136~3139.
    [39] Sakamoto H, Harada K. A novel high-power converter for noncontact charging with magnetic coupling[J]. IEEE Transactions on Magnetics, 1994, 30(6): 4755~4757.
    [40] Sakamoto H, Washimiya S. Magnetic coupled power and data transferring system with a detachable transformer[J]. IEEE Transactions on Magnetics, 1996, 32(5): 4983~4985.
    [41] Yoshioka D, Sakamoto H, Ishihara Y, et al. Power feeding and data-transmission system using magnetic coupling for an ocean observation mooring buoy[J]. IEEE Transactions on Magnetics, 2007, 43(6): 2663~2665.
    [42] Matsuda Y, Sakamoto H. Non-contact magnetic coupled power and data transferring system for an electric vehicle[J]. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 2853~2855.
    [43] Sakamoto H, Harada K, Washimiya S, et al. Large air-gap coupler for inductive charger for electric vehicles][J].IEEE Transactions on Magnetics, 1999, 35(5): 3526~3528.
    [44] Sugimori K, Sakamoto H, Harada K. A one-converter contactless charger for electric vehicles[J]. Electrical Engineering in Japan, 2000, 132(2): 73~81.
    [45] Sakamoto H, Harada K, Matsuda Y, et al. Hybrid magnetic component for high-performance power system[J]. Journal of Magnetism and Magnetic Materials, 2004, 272-76: 2276~2278.
    [46] Sakamoto H, Harada K, Abe H, et al. A magnetic coupled charger with no-load protection[J]. IEEE Transactions on Magnetics, 1998, 34(4): 2057~2059.
    [47] Sato F, Adachi S, Matsuki H, et al. The optimum design of open magnetic circuit meander coil for contactless power station system[A]. Magnetics Conference, 1999. Digest of INTERMAG 99. 1999 IEEE International[C]. 1999. R9.
    [48] Sato F, Matsuki H, Kikuchi S, et al. A new meander type contactless power transmission system-active excitation with a characteristics of coil shape[J]. IEEE Transactions on Magnetics, 1998, 34(4): 2069~2071.
    [49] Sato F, Murakami J, Suzuki T, et al. Contactless energy transmission to mobile loads by CLPS-test driving of an EV with starter batteries[J]. IEEE Transactions on Magnetics, 1997, 33(5): 4203~4205.
    [50] Murakami J, Sato F, Watanabe T, et al. Consideration on cordless power station-contactless power transmission system[J]. IEEE Transactions on Magnetics, 1996, 32(5): 5037~5039.
    [51] Hatanaka K, Sato F, Matsuki H, et al. Characteristics of the desk with cord-free power supply[A]. Magnetics Conference, 2002. INTERMAG Europe 2002. Digest of Technical Papers. 2002 IEEE International [C]. 2002. V6.
    [52] Hatanaka K, Sato F, Matsuki H, et al. Power transmission of a desk with a cord-free powersupply[J]. IEEE Transactions on Magnetics, 2002, 38(5): 3329~3331.
    [53] Kojiya T, Sato F, Matsuki H, et al. Automatic power supply system to underwater vehicles utilizing non-contacting technology[A]. OCEANS '04. MTTS/IEEE TECHNO-OCEAN '04[C]. 2004. 2341~2345.
    [54] Obata Y, Sato F, Matsuki H, et al. Considerations on contactless power transmission in the sea[J]. Journal of the Magnetics Society of Japan, 2001, 25: 1007~1010.
    [55] Sato F, Nomoto T, Kano G, et al. A new contactless power-signal transmission device for implanted functional electrical stimulation (FES)[J]. IEEE Trans. on Magnetics, 2004, 40(4): 2964~2966.
    [56] Miura H, Arai S, Kakubari Y, et al. Improvement of the transcutaneous energy transmission system utilizing ferrite cored coils for artificial hearts[J].IEEE Transactions on Magnetics, 2006, 42(10): 3578~3580.
    [57] Nishimura M, Kawamura A, Kuroda G, et al. High efficient contact-less power transmission system for the high speed trains[A]. Power Electronics Specialists Conference, 2005. PESC '05. IEEE 36th[C]. 2005. 547~553.
    [58] Ayano H, Nagase H, Inaba H. A highly efficient contactless electrical energy transmission system[J]. Electrical Engineering in Japan, 2004, 148(1): 66~74.
    [59] Ayano H, Yamamoto K, Hino N, et al. Highly efficient contactless electrical energy transmission system[J]. Proceedings of the 2002 28th Annual Conference of the IEEE Industrial Electronics Society, 2002, 2: 1364~1369.
    [60] Hirai J, Tae-Woong K, Kawamura A. Integral motor with driver and wireless transmission of power and information for autonomous subspindle drive[J]. IEEE Transactions on Power Electronics, 2000, 15(1): 13~20.
    [61] Hirai J, Tae-Woong K, Kawamura A. Wireless transmission of power and information and information for cableless linear motor drive[J]. IEEE Transactions on Power Electronics, 2000, 15(1): 21~27.
    [62] Byungcho C, Jaehyun N, Honnyong C, et al. Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device[J]. IEEE Transactions on Industrial Electronics, 2004, 51(1): 140~147.
    [63] Byeong-Mun S, Kratz R, Gurol S. Contactless inductive power pickup system for maglev applications[A]. 37th IAS Annual Meeting. Conference Record of the Industry Applications Conference, 2002[C]. 2002. 1586~1591.
    [64] Yungtaek J, Jovanovic M M. A contactless electrical energy transmission system for portable-telephone battery chargers[J]. IEEE Transactions on Industrial Electronics, 2003,50(3): 520~527.
    [65] Aristeidis Karalis J D J M. Efficient wireless non-radiative mid-range energy transfer[J]. Annals of Physics, 2008, 323(1): 34~48.
    [66] Kurs A, Karalis A, Moffatt R, et al. Wireless power transfer via strongly coupled magnetic resonances[J]. SCIENCE, 2007, 317(5834): 83~86.
    [67]苏玉刚,王智慧,孙跃等.非接触供电移相控制系统建模研究[J].电工技术学报, 2008, 23(7): 92~97.
    [68]孙跃,陈国东,戴欣等.非接触电能传输系统恒流控制策略[J].重庆大学学报(自然科学版), 2008, 31(7): 766~769.
    [69]戴欣,黄席樾,孙跃.自治分段线性振荡系统的离散映射数值建模与稳定性分析[J].自动化学报, 2007, 33(1): 72~77.
    [70]孙跃,卓勇,苏玉刚等.非接触电能传输系统拾取机构方向性分析[J].重庆大学学报(自然科学版), 2007, 30(04): 87~90.
    [71] Yugang S, Chunsen T, Shuping W, et al. Research of LCL resonant inverter in wireless power transfer system[A]. PowerCon 2006. International Conference on Power System Technology[C]. Chongqing , China: 2006. 794~799.
    [72]戴欣,黄席樾,孙跃.电流型全桥软开关变换器的频率跃变现象分析[J].电工技术学报, 2006, 21(6): 78~82.
    [73] Dai X, Huang X, Sun Y. A generalized mapping modeling method for piecewise smooth autonomous vibration system[A]. International Conference on Sensing, Computing and Control[C]. Chongqing: 2006.
    [74] Dai X, Huang X. Study on synamic accurate modelling and nonlinear phenomena of a push-Pull soft switched converter[A]. 1st IEEE Conference on Industrial Electronics and Applications[C]. Singapore: 2006.
    [75]戴欣.软开关变换电路离散映射建模方法及非线性行为研究[博士].重庆大学;, 2006.
    [76] Su Y G, Deng B, Tang C S, et al. Study on phase shift control method in contactless power transfer system[J]. Dynamics of Continuous Discrete and Impulsive Systems - Series B - Applications & Algorithms, 2006, 13E: 3281~3284.
    [77]戴欣,黄席樾.电流型准谐振软开关变换器离散映射建模及分叉现象分析[J].计算机仿真, 2005, 23(7): 287~290.
    [78]孙跃,李良,戴欣等.电流型全桥软开关变换器离散映射建模与仿真[J].电工技术学报, 2005, 20(6): 20~24.
    [79]孙跃,戴欣,苏玉刚等.广义状态空间平均法在CMPS系统建模中的应用[J].电力电子技术, 2004, 38(3): 86~88.
    [80] Tang C S, Sun Y, Su Y G, et al. Determining multiple steady-state ZCS operating points of a switch-mode contactless power transfer system[J]. IEEE Transactions on Power Electronics, 2009, 24(2): 416~425.
    [81] Yue S, Hu A P, Xin D, et al. Discrete time mapping modeling and bifurcation phenomenon study of a ZVS converter[A]. PowerCon 2004. International Conference on Power System Technology[C]. 2004. 1015~1018.
    [82] Tang S C, Hui S Y R, Chung H. Coreless printed circuit board (PCB) transformers with high power density and high efficiency[J]. Electronics Letters. 2000. 36(11): 943~944.
    [83] Tang S C, Hui S Y R, Chung H. Characterization of coreless printed circuit board (PCB) transformers[A]. Power Electronics Specialists Conference, 1999. PESC 99. 30th Annual IEEE[C]. 1999. 746~752.
    [84] Chan P C F, Lee C K, Hui S Y R. Stray capacitance calculation of coreless planar transformers including fringing effects[J]. Electronics Letters. 2007. 43(23).
    [85] Su Y P, Xun L, Hui S Y R. Mutual inductance calculation of movable planar coils on parallel surfaces[A]. Power Electronics Specialists Conference, 2008. PESC 2008. IEEE[C]. 2008. 3475~3481.
    [86] Xun L, Hui S Y. Optimal design of a hybrid winding structure for planar contactless battery charging platform[J]. IEEE Transactions on Power Electronics, 2008, 23(1): 455~463.
    [87] Xun L, Hui S Y. Simulation study and experimental verification of a universal contactless battery charging platform with localized charging features[J]. IEEE Transactions on Power Electronics, 2007, 22(6): 2202~2210.
    [88] Liu X, Hui S Y. Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform[J]. IEEE Transactions on Power Electronics, 2007, 22(1): 21~29.
    [89] Hui S Y, Ho W C. A new generation of universal contactless battery charging platform for portable consumer electronic equipment[J]. IEEE Transactions on Power Electronics, 2005, 20(3): 620~627.
    [90] Liu X, Chan P W, Hui S Y R. Finite element simulation of a universal contactless battery charging platform[A]. Applied Power Electronics Conference and Exposition, 2005. APEC 2005. Twentieth Annual IEEE[C]. 2005. 1927~1932.
    [91] Liu X, Hui S Y R. An analysis of a double-layer electromagnetic shield for a universal contactless battery charging platform[A]. Power Electronics Specialists Conference, 2005. PESC '05. IEEE 36th[C]. 2005. 1767~1772.
    [92]武瑛,严陆光,黄常纲等.新型无接触电能传输系统的性能分析[J].电工电能新技术,2003, (4): 10~13.
    [93]武瑛,严陆光,徐善刚.新型无接触电能传输系统的稳定性分析[J].中国电机工程学报, 2004, (5): 63~66.
    [94]武瑛,严陆光,徐善纲.运动设备无接触供电系统耦合特性的研究[J].电工电能新技术, 2005, 24(3): 5~8.
    [95]周雯琪,马皓,何湘宁.基于动态方程的电流源感应耦合电能传输电路的频率分析[J].中国电机工程学报, 2008, 28(3): 119~124.
    [96]马皓,周雯琪.电流型松散耦合电能传输系统的建模分析[J].电工技术学报, 2005, 20(10): 66~71.
    [97]周雯琪,马皓,何湘宁.感应耦合电能传输系统不同补偿拓扑的研究[J].电工技术学报, 2009, 24(1): 133~139.
    [98]韩腾,卓放,闫军凯等.非接触电能传输系统频率分叉现象研究[J].电工电能新技术, 2005, 24(2): 45~47, 76.
    [99]张峰,王慧贞,秦海鸿等.松耦合全桥谐振变换器的原理分析与实现[J].电力电子技术, 2007, 41(02): 16~18.
    [100]刘建,王慧贞.基于UC3861控制的松耦合谐振变换器[J].电力电子技术, 2008, 42(1): 84~86.
    [101] Chen G, Sun Y, Dai X, et al. On piecewise control method of contactless power transmission system[A]. Control Conference, 2008. CCC 2008. 27th Chinese[C]. 2008. 72~75.
    [102] Hao M, Wenqi Z. Modeling a current source push-pull resonant converter for loosely coupled power transfer systems[A]. Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE[C]. 2004. 1024~10292.
    [103] Wang C S, Covic G A, Stielau O H. Investigating an LCL load resonant inverter for inductive power transfer applications[J]. IEEE Transactions on Power Electronics, 2004, 19(4): 995~1002.
    [104] Balog R S, Krein P T. Commutation technique for high-frequency link cycloconverter based on state-Machine control[J]. IEEE Power Electronics Letters, IEEE, 2005,3(3):101~104
    [105] Wheeler P W, Rodriguez J, Clare J C, et al. Matrix converters: a technology review[J]. IEEE Transactions on Industrial Electronics, 2002,49(2):276~288
    [106]贺益康,刘勇.交-交直接变换控制下矩阵式变换器的仿真研究[J].电工技术学报, 2002,17(3):48~53
    [107] Daolian C. The uni-polarity phase-shifted controlled buck mode AC-AC converters with high frequency link[A]. Power Electronics Specialists Conference, 2007. PESC 2007. IEEE[C]. 2007. 471~476.
    [108]李磊,陈道炼,胡育文.两种移相控制全桥式高频环节AC-AC变换器比较研究[J].电工技术学报, 2004,19(6):7~11
    [109]孙跃,苏玉刚.可分区控制的电源板[P]. CN100375370C, CN: ZL 200610054106.5, 2006-01-20.
    [110]杜军,周雒维,陆治国.带饱和电感的移相全桥PWM变换器软开关分析[J].重庆大学学报,2004,27(1): 53-57
    [111]苏玉刚,唐春森,孙跃等.非接触供电系统多负载自适应技术[J].电工技术学报,2009,24(1):153-157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700