用户名: 密码: 验证码:
两级混凝沉淀工艺处理高浊水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着我国城市建设的迅速发展,城镇人口的日益增加,城镇居民的生活用水量也逐日增多。在当前江河流域水土流失情况的日益严重和水体污染日益加剧的情况下,高浊度地表水资源已成为我国城镇生活用水水源的重要组成部分。
     同时,随着经济的发展和社会的进步,以及人民消费水平的提高,对供水水质的要求也越来越严格。高浊度水因其浊度高、泥沙不易沉降、处理困难等特点,一直制约着高浊度水源在一些地区的使用,甚至有些水厂在高浊度的时候为了能够使出水达标,不得不减小进水负荷,造成产水量不足。
     本课题针对长江上游流域源水浊度高、地形条件复杂等特点,以现有处理高浊度水的两级混凝沉淀工艺为研究对象,研究其对嘉陵江源水在不同的工况条件下的处理效果,寻求其适应嘉陵江源水水质特点的运行参数和絮凝剂,为同类型的给水厂的设计和优化运行提供技术指导和理论设计依据,具有重要的现实意义。
     本文针对嘉陵江江水的不同浊度情况,采取高浊度时两级混凝沉淀、低浊度时一级自然沉淀+二级混凝沉淀的方法进行试验,对在不同絮凝沉淀方式下两级的不同水力停留时间比、不同絮凝剂投加类别及不同投加量的出水效果进行研究,考察水温、pH值、水量冲击变化对工艺运行效果的影响。同时对不同絮凝沉淀方式对浊度、UV_(254)、COD_(Mn)、NH_4~+-N的去除效果以及浊度的去除对UV_(254)、COD_(Mn)、NH_4~+-N的去除效果的影响进行分析讨论。
     试验结果表明:
     ①高浊度时,采用两级混凝沉淀,且在第一级投加高分子絮凝剂PAM;低浊度时,采用一级自然沉淀、二级混凝沉淀。出水水质均能达到滤前水浊度低于10NTU的要求。
     ②根据不同的水力停留时间比下的处理效果,同时结合现有采用两级混凝沉淀工艺的水厂的运行情况,建议两级混凝沉淀的水力停留时间比设计为1:2。
     ③在一、二级水力停留时间比为1:2的条件下,高浊度时一级PAM投加量1.5 mg/L、二级PAC投加量20 mg/L,低浊度时二级PAC投加量25 mg/L较为合适。
     ④在相同的絮凝沉淀方式、进水水质以及满足出水水质指标的情况下,PAC的投加量较FeCl3的投加量为小。
     ⑤在试验进行期间,水温变化不大,故其不是本次试验影响出水效果的主要因素之一。随着源水pH的增加,浊度的去除率有增加的趋势,而UV_(254)、COD_(Mn)、NH_4~+-N的去除率没有变化。
     ⑥在水量冲击负荷下,二级混凝沉淀出水中浊度的数值均未超过10NTU。
     ⑦浊度的去除对UV_(254)、COD_(Mn)、NH_4~+-N的去除具有积极的意义。
With the rapid urban construction development in China and the growing urban population, urban residents water consumption also has increased. In the current situation of the growing river basin soil erosion and increasing water pollution case, the high turbidity of surface water resources has become an important source of urban water component.
     Meanwhile, with the economic development and social progress, and the improvement of people's consumption level, the requirements on water quality are increasingly stringent. Because of high turbidity, sediment deposition, and difficulties which are not easy to deal with of high turbidity water , and so on, high turbidity water use has been restricted in some areas, even some time water plants in order to exert compliance in the high turbidity water period, not does not reduce the water load, thus producing less water.
     Aiming at the features of turbidity high, and complex terrain of the Upper Yangtze River raw water, regarding the existing two-stage coagulation- sedimentation process treating high turbidity water as the research object, research treatment effect on the Jialing River source of water in its different operational conditions, seeking for operating characteristics and flocculants to adapt the Jialing River raw water quality parameters, to provide technical guidance and design for the same type water treatment plant's design and optimization operation, has important practical significance.
     In this paper, in view of different turbidity conditions of the Jialing River, take two-stage coagulation-sedimentation in the high turbidity levels time, when a low turbidity time one-stage natural sedimentation + two-stage coagulation-sedimentation methods to test, study the two-stage different hydraulic retention time ratio, different flocculent dosing types and the effluent effect with the different dosage at the different coagulation and sedimentation mode, investigate the impact on process running effect about the water temperature, pH value, waters change. At the same time investigation the impact on turbidity, UV_(254), COD_(Mn), NH_4~+-N removal efficiency in different flocculation and the impact on UV_(254), COD_(Mn), NH_4~+-N removal effect to turbidity removal were discussed.
     The results showed that:
     ①On high turbidity time, adopt the two-stage coagulation-sedimentation, and add polymer flocculent PAM in the first stage; on low turbidity time, adopt one-stage natural sedimentation and two-stage coagulation-sedimentation process. Effluent quality can reach less than 10NTU water turbidity requirements before the filter.
     ②According to treatment effect under different HRT ratio, combined with the existing water treatment plant with two-stage coagulation-sedimentation process operation, propose that the two-stage coagulation-sedimentation hydraulic retention time ratio is 1:2.
     ③Under the condition of one-stage and two-stage hydraulic retention time ratio 1:2, when the high turbidity one-stage PAM dosage of 1.5 mg/L, two-stage PAC dosage of 20 mg/L, when the low turbidity two-stage PAC dosage of 25 mg/L would be more appropriate.
     ④Under the same condition of flocculation and sedimentation way, inlet quality and meeting the outlet quality indicators, PAC dosage is smaller than FeCl3 dosage.
     ⑤During the trial, water temperature change is little, so water temperature was the main factor affected outlet effect in this experiment. With the source water pH increase, turbidity is on the increase, while the UV_(254), COD_(Mn), NH_4~+-N removal rate has not changed.
     ⑥On the water impact load, two-stage coagulation-sedimentation effluent turbidity values did not exceed 10NTU.
     ⑦Turbidity removal has a positive significance on the UV_(254), COD_(Mn), NH_4~+-N removal.
引文
[1]傅文德.高浊度给水工程[M].北京:中国建筑工业出版社,1994.
    [2]丹保宪仁.高浊度水的结团凝聚处理方法[J].中国给水排水,1987,(4):4-8.
    [3]许兵.黄河高浊度水絮凝机理探索[D].西安:西安建筑科技大学,2003.
    [4]方晞,伏苓.高浊度给水理论与技术[M].化学工业出版社,2004.
    [5]高湘.黄河高浊度水沉淀规律研究[D].西安:西安建筑科技大学,2004.
    [6]傅文德,裘本昌.高浊度水处理技术的研究与应用[J].中国给水排水.1988,(5):47-51.
    [7]田亚斌.兰州连城铝业净水厂高浊度水处理系统优化[D].兰州:兰州理工大学,2006.
    [8]严煦世.水和废水技术研究[M].北京:中国建筑工业出版社,1992.
    [9] Stumm,W.and O’Melia,R.Stochiometry of Coagulation.J. colloids.Elsevier[J]AWWA,1968.6,60(5):514.
    [10] B.V.Derjaguin,L.Landau.J. colloids.Elsevier[J]Expt.theor.Physi.,1941,(11):802.
    [11] E.J.W.Verwey,J.T.G.Overbeek.Theroy of the stability of iyophbic colloids.Elsevier[J].
    [12] Black A.P.etal.J. [J]American Water Works Association,1965,(57):1547.
    [13] Black A.P.etal.J. [J]Colloid and Interface Science,1966,(21):626.
    [14] Stumm W.,Morgan J..Aquatic Chemistry. [J]Wiley and Sons Inc.New York,1981:599-684.
    [15] Lamer V.K.,Healey T.W. [J]. Physical Chemistry,1963,(67):2417.
    [16] E.L.Mackor,J.H.Vander Waals.J. [J]Colloid Science,1952,(7):535.
    [17]汤忠红,蒋展鹏.混凝形态学—一条研究混凝过程的新路子[J].中国给水排水,1987,3(5):4-8.
    [18] Einstein,A.Ann.Physik[M],Lpz.1906,p289:1911,p591
    [19] Thomas,D.G.J.Amer.inst. colloids.Elsevier[J]Chem.Engrs.,1961,p431
    [20] Richardson,J.F.and ZaKi,W.N.,Sedimentation and Fluidisation.Pt.I, colloids.Elsevier[J] Trans.Inst.Chem.Engrs.,1954,32:35-53.
    [21] Richardson,J.F.Sedimentation and Fluidisation of Fine Particles and of Two-component Mixtures of Solids. colloids.Elsevier[J]Trans.Instn.Chem.Engrs..1961,39(5):348-356.
    [22] Peirce,T.J.&Williams,P.J.,Experiments on Certain Aspects of Sedimentation of Estuary Muds colloids.Elsevier[J].proc.ICE.1966,34:391.
    [23] Coe,H.S.and ClevengerG.H.Methods for Determing the Capacities of Slime-Setling Tanks[J].Trans.Am.Inst.Mining.Engrs,1916,55:356.
    [24] Kynch,G.J. ATheory of Sedimentation[J].Transactions Farad Society.1952,48:16.
    [25] Talmage,W.P.and Fitch,E B.Determing Thickener Unit Areas[J].Industrial and EngineeringChemistry,1955,47(1):38.
    [26] Keinath T.M.水的物理化学处理[M].李维音等译.北京:清华大学出版社,1982.
    [27] Roberts E. J. Thickening--Art or Science?[J]. Mining engineering.1949, 1(3): 61-64.
    [28]许保玖.给水处理理论与设计[M].北京:中国建筑工业出版社,1992.
    [29]金同轨.沉淀分离[M].西安:西安建筑科技大学,1999.9.
    [30]潘旭东等.载体絮凝技术的应用与发展现状[J].中国给水排水,2007.4,23(8):1-4.
    [31]谢钦.高密度澄清池工艺简介[J].给水排水.2006,32(S1):38-39.
    [32]罗启达等.ACTIFLO-一种新型高效水处理澄清工艺[J].净水技术,2004,23(1):38-41.
    [33]沙玉清.泥沙运动理论[M].中国工业出版社,1965.
    [34]褚君达.河流泥沙国际学术讨论会论文集[C].上海:光华出版社,1980.
    [35]费俊祥.泥沙的群体沉降-两种典型情况下非均匀沙沉速计算[J].泥沙研究,1992(,3):11-20.
    [36]褚君达.第二次河流泥沙国际学术讨论会论文集[C].北京:水利电力出版社,1983.
    [37]宋培根.混合沙沉降特性的实验研究[J].泥沙研究,1985.6,(2):40-49.
    [38]陈保平,金同轨.黄河高浊度水自然沉淀某些规律的新探讨[J].泥沙研究,1991.9(,3):62-67.
    [39]金同轨,陈保平,高湘.高浊度水自动投药基本数学模型及后馈参数的建立[J].西安冶金建筑学院学报,1993,25(1):117-122.
    [40]陈保平,金同轨.泥沙颗粒因素在高浊度水研究中的重要作用[J].西安冶金建筑学院学报,1993,25(2):145-151.
    [41]黄建维.粘性泥沙在静水中沉降的实验研究[J].泥沙研究,1964,(1).
    [42]李圭白,孟庆海.高浊度泥水的沉降特性[J].哈尔滨建筑工程学院学报,1994,(2):69-81.
    [43]李圭白.高浑浊水的动水浓缩规律和自然沉淀池的计算方法[J].土木工程学报,1964,10(1):76-86.
    [44]陈保平,金同轨.高浊度水处理时聚丙烯酞胺投量与水中泥沙颗粒表面积关系的研究[J].西安冶金建筑学院学报,1985.6,42(2):46-58.
    [45]金同轨等.黄河高浊度水聚丙烯酞胺投量确定及沉泥浓度影响因素[J].给水排水,1989,(1):12-16.
    [46]王绍文.高效混凝反应、沉淀池[P].中国:90106705.9,1990.08.02.
    [47]于泮池等.结团凝聚工艺的研究(一)[J].西安冶金建筑学院学报,1986.9,47(4):1-19.
    [48]于泮池,王晓昌.结团凝聚工艺的研究(二)[J].西安冶金建筑学院学报,1987,(2):1-11.
    [49]黄廷林等.高效一体化泥水分离设备[P]:中国: 03218551.0,2004.01.21.
    [50]蒋玖璐,李东生,陈树勤.高密度澄清池设计[J].给水排水,2002,28(9):27-29.
    [51]严熙世,范瑾初.给水工程(第四版)[M].北京:中国建筑工业出版社,1999.
    [52]邹伟国,李春森.加强混凝对有机物的去除[C].第四届全国给水排水青年学术年会,2000-11.
    [53]姜瑞雪,王龙,张丽.强化混凝在微污染水源水处理中的应用[J].水资源保护,2006.9,22(5):68-70.
    [54]李辛白,林生,曲久辉.用高锰酸欲指数去除饮用水中微量有机污染物[J].给水排水, 1989,(6):6-11.
    [55] Crozes G,White P,Marishall M.Ehanced coagulation:It’s Esffect on NOM Removal and Chemical Costs[J].Journal of AWWA,1995,87(1):78-89.
    [56] Robert C Cheng,Stuart W Krasner,James F Green et al.Enhanced coagulation:A preliminary evaluation[J].J AWWA,1995,87(2):91-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700