用户名: 密码: 验证码:
棕色棉纤维色素积累及遗传规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棕色棉与白色棉相比,存在纤维色泽不稳定,易分解,色素沉积不规律等不足。因此,了解棕色素化学本质、合成机理及色素的遗传规律,是棕色棉育种的重要基础。本实验以棕色棉不同时期的棉铃和成熟纤维为研究对象,分析棕色素在棉纤维发育过程中的积累动态以及苯丙氨酸解氨酶、多酚氧化酶和抗氧化酶的活性变化;同时,定量测定纤维色素含量分析棕色棉色素的遗传规律,旨在明确色素合成途径,为选择合适的育种方法提供一定的理论依据。主要研究结果如下:
     (1)中棕ANL-1的色素在纤维各部位的分布特性反映了棕色素在棉纤维上积累与分布规律。纤维各部位棕色素含量大小依次是:近种皮端0mm~5mm处>较远种皮端10mm~15mm>较近种皮端5mm~10mm处>远种皮端15mm~20mm处。棕色棉纤维近种皮端的色素含量普遍高于纤维的较近、较远和远种皮端部位,进一步证明棕色素是由种皮向纤维运输和扩散。
     (2)纤维伸长期(花后0天~25天),棕色棉和白色棉种皮颜色无明显变化;次生壁沉积期(花后25天~45天),种皮颜色显著加深。棉铃发育期棕色棉纤维色泽随着时间变化而逐渐变深,次生壁沉积后期(花后35天~45天),棕色棉纤维颜色加深明显。
     (3)棉铃发育期,深棕ANL-1和泗棉3号种皮中有表没食子儿茶素、儿茶素、表儿茶素,纤维中有没食子儿茶素和儿茶素。缩合单宁、总酚、总黄酮、儿茶素等色素合成前体的总体变化表明:纤维伸长期(花后0天~25天),棕色棉种皮与纤维中色素前体不断合成与积累,并在次生壁沉积期(花后25天~45天)被逐渐消耗,形成棕色素在纤维中的沉积。
     (4)苯丙氨酸解氨酶和过氧化物酶对棕色棉纤维色泽具有一定的影响。棕色棉种皮与纤维中苯丙氨酸解氨酶活性分别在花后35天~42天和花后21天~28天上升,与棕色素前体合成有关。在纤维发育的次生壁沉积后期(花后35天~45天),过氧化物酶可能通过对色素前体酚类物质氧化的保护抑制,参与并影响棕色素的合成。多酚氧化酶、抗坏血酸过氧化物酶、超氧化物歧化酶及过氧化氢酶对棕色棉色泽影响不大。
     (5)深棕ANL-1与泗棉3号杂交F2代纤维色素的遗传分离比例符合1:2:1,广义遗传率为73%。棕色棉纤维色泽的遗传方式仍属于单基因控制不完全显性遗传。绒长、单铃重、衣分是棕色棉纤维色素遗传过程中三个重要性状。控制绒长的基因与色素基因可能是位于同一染色体上的非等位基因,纤维色素和绒长存在不完全连锁遗传。
Compared with the white cotton, brown colored cotton has the disadvantage of distability, decomposition and irregulation of pigment accumulation. Therefore, studies on chemical nature, synthesis mechanism and inheritance law of the pigment in brown colored cotton are important basis for brown colored cotton breeding. Cotton bolls from different development stages and mature fiber of brown colored cotton were used as materials in the experiment, and the pigment accumulation also with the activities of phenylalanine ammonia lyase, polyphenol oxidase and antioxidases during the development were analyzed, and inheritance law of the pigment was studied by quantitative determination of the pigment, so as to clear the synthesis path of the pigment, and provide therotical basis for proper breeding methods of brown colored cotton. The main results were as follows:
     (1) The distribution of the pigment in each part of the fiber of middle-brown ANL-1 revealed the the accumulation and distribution law of the pigment in the fiber of brown colored cotton, and the content of the pigment in each part of the fiber was: the proximal part to the seed capsule(0mm~5mm)>the remote part from the seed capsule(10mm~15mm)>the part close to the seed capsule(5mm~10mm)>the end part of the fiber(15mm~20mm). The content of the pigment in the proximal part to the seed capsule was higher than other parts of the fiber, which can provide the basis for the conclusion that the pigment transported and diffused from the seed capsule to the fiber.
     (2) The color of the seed capsule of brown colored cotton and white cotton had no apparent changes during the period of the fiber elongation(0~25DPA), and the color of the seed capsule darkened apparently during the secondary cell wall thickening period(25~45DPA).The color of the fiber of brown colored cotton darkened along with the time during the development, which darkened obviously during the secondary cell wall thickening period(35~45DPA).
     (3) The HPLC qualitative determination results showed that: Catechin monomers in the seed capsule of dark-brown ANL-1 and simiansanhao during the development were epigallocatechin, and epicatechin, and catechin monomers in the fiber of dark-brown ANL-1 and simiansanhao during the development were gallocatechin and catechin. The general change of the content of flavonoids, condensed tannin, all phenol and catechin during the development revealed that: During the period of the fiber elongation (0~25DPA), the precursor of pigment synthesized and accumulated both in the seed capsule and the fiber, and exhausted during the secondary cell wall thickening period(25~45DPA).
     (4) Phenylalanine ammonia lyase and peroxidase had some influence on the color of the brown colore cotton. The activity of phenylalanine ammonia lyase both in the seed capsule and the fiber of brown colored cotton increased during the 35~42DPA and 21~28DPA, which related to the synthesis of the pigment precursor. During the secondary cell wall thickening period(35~45DPA), peroxidase might participate in the synthesis of the pigment through inhibition of the oxidation of phenols. The influence of polyphenol oxidase, ascorbate peroxidase, superoxide dismutase and catalyse on the color of brown colored cotton were small.
     (5) The proportion of genetic separation of the pigment in filial generation 2 crossed by dark-brown ANL-1 and simiansanhao was 1:2:1, and the heritability in broad sense was 73℅. The genetic approach of the color of brown colored cotton fiber was incomplete dominant inheritance. The length of fiber, single boll weight and lint percentage were three important traits in the inheritance of the pigment of brown colored cotton fiber. The trait of fiber length locus and the trait of color locus might be non-allelic located in the same chromosome, which were incomplete genetic linkage.
引文
[1]刘勤红,刘任重,王淑艳,等.我国彩色棉的研究现状与发展建议[J].山东农业科学, 2004, 9(3): 11~13
    [2]詹少华,林毅,蔡永萍,等.天然棕色棉色素提取、纯化及其UV光谱研究[J].激光生物学报, 2004, 13(5): 324~328
    [3]乔建民,安兴伦.国内外彩色棉研究利用现状及发展前景[J].石河子科技, 2001, (4): 19~22
    [4]吴琼洁,蔡碧琼.茶多酚的研究进展及应用前景[J].武夷科学, 2005, 21(12): 145~148
    [5]于伯龄.绿色天然彩色棉金属盐固色试验[J].针织工业, 2002, 3(1): 35~37
    [6]邱新棉,周文龙,李茂松,等.天然彩色棉纤维素的遗传基础形成及湿处理色素变化规律的研究[J].中国农业科学, 2002, 35(6): 610~615
    [7]赵向前,王学德.天然彩色棉纤维色素成分的研究[J].作物学报, 2005, 31(4): 456~462
    [8]詹少华,林毅,蔡永萍,等.天然棕色棉纤维色素光谱学特性及其化学结构初步推断[J].植物学通报, 2007, 24(1): 99~104
    [9] Ebel J. and Hahlbrock K. Biosynthesis in the flavonoids. Eds, Harborne, J.B. and Mabry, T.J. Chapman and Hall, London. 1982, 24: 641~679
    [10]武予清,郭予元.棉花单宁和黄酮类化合物研究概况[J].中国棉花, 2000, 27(8): 47~48
    [11]詹少华.天然棕色棉纤维色素合成机理及其SRAP分子标记[D].安徽农业大学,作物遗传育种, 2007
    [12]石碧,杜晓.植物原花色素研究利用进展与发展趋势[J].四川大学学报(工程科学版), 2006, 38(5): 16~22
    [13] Halloin, J M. Localization and changes in catechin and tannins during development and ripening of cotton seed[J]. New Phytologist, 1992, 90: 641~657
    [14] Czochanska Z, Foo L, Newman R. Palymeric proanthocyanidins, srerochemistry, structural unit and molecular weight[J]. J Chem Soc Perkin Trans, 1980, 2: 278~ 285
    [15] Lane H C, Schuster A. Condensed tannins of cotton leaves[J]. Phytochemistry, 1981, 20(3): 425~427
    [16] Chan B G, Waiss A C, Lukefahr M. Condensed tannin, an antibiotic chemicalfrom Gossypium hirsutum[J]. Insect Physiol, 1988, 24(2): 113~118
    [17]詹少华,林毅,蔡永萍,等.缩合单宁与天然棕色棉纤维色素合成的关系[J].棉花学报, 2007, 9(3): 183~188
    [18] Ryser U. Cell wall growth in elongating cotton fibers: an autoradiographic study [J]. Cytobiology, 1980, 15: 78~84
    [19]赵向前.彩色棉的纤维色素与品质形成机理[D].浙江大学,作物遗传育种, 2003.
    [20]潘兆娥,杜雄明,孙君灵.遮光对彩色棉的色泽及纤维品质的影响[J].棉花学报, 2006, 18(5): 264~268
    [21] Waghmare V N, Koranne K D. Colored cotton present status, problems and potentials[J]. Indian Genetics & plant breeding, 1998, 58(1): 1~15
    [22]詹少华,林毅,蔡永萍,等.天然棕色棉色素分布规律及色素合成与纤维发育的关系[J].棉花学报, 2006, 18(3): 170~174
    [23]程俊意,刘娜,梁翰文.甘蓝型黄籽油种皮色素与抗氧化酶的关系[J].广西农业科学, 2006, 37(6): 656~659
    [24]詹少华,林毅,蔡永萍,等.棕色棉纤维中酚类物质动态变化与色素合成的关系[J].作物学报, 2006, 32(11): 1684~1688
    [25] Neish A C. Biosynthesis pathway of aromatic compounds [J]. Annual Review of Plant Physiology, 1980, 92
    [26]江昌俊,余有本.苯丙氨酸解氨酶的研究进展[J].安徽农业大学学报. 2001, 28 (4): 425~430
    [27] FARID kader, Bernard Rovel. Mechanism of browning in fresh high bush blueberry fruit. Role of blueberry polyphenoloxidase, chlorogenic acid and anthocyanins[J]. Journal of the Science of Food and Agriculture, 1997, 74(1): 31~34
    [28] KEITH Roesler.β-ketoacyl -ACP synthase of the tub B gene and identification of the cerulenin binding residue[J]. Journal of the Science of Food and Agriculture, 2003, 53: 357~370
    [29]张雪林.彩色棉育种新进展[J].湖南农业科学, 1998, (3): 22~23.
    [30] Harland S C. The genetics of cotton. XIV. The inheritance of brown lint in New World Cottons[J]. Genets, 1995, (2): 31~37
    [31]西蒙古良.陆地棉纤维色泽的遗传[J].国外农学-棉花, 1984, (3): 17~19
    [32] Ware J O. Inheritance of Lint colors in upland cotton[J]. Am.Soc. Argon, 1982, 24: 550~562
    [33]耿军义,王国印,翟学军,等.陆地棉有色纤维基因遗传及其对产量和品质的影响[J].棉花学报, 1998, 10 (6) :307~311.
    [34]李永山,姜艳丽,李江辉,等.有色棉杂交遗传规律的研究[J].中国棉花, 2001, 28(11):14~15
    [35] Kohel RJ. Genetic analysis of fiber color variznts in cotton[J]. Crop Science, 1985, 25: 793~797.
    [36]石玉真,杜雄明,刘国强,等.天然有色棉纤维和短绒色泽遗传分析[J].棉花学报, 2002, 14(3): 27~29
    [37]董合忠,李维江,唐薇,等.彩色棉纤维发育与色素形成[J].中国棉花, 2004, 31(2): 2~4
    [38]詹少华,林毅.天然彩棉棕色素定量测定方法的建立[J].分子植物育种, 2005, 3(3): 439~444
    [39]王立娟.桔皮总黄酮的提取条件[J].东北林业大学学报, 2006, 34 (5): 71~74
    [40]曹艳萍.苦荞麦麸皮中总黄酮的乙醇提取工艺研究[J].食品科学, 2005, 26 (3): 98~101
    [41]武予清,郭予元.棉花植株中的单宁测定方法研究[J].应用生态学报, 2000, 11(2): 243~245
    [42] Kitakawa N S, Takeishi J, Yonemoto T. Improvement of Catechin Productivity in Suspension Cultures of Tea Callus Cells[J]. Biotechnol.Prog. 2003, 19: 655~658
    [43]朱广廉,钟诲文主编.植物生理学实验[M].北京:北京大学出版社, 1988, 120~121
    [44]杨晓玲,张建文,刘永军,等.马铃薯块茎发芽过程中酚类物质含量及其相关酶活性的变化[J].植物生理学通讯, 2002, 38(4): 347~348
    [45]沈文彪,徐朗莱,叶茂炳,等.抗坏血酸过氧化物酶活性测定的探讨[J].植物生理学通讯, 1996, 32(3): 203~205
    [46]王学德,李悦有.彩色棉纤维色素提取和测定方法的研究[J].浙江大学学报(农业与生命科学版), 2002, 28(6): 596~600
    [47]徐任生.天然产物化学[M].北京:科学出版社, 1993, 863
    [48]何水林,郑金贵,林明,等.植物芪类次生代谢物的功能、合成调控及基因工程研究进展[J].农业生物技术学报, 2004, 12(1): 102~108
    [49]孙达旺.植物单宁化学[M].北京:中国林业出版社, 1992, 431
    [50]陈旭升,狄佳春,刘剑光,等.棉花无腺体性状的遗传及低酚棉产业化前景[J].江西农业学报, 2003, 15(1): 43~47
    [51]庄向平,虞杏英,杨更生,等.银杏叶中黄酮含量的提取与测定[J].中草药,1992, 25(8): 122
    [52]杨佑明,徐楚年,周海鹰,等.基因型在胚珠继代培养过程中对棉纤维发育的影响[J].棉花学报, 2002, 14(5): 259~263
    [53]王旭宁,张毓钟,汪若海.低酚棉与有酚棉对铃病抗性差异的研究[J].棉花学报, 1990, 2(1): 81~90
    [54]单世华,孙学振,周治国,等.温度对棉纤维干物质积累动态变化的影响[J].山东农业大学学报(自然科学版), 2001, 32(1): 6~10
    [55]陈旭升,刘剑光,狄佳春,等.棕色棉纤维色度与产量性状相关分析[J].中国棉花, 2001, 28(10): 12~13
    [56]刘燕,王进友,张祥,等.钾营养对高品质棉不同部位棉铃发育及内源激素影响的研究[J].棉花学报, 2006, 18(4): 209~212
    [57]蒋淑丽,王学德.棉花纤维突变体胚珠发育过程中主要生化物质的积累特征[J].浙江大学学报(农业与生命科学版), 2002, 28(1): 16~21
    [58]单世华,孙学振,周治国,等.温度对棉纤维超分子结构的影响[J].棉花学报, 2000, 12(4): 208~211.
    [59] Gokani S J, Thaker V S. Physiological and biochemical changes associated with cotton fiber development IX[J]. Role of IAA and PAA. Field Crops Research, 2002, 77: 127~136
    [60]江海波,李向拓,许玉璋.硼锌对伏桃干物质累积及纤维产量品质的影响[J].中国棉花, 1999, 26(10): 14~15
    [61]周可金,裴训武,江厚旺,等.不同开花期棉铃干物质积累规律研究[J].棉花学报, 1996, 8(3): 145~150
    [62] Tokumoto H, Wakabayashi K, Kamisaka S. Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development[J]. Plant Cell Physiol, 2002, 43(4): 411~418
    [63]程超华,王学德,姚艳玲. IAA和GA3对棉花短纤维突变体纤维长度的离体诱导作用[J].作物学报, 2005, 31(2):229~233
    [64]李建武,萧能,余瑞元.生物化学实验原理和方法[M].北京:北京大学出版社, 1994, 9: 174~176
    [65]杨朝柱,马传喜,华为,等.多酚氧化酶在小麦植株体内的分布[J].安徽农业大学学报, 2002, 29(4): 366~368
    [66]刘思颖,沈曾佑,张志良,等.岱字15号棉纤维发育过程中纤维细胞壁组分变化的研究[J].植物生理与分子生物学报, 1983, 9(14): 347~355
    [67] Allen K. Murray, Robert L. Cell wall biosynthesis: glycan containing oligomersin developing cotton fibers, cotton fabric, wood and paper[J]. Phytochemistry, 2001, 57: 975~986
    [68]张恒木,赵旌旌,王隆华.试管棉纤维发育中IAA氧化酶和POD活性的变化[J].植物生理学通讯, 2003, 36(4): 315~317
    [69] Meinert M C, Deborah P D. Changes in biochemical composition of the cell wall in cotton fiber during development[J]. Plant Physiol, 1997, 5(9): 1088~1097
    [70]项时康,孙善康.陆地棉种子蛋白质脂肪含量与籽指、衣分的相关性[J].中国棉花, 1982, 3(9): 27
    [71] Lee I, Evans B R, Woodward J. The mechanism of cellulase action on cotton: evidence from atomic force microscopy[J]. Ultramicroscopy, 2000, 82: 213~221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700