用户名: 密码: 验证码:
甘蓝型油菜napin基因启动子的克隆与几个重要农艺性状的初步QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是一种重要的油料作物,在世界各地除非洲少数地区以外,几乎都有栽培。油菜经济价值的提高首先需要改良油菜栽培品种,而油菜新品种的改良主要体现在油菜品质和产量的改良两个方面。在油菜品质改良方面,利用基因工程手段来改变油菜种子的化学组成成分及其含量是改良油菜品质的一个有效措施,其中,基因工程手段的一个关键技术就是调节控制优良基因的表达,而高等植物基因调控主要是在转录水平上进行的,受多种顺式作用元件和反式作用因子的相互协调作用。植物基因启动子是重要的顺式作用元件,是RNA聚合酶识别并与之结合,从而起始基因转录的一段DNA序列。因此,油菜组织特异性启动子的克隆和表达验证是一项重要工作。
     在油菜产量改良方面,由于油菜产量及与产量有关的其它许多农艺性状均表现为微效多基因控制的数量遗传,研究这些数量性状位点(QTL)在油菜基因组染色体上的位置和对性状表现影响的程度,具有积极现实的意义。近年来,随着数量遗传学和现代生物技术的发展,借助DNA分子标记和QTL作图,复杂的数量性状可剖分为若干离散的孟德尔因子所决定的组分,进而确定其在染色体上的位置及其效应大小。同时,应用分子标记辅助选择(MAS)和转基因等技术,使油菜产量的进一步提高成为可能。
     1.甘蓝型油菜napin基因启动子的克隆
     Napin是一类由多基因编码的种子贮藏蛋白,广泛存在于芸苔属植物的种子里,占种子蛋白总量的20%~30%。Napin基因是在ABA的影响下,以组织特异型方式表达。
     本实验根据GenBank中已经公布的napA全序列5′端非编码区设计引物,以甘蓝型油菜中双4号基因组DNA为模板,通过PCR扩增,获得的扩增产物克隆到pMD18-T载体并测序。结果表明,所克隆的扩增序列长度为1159bp,经比较分析,该序列与napA相比,只是有几个核苷酸差异,与其它已公布的napin基因启动子同源性也很高。
     该序列富含AT碱基,具有TATA-box、CAAT-box、G-box、GATA-box等高等植物启动子的序列特征。为了进一步验证其组织特异性表达功能,把它插入到pCAMBIA-1301载体,替代pCAMBIA-1301中GUS基因前的CaMV35S启动子,构建成GUS基因表达载体pC1301.N。把重组载体转化到农杆菌LBA4404中,感染ABA诱导的油菜种子,经GUS染色证明,该napin基因启动子具有种子特异性表达功能。
     2.甘蓝型油菜几个重要农艺性状的初步QTL定位
     利用杂交组合中双4号×H228 F_1,经8代自交,构建成RIL群体,在第8代时调查亲本和随机选择的142个RIL群体株系株高、一次有效分枝数、单株产量等11个农艺性状。RIL群体中11个农艺性状之间相关分析表明:单株产量与株高、一次有效分枝数、主花序长度、主花序有效角数、主花序角密度、角果长度、每角粒数、千粒重、单株有效角果总数呈极显著正相关。
     选用SSR引物对中双4号和H228间进行多态性检测,有152对引物在双亲间表现多态性,用这些引物分别对142个株系进行检测,构建了含有123个SSR分子标记、18个连锁群的连锁遗传图,总图距为3483.1cM,标记间平均距离为28.32cM,各标记在18个连锁群上的分布很不均匀,其中,第1、12、13、17连锁群上分布标记较多,其它连锁群上分布标记较少。
     根据RIL群体性状方差和SSR差异位点分析,该群体可以进行初步的遗传图谱构建和QTL定位,但各个性状的平均纯合度不太纯,还需进一步自交纯合,本次所获得遗传图谱和QTL位点将有一定误差。与Lowe等(2004)的遗传图谱比较,发现26个相同的标记位点,只占本实验标记位点的21.1%。
     11个农艺性状共检测到81个数量性状位点(QTLs)。其中,株高检测到4个QTLs,解释性状表型变异的10.3%~28.9%;一次有效分枝数检测到2个QTLs,解释性状表型变异的22.1%和47%;有效分枝部位检测到16个QTLs,解释性状表型变异的12.2%~51.8%;主花序长度检测到15个QTLs,解释性状表型变异的7.4%~26.6%;主花序有效角数检测到5个QTLs,解释性状表型变异的11.2%~25%;主花序角密度检测到1个QTLs,解释性状表型变异的17.3%;角果长度检测到12个QTLs,解释性状表型变异的24%~36.7%;每角粒数检测到2个QTLs,解释性状表型变异的9.6%和16.9%;千粒重检测到2个QTLs,解释性状表型变异的26%和13.7%;单株有效角果总数检测到11个QTLs,解释性状表型变异的14.8%~47.2%;单株产量检测到11个QTLs,解释性状表型变异的14.3%~32.8%。
     此外,还对GUS表达、启动子效率、遗传图距及影响因素、QTL定位的精确度等进行了讨论。
Rapeseed is one of the most important oil crops. It is planted all over the worldexcept in a few areas of Africa. Increasing rapeseed economical value needs theimprovement of plant variety of rapeseed at first, while the improvement is embodiedin the two aspects of quality and yield of rapeseeds. In the aspect of qualityimprovement of rapeseeds, one of the effective ways is the application of geneticengineering in the change of chemical composition and its content. And one of keytechnology is to regulate the expression of the excellent gene. The gene regulation ofthe higher plant mainly happens in the transcription level and is affected by theinteraction of various cis-acting and trans-acting factors. The gene promoter is animportant cis-acting factor in plant, a DNA sequence which is identified andcombined by RNA polymerase and thus initiating the gene transcription. Therefore,the cloning and validating of organic specific promoter in rapeseed is an importanttask.
     In the improvement of the rapeseed yield, it is of positive and practicalsignificance to make research on these quantitative trait loci (QTL) in the position ofthe rapeseed genome and its extent of influence on the phenotype, because therapeseed yield and the many other yield-related agronomic traits are manifested asminor genes controlled quantitative inheritance. In recent year, along with thedevelopment of quantitative genetics and modem biotechnology, the complexquantitative traits could be separated to many independent Mendelian factors by DNAmolecular marker and QTL mapping and determine its position in genome and itseffect. Meanwhile, the application of techniques such as MAS, transgene, etc. makesit possible to further improve the rapeseeds.
     1. Cloning of the promoter of gene Napin in Brassica napus
     Napin,a variety of seed storage protein encoded by multi-gene, exists widely inseed of Brassica species, occupying 20%~30% of total protein in seed. In the affectof ABA, napin gene is tissue-specifically expressed.
     A pair of primers was designed according to 5'non-encoding region of the napAsequence reported in GenBank. With as the genomic DNA of Brassica napus"Zhongshuang 4 hao" as the template, the amplified products by PCR was cloned intopMD 18-T Vector and sequenced. The results indicated the cloned fragment contained1159bp. Through analysis, the fragment had only a few nucleotides differences withthe reported napA, and had high homology with the other reported napin genepromoter, too.
     The fragment is rich in AT nucleotides, with the sequence features of higher plant,such as TATA-box, CAAT-box, G-box, and GATA-box. Furthermore, to investigatethe tissue-specific expression function of the napin gene promoter, the fragment wasinserted into pCAMBIA-1301 vector, in place of the promoter CaMV35S in the upperstream of GUS in pCAMBIA-1301 vector, and the GUS gene expressing vector ofpC1301.N was constructed. The recombined vector was transformed intoagrobacterium LBA4404. The Brassica napus seeds via ABA inducement wereinfected by pC 1301.N/LB4404, and then were dyed by GUS. The result proved thatthe napin gene promoter was seed specifically expessed.
     2. Preliminery QTL of some Agronomically Import Traits in Brassica napus
     RIL population was constructed using the F_1 descendants of combinationzhongshuang No.4×H228 constructed via seventh inbred. The 11 agronomic traits,such as plant height, No. of effective 1st branches, yield per plant, etc. wereinvestigated from parent and random 142 F_8 RIL population plant series. Thecorrelation analysis of the 11 traits in RIL population showed that plant height, No. ofeffective 1st branches, length of main inflorenscence, effective siliques of maininflorenscence, density of main inflorenscence, length of silique, seed per sillique,1000 seed weight, total effective siliques per plant had significant positive correlationwith yield per plant.
     Polymorphisms between zhongshuang No.4 and H228 was examined by SSR primers. 152 primers Showed polymorphisms, and a linkage map containing 123markers, including 18 linkage groups was constructed. The total genetic distance ofthe map was 3483.1cM, and the average distance of two adjacent markers was28.32cM. The distribution of marker in 18 linkage groups was not even. Meanwhile,the first, twelfth, thirteenth, seventeenth linkage groups contained more marks, whilethe rest had fewer.
     According to the analysis of traits mean variance and SSR discrepancy situ inRIL, the constructing of genetic map and QTL could be processed preliminary. But,the average of traits were not homogeneous in some sort, the RIL need was purifiedunceasingly. The genetic map and QTL in this paper had error in some sort. Thecompare of genetic map between Lowe's and ours showed 26 homology marker situ,which occupied 21.1% of the marker situ in the experiment.
     81 QTLs were detected for 11 agronomic traits. 4 QTLs were detected for plantheight, which explained 10.3%~28.9% of trait variance; 2 QTLs were detected forNo. of effective 1-st branches, which explained 22.1%~47% of trait variance; 16QTLs were detected for effective branches height, which explained 12.2%~51.8% oftrait variance; 15 QTLs were detected for length of main inflorenscence, whichexplained 7.4%~26.6% of trait variance; 5 QTLs were detected for effective siliquesof main inflorenscence, which explained 11.2%~25% of trait variance; 1 QTLs weredetected for density of main infiorenscence, which explained 17.3% of trait variance;12 QTLs were detected for length of silique, which explained 24%~36.7% of traitvariance; 2 QTLs were detected for seed per sillique, which explained 9.6% and16.9% of trait variance; 2 QTLs were detected for 1000 seed weight, which explained26%~13.7% of trait variance; 11 QTLs were detected for Total effective siliques perplant, which explained 14.8%~47.2% of trait variance; 11 QTLs were detected forplant height, which explained 14.3%~32.8% of trait variance.
     On the other hand, in this paper we also discussed on the expression of GUS, theefficiency of promoter, the genetic distance and effective factor, precision of QTL,etc.
引文
1.陈松,张杰夫,陈峰,等.甘蓝型油菜种子特异性表达fad2基因的ihpRNA载体构建.中国油料作物学报,2006,28(3):251-256.
    2.旦巴,涂金星,胡书银,等.西藏油菜种质资源的RAPD分子标记分析.作物学报,2003,29(1):1-7.
    3.胡虹文.甘蓝型油菜12种主要性状与产量的关系.中国油料.1997,19(3):10-14.
    4.胡俊鹏.油菜三系组合性状与产量相关分析.陕西农业科学.2002,(5):4-6.
    5.黄世杰,袁卫红,沈俊高.油菜“两优586”产量构成因素与产量的通径分析.安徽农业科学,2002,30(5):698-699.
    6.樊荣,完小荣,张文涛,等.LE-ACS6启动子在LE-ACS6:GUS转基因拟南芥中的特异性.植物生理与分子生物学学报,2004,30(3):351-358.
    7.高用明,朱军.植物QTL定位方法的研究进展.遗传,2000,22(3):175-179.
    8.何余堂,马朝芝,马勇等.PCR步行法克隆油菜自交不亲和基因.中国油料作物学报,2004,26(4):1-5.
    9.金梦阳.甘蓝型油菜遗传图谱的构建及农艺性状QTL定位:[学位论文].重庆:西南大学,2006:47.
    10.景尚友.甘蓝型春油菜主要农艺性状与单株产量的通径分析.黑龙江农业科学.2002,(3):16-19.
    11.陆光远,杨光圣,傅廷栋.甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基团的图谱定位.遗传学报,2004,31(11):1309-1315.
    12.李红,朱群,白永延.水稻几丁质酶基因RCH8创伤诱导转录启动子功能分析.实验生物学报,1997,30(4):431-436.
    13.李杰,张福城,王文泉,等.高等植物启动子的研究进展.生物技术通讯,2006,17(4):658-661.
    14.李强,卢孟柱,田颖川,等.杨树因伤诱导型启动子的克隆及功能分析.林业科学,1999,35(4):111-118.
    15.李胜国,刘玉乐,朱锋,等.基因工程雄性不育烟草的获得.遗传学报,1995,37(8):659-660.
    16.李为民,王志兴,贾士荣,等.中棉光诱导基因Gacab启动子的克隆及其功能分析.农业生物技术学报,2004,12(3):253-257.
    17.李熠毅,刘薇,李雪东,等.甘蓝型油菜Toc33基因启动子的克隆及序列分析.四川大学学报(自然科学版),2006,43(4):944-947.
    18.刘澄清,黄有菊,王春华,等.甘蓝型冬油菜新产品中双4号的选育研究,中国油料,1994,16(1):67-71.
    19.刘大文,谢友菊,王守才,等.拟南芥菜花药绒毡层启动子的克隆和序列分析.作物学报,2000,26(4):406-410.
    20.刘峰,东方阳,邹继军,等.应用微卫星标记进行大豆种质多样性和遗传变异性分析.遗传学报,2000,27(7):628-633.
    21.刘良式.植物分子遗传学.北京:科学出版社,1998:214.
    22.刘列钊,林呐,谌利,等.甘蓝型油菜5个重要性状QTL分析.农业生物技术学报2006,14(5):747-751.
    23.刘巧泉,于恒秀,张文娟,等.水稻rbcS启动子控制的外源基因在转基因水稻中的特异性表达.植物生理与分子生物学学报,2005,31(3):247-253.
    24.马三梅,王永飞.与油菜细胞质雄性不育相关的DNA位点和育性恢复基因的研究进展.植物生理与分子生物学学报,2005,31(2):119-125.
    25.毛传澡,程式华.水稻农艺性状QTL定位精确性及其影响因素的分析(综述).农业生物技术学报,1999,7(4):386-394.
    26.毛自朝,于秋菊,甄伟,等.果实专一性启动子驱动ipt基因在番茄中的表达及其对果实发育的影响.2002,7(6):444-448.
    27.梅德圣,李云昌,王汉中.作物产量性状QTL定位的研究现状及应用前景.中国农学通报,2003, 19(5):83-88.
    28.冷虹,李加纳,陆合,等.△~6-脂肪酸脱饱和酶基因种子特异表达载体的构建.中国农学通报,2006,22(4):66-70.
    29.牛应泽,汪良中,刘玉贞,等.利用人工合成甘蓝型油菜创建油菜新种质.中国油料作物学报,2003,25(4):11-15.
    30.皮灿辉,易自力,王志成.提高转基因植物外源基因表达效率的途径.中国生物工程杂志,2003,23(1):1-4.
    31.齐晓花,张明方.芸薹属作物分子连锁图及QTL研究进展.分子植物育种,2004,2(5):704-712,
    32.邱芳,伏健民,金德敏,等.遗传多样性的分子检测.生物多样性,1998,6(2)143-150.
    33.石东乔,周奕华,万里红,等.甘蓝型油菜BcNA 1基因启动子在转基因烟草中对GUS基因表达的调控.植物生理学报,2001,27(4):313-320.
    34.阮成江,何祯祥,钦佩.我国农作物QTL定位研究的现状和进展.植物学通报.2003,20(1):10-22.
    35.任志红,徐平,王富强,等.产黄青霉工业生产菌种基因报告系统的构建及启动子效率的评价.菌物学报,2005,24(3):376-384.
    36.沈金雄,易斌,杨光圣.植物数量性状基因定位研究概述.植物学通报,2003,20(3):257-263.
    37.沈金雄.甘蓝型油菜杂种优势及其遗传分析:[学位论文].湖北:华中农业大学,2003:12-17.
    38.沈圣泉.水稻(Oryza satlva L.)若干重要性状的QTL主效应、上位性效应及GE互作效应分析:[学位论文].浙江:浙江大学,2003:3-4.
    39.申建斌,蒋昌顺.作物QTL定位的应用及限制性因素.热带农业科学,2006,26(4):59-63.
    40.盛志廉,陈瑶生.数量遗传学.北京:科学出版社,2001:340-372.
    41.涂金星,傅廷栋,郑用琏,等.甘蓝型油菜隐性核不育遗传标记的初步研究Ⅱ.P6-9紫茎基因与可育基因连锁的分子证据.作物学报,1999,25(6):669-673.
    42.田志宏,陈诗波,刘碧波.甘蓝型油菜若干生物学性状与产量的关系.湖北农业科学,2003,(15):47-49.
    43.田正科,张金如.油菜育种.青海人民出版社,1982:202-209.
    44.王关林,方宏筠.植物基因工程.北京,科学出版社,2002:519.
    45.王俊霞,杨光圣,傅廷栋,等.甘蓝型油菜Pol CM5育性恢复基因的RAPD标记.作物学报,2000,26(5):575-578.
    46.王念捷,程奇,任延国,等.水稻4CL基因启动子引导的GUS在紫外诱导下的组织特异性表达.中国农业科学,1996,29(1):73-77.
    47.王新国,肖成祖,张国华,等.用衔接头PCR克隆新的胡萝卜Ⅱ型转化酶基因启动子.中国生物化学和分子生物学报,2001,17(1):61-65.
    48.王雅琴,嗜麦芽假单胞热休克基因dnak启动子的亚克隆及其在大肠杆菌中功能的研究.工业微生物,2001,31(3):29-31.
    49.王颖,麦维军,梁承邺,等.高等植物启动子的研究进展.西北植物学报,2003,23(11):2040-2048.
    50.王忠华,夏英武.转基因植物中报告基因gus的表达及其安全性评价.生命科学,2000,12(5):207-209.
    51.吴金红,蒋江松,陈惠兰,等.水稻稻瘟病抗性基因Pi-2(2)的精细定位.作物学报,2002,28:505-509.
    52.伍宁丰,李汝刚,伍晓明,等.中国甘蓝型油菜遗传多样性的RAPD分子标记.生物多样性,1997,5(4):246-250.
    53.武玉花,卢长明,吴刚等.植物芥酸合成代谢与遗传调控研究进展.中国油料作物学报,2005,27(2):82-86.
    54.武玉永,马立新,蒋思婧.甘蓝型油菜羧基转移酶α亚基全长cDNA的克隆及在大肠杆菌中表达.生物化学与生物物理进展,2004,31(9):847-854.
    55.夏江东,程在全,吴渝生,等.高等植物启动子功能和结构研究进展.云南农业大学学报,2006,21(1):7-14.
    56.熊兴华,官春云,李询,等.油菜种子特异表达napin基因启动子的克隆及序列分析.生物技术,2003,113(13):4-5.
    57.席章营,朱芬菊,台国琴,等.作物QTL分析的原理与方法.中国农学通报,2005,21(1):88-99.
    58.徐润芳.中国油菜栽培学.北京,农业出版社,1990:1.
    59.易斌,陈伟,马朝芝,等.甘蓝型油菜产量及相关性状的QTL分析.作物学报,2006,32(5):676-682.
    60.尹佟明,黄敏仁,王明庥,等.利用RAPD标记和单株树大配子体构建马尾松的分子标记连锁图谱.植物学报,1997,39(7):607-612.
    61.喻树迅,袁有禄.数量性状遗传研究的新进展.棉花学报,2002,14:180-184.
    62.于拴仓.大白菜分子遗传图谱的构建及重要农艺性状的QTL定位.[博士学位论文].北京:中国农业科学院,2003:81.
    63.余四斌,李建雄,徐才国,等.上位性效应是水稻杂种忧势的重要遗传基础.中国科学(C辑),1998,28(4):333-341.
    64.袁力行,傅骏骅,Warbruton M,等.利用RFLP、SSR、AFLP和RAPD标记分析玉米自交系遗传多样性的比较研究.遗传学报,2000,27(8):725-733.
    65.张启发,李建雄.水稻杂种优势的遗传和分子生物学基础的研究进展.见:王连铮,戴景瑞.全国作物育种学术讨论告论文集.北京:中国农业科技出版社,1998:1-10.
    66.张书芬,傅廷栋,朱家成,等.甘蓝型油菜产量及其构成因素的QTL定位与分析.作物学报,2006,32(8):1135-1142.
    67.张晓国,刘玉乐,康良仪,等.水稻花药特异表达基因启动子的扩增及克隆.武汉大学学报,1997,43(4):480-484.
    68.张志清,郑有良,魏育明,等.四川主栽小麦品种遗传多样性的SSR标记研究.麦类作物学报,2002,22(2):5-9.
    69.赵虎基,王国英.植物乙酰铺酶A羧化酶的分子生物学与基因工程.中国生物工程杂志.2003,23(2):12-16.
    70.赵继献.杂交油菜高产栽培性状的主要因子及其相关分析.山地农业生物学报,2001,20(2):86-91.
    71.赵云,杜林方,王茂林,等.蛋白质向叶绿体的转运.植物生理学通讯,2002,38(5):487-492.
    72.周雪荣,彭仁旺,方荣祥,等.表达核糖核酸酶基因的雄性不育油菜的获得.遗传学报,1997,24(6):531-536.
    73.朱军,复杂数量性状基因定位的混合线性模型方法,见:王连铮,戴景瑞(主编):全国作物育种学术讨论会论文集.北京:中国农业科技出版社,1998:11-20.
    74.朱祯.走向21世纪的植物分子生物学.北京:科学出版社.2000:121.
    75. Ajisaka H, Kuginuki Y, Yui S, et al. Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica rapa L. ssp pekinensissyn. Campestris L.) using bulked segregant analysis-A QTL controlling extreme late bolting in Chinese cabbage. Euphytica, 2001, 118: 75-81.
    76. All N, Farzad J, Attary A A. Genetic variability, correlation and path analysis of yield and its components in winter rapeseed (Brassica napus L.). Pakistan-Journal-of-Botany. 2002, 34(2): 145-150.
    77. Ali N, Farzad J, Elmira J Y, et al. Relationship among yield components and selection criteria for yield improvement in winter rapeseed (Brassica napus L.). Pakistan-Journal-of-Botany. 2003, 35(2): 167-174.
    78. Ansan M D, Balesdent M H, Delourme R, et al. Genes for race-specific resistance against blackleg disease in Brassica napus L. Plant Breeding, 1998, 117: 373-378.
    79. Asins M J. Present and future of quantitative trait locus analysis in plant breeding. Plant Breeding, 2002, 121(4):281-291.
    80. Axelsson T, Shavorskaya O, Lagercrantz U. Multiple flowering time QTLs within several Brassica species could be the result of duplicated copies of one ancestral gene. Genome, 2001, 44:856-864.
    81. Ayliffe M A, Roberts J K, Mitchell H J, et al. A plant gene up regulated at rust infection sites. Plant Physiol, 2002,129(1):169-180.
    82. Barret B, Delourme R, Renard M, et al. A rapeseed FAE1 gene is linked to the El locus associated with variation in the content of erucic acid. Theor Appl Genet, 1998:177-186.
    83. Bccker J, Vos P, Kuiper M, et al. Combined mapping of AFLP and RFLP markers in barley. Mal.Gen.Genet. 1995,249:65-73.
    84. Belbahri L, Boucher C, Candresse T. A local accumulation of the Ralstonia solanacearum PopA protein in transgenic tobacco renders a compatible plant pathogen interaction incompatible. Plant J, 2001, 28(4):419-430.
    85. Bemacchi D, Beck-Bunn T, Emmatty D, et al. Advanced backcross QTL analysis of tomato. II. Evaluation of near-iso genic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from lycopersicon hirsutum and L Pimpinellifolium.Theor Appl Genet, 1998, 97:170-180.
    86. Blacklock B J, Jaworski J G, et al. Studies into factors contributing to substrate specificity of membrane-bound 3-ketoacyl-CoA synthases. Eur J Biochem, 2002,269:4789-4798.
    87. Bobb A J, Chem M S, Bustos M M. Conserved RY repeats mediate transactivation of seed - specific promoters by the developmental regulator PvALF. Nucl Acids Res, 1997, 25:641-647.
    88. Bohuon E J R, Ramsay L D, Craft J A, et al. The association of flowering time quantitative trait loci with duplicated region and candidate loci in Brassica oleracea. Genetics, 1998, 150:393-401.
    89. Boutilier K A, Gines M J. DeMoor, et al. Expression of the BnmNAP subfamily of Brassica microspore embryogenesis. Plant Mol Biol, 1994, 26(6):1711-23.
    90. Brondani C, Ranget P H N, Brondani R P V, QTL mapping and introgression of yield-related traits from Oryza glumaepatulato cultivated rice( Oryzas aliva)using microsateliite markers. Theor Appl Genet, 2002, 104:1192-1203.
    91. Brown G G, Formanova N, Jin H, et al. The radish Rf0 restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J, 2003,35:262-272.
    92. Cahoon E B, Marillia E F, Stecca K L, et al. Production of fatty acid components of meadow foam oil in somatic soybean embryos. Plant Physiol, 2000, 124:243-251.
    93. Camargo L E A, Savides L, Jung G, et al. Location of the self-incompatibility locus in an RFLP and RAPD map of Brassica oleracea. J Hered, 1997, 88:57-59.
    94. Causse M, Rocher J P, Henry A M, et al. genetic dissection of the relationship between carbon metabolism and early growth in maize with emphasis on key-enzyme loci. Molecular Breeding, 1995, 1(3):259-272.
    95. Cheung W Y, Gugel R K, Landry B S. Identification of RFLP markers linked to the white rust resistance gene (Acr) in mustard (Brassica juncea (L.)Czern and Coss). Genome, 1998, 41: 626-628.
    96. Cheung W Y, Champagne Q, Hubert N, et al. Comparison of the genetic maps of Brassica napus and Brassica oleracea. Theor Appl Genet, 1997, 94:569-582.
    97. Christensen A H, Sharrock R A, Quail P H, et al. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Biol, 1992,18:675-689.
    98. Chyi Y S, Hoenecke M E, Sernyk J L. A genetic linkage map of restriction fragment length polymorphism loci for Brassica rapa (syn. campestris). Genome. 1992, 35 (5):746-757.
    99. Clarke H R, Davis J M, Wilbert S M, et al. Wound-induced and developmental activation of a poplar tree chitinase gene promoter in transgenic tobacco. Plant Mol Biol, 1994, 25(5):799-815.
    100. Coca M A, Almoguera C, Thomas T L, et al. Differential regulation of small heatshock genes in plants: analysis of a water stress inducible and developmentally activated sunflower promoter. Plant Mol Biol, 1996, 31:863-876.
    101. Cong B, Liu J P, Tanksley S D. Natural alleles at a tomato fruit size quantitative trait locus differs by heterochronic regulatory mutations. Proc Natl Acad Sci USA, 2002,99:13606-13611.
    102. Cronan Jr J E, Waldrop G L. Multi-subunit acetyl-CoA carboxylases. Prog Lipid Res, 2002, 41(5):407-435.
    103. Cuadrdo A, Schwarzacher T. The chromosomal organization of simple sequence repeats in wheat and rye genomes. Chromosoma, 1998,107(8):587-594.
    104. Dayanandan S, Bawa K S, Kesseli R. Conservation of microsatellites among tropical tree(Leguminosae). American Journal of Botany, 1997, 84(12): 1658-1663.
    105. Desloire S, Gherbi H, Laloui W, et al. Identification of the fertility restoration locus, RfO, in radish, as member of the pentatricopeptide-repeatprotein family. EMBO Rep, 2003,4:588-594.
    106. Ding X, Kitagawa Y. Rapid amplification of a water channel-like gene and its flanking sequences from the Methanother mobacter marburgensis genome using a single primer PCR strategy. J. Biosci Bioeng, 2001, 92(5):488-491.
    107. Dion Y, Gugel R K, Rakow G F W, et al. RFLP mapping of resistance to the blackleg disease [causal agent, Leptosphaeria maculans(Desm.) Ces. Et de Not.] in canola (Brassica napus L). Theor Appl Genet, 1995, 91:1190-1194.
    108. Downey R K, Craig B M. Genetic control of fatty acid biosynthesis in rapeseed (Brassica napus L. ), JAm Oil Chem Soc, 1964, 41:475-478.
    109. Dreyer F, Graichen K, Jung C. A major quantitative trait locus for resistance to Turnip Yellow Virus (TuYV, Syn. Beet western yellow virus, BWYV) in rapeseed. Plant Cell Reports, 2001, 120:457-462.
    110. Ecke W, Uzunova M, Weibleder K. mapping the genome of rapeseed (Brassica napus L.) II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet, 1995,91: 972-977.
    111. Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize. 1 .Numbers, genomic distribution and types of gene action. Genetics, 1987,27:639-648.
    112. Elborough K M, Winz R, Deka R K, et al. Biotin carboxyl carrier protein and carboxyl transferase subunits of the multi-subunit form of acetyl-CoA carboxylase from Brassica napus: cloning and analysis of expression during oilseed rape embryogenesis. Biochem J, 1996, 315(pt1):103-112.
    113. Elborough K M, Swinhoe R, Winz R, et al. Isolation of cDNAs Brassica napus encoding the biotin-binding and transcarboxylase domains of acetyl-CoA carboxylase: assignment of the domain structure in a full-length Arabidopsis thaliana genomic clone. Biochem J, 1994, 301(Pt2):599-605.
    114. Ellerstr M, Stalberg K, Ezcurra I, et al. Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm -specific transcription. Plant Mol Biol, 1996, 32:1019-1027.
    115. Ericson M L, Muren E, Gustavsson H O, et al. Analysis of the promoter region of napin genes from Brassica napus demonstrates binding of nuclear protein in vitro to a conserved sequence motif. Eur. J Biol chem., 1991, 197:741-746.
    116. Ferreira M E, Williams P H, Osborn T C. Mapping of a locus controlling resistance to Alvugo Candida in Brassica napus using molecular markers. Phytopath, 1995, 90:218-220.
    117. Ferreira M E, Rimmer S R, Williams P H, et al. Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopath, 1995, 90:213-217.
    118. Ferreira M E, Satagopan J, Yandell B S, et al. Mapping loci controlling vemalzation requirement and flowering time in Brassica napus. Theor Appl Genet, 1995, 90:727-732.
    119. Foisset N, Delourme R, Barnet P, et al. Molecular mapping analysis of Brassica napus using isozyme, RAPD and RFLP markers on double haploid progeny. Theor Appl Genet, 1996, 93: 1017-1025.
    
    120. Foisset N, Delourme R, Barnet P, et al. Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. TheorAppl Genet, 1995, 91:756-761.
    
    121. Food Standards Australia New Zealand. Erucic acid in food: A toxicological review and risk assessment [C] .Technical report series No. 21, 2003:17-23.
    
    122. Fourmann M, Barret P, Renard M, et al. The two genes homologous to Arabidopsis FAE1 cosegregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet, 1998, 96:852-858.
    123. Frary A, Nesbit T C, Frary A, et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289:85-88.
    
    124. Fridlender M, Harrison K, Jones J D C, et al. Repression of the Ac-transposase gene promoter by Ac-transposase. Plant Journal, 1996, 9:911-917.
    
    125. Fu T D, Yang G S, Tu J X, et al. The present and future of rapeseed production in China. Chin Oil Fat, 2003, 28:11-13.
    
    126. Garbarino J E, Belknap W R. Isolation of a ubiquitin-ribosomal protein gene(ubi3) from potato and expression of its promoter in transgenic plant. Plant Mol Biol, 1995, 24(1): 119-127.
    
    127. Ghanevati M, Jaworski J G. Active - site residues of a plant membrane - bound fatty acid elongase β-ketoacyl-CoA synthase, FAE1 KCS. Biochimica et Biophysica Acta, 2001:77-85.
    
    128. Ghanevati M, Jan G. Engineering and mechanistic studies of the Arabidopsis FAE1 β -ketoacyl-CoA synthase, FAE1 KCS.Eur J Biochem, 2002, 269:3531-3539.
    
    129. Gittins J R, Pellny T K, Hiles ER,et al. Transgene expression driven by heterologous ribulose-1,5-bisphosphate carboxylase/oxygenase small-subunit gene promoters in the vegetative tissue of apple(Malus pumila Mill). Planta, 2000, 210(2):232-240.
    
    130. Gul M K. QTL mapping and analysis of QTL×nitrogen interactions for some yield components in Brassica napus L(J). Turkey Journal of Agriculture Forage, 2003, 27:71-75.
    
    131. Gupta A, Mukhopadhyay N, Arumugam Y S, et al. Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea)by QTL mapping and single nucleotide polymorphisms in FAE1 gene. Theor Appl Genet, 2004, 108:743-749.
    
    132. Hahn S, Buratowski S, Sharp P A, et al. Yeast TATA-binding protein TF II D binds to TATA elements with both consensus and nonconsensus DNA sequences. Pro.Natl.Acad.Sci.U S A, 1989, 86(15):5718-5722.
    
    133. Haley S S, Knot S A. A simple regression method for mapping quantitative trait loci in line Crosses using flanking markers. Heredity, 1992, 69:315-324.
    
    134. Han Z Y, Wang X Q, S G Z, et al. Cloning of foreign gene' s flanking sequences in transgenic rice by inverse PCR. Acta Agriculture Shanghai, 2001, 17(2):27-32.
    
    135. Han J, Luhs W, Sonntag K, et al. Functional characterization of β - ketoacyl-CoA synthase genes from Brassica napus L. Plant Mol Biol, 2001, 46:229-239.
    
    136. Hara P O, Slabas A R, Fawcett T. Fatty acid and lipid biosynthetic genes are expressed at constant molar ratios but different absolute levels during embryogenesis. Plant Physiol, 2002, 129(1 ):310-320.
    
    137. Hara P O, Slabas A R, Fawcett T. Expression of fatty acid and lipid biosynthetic genes. Biochem Soc Trans, 2000, 28(6):617-619.
    
    138. Hearne C, Ghosh S, Todd J. Microsatellites for linkage analysis of genetic traits. Trends in Genetics, 1993, (8):288-294.
    
    139. Herbert D, Walker K A, Price L J, et al. Acetyl-CoA carboxylase A graminicide target site. Pestic Sci, 1997, 50:67-71.
    
    140. Hirai M, Harada T, Kubo N, et al. A novel locus for clubroot resistance in Brassica rapa and its linkage markers. Theor Appl Genet, 2004, 108:639-643.
    
    141. Howell P M, Sharpe A G, Lydiate D J. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome, 2003, 46: 454-460.
    142. Imai R, Koizuka N, Fujimoto H, et al. Delimitation of the fertility restorer locus Rfk1 to a 43kb contig in kosena radish (Raphanus sativus L.). Mol Gen Genet, 2003, 269:388-394.
    143. James D W, Lim E, Keller J et al. Directed tagging of the rabidopsis FATTY ACID ELONGATION1 ( FAE1) gene with the maize transposon activator. Plant Cell, 1995, 7:309-319.
    144. Janeja H S, Banga S S, Lakshmikumaran M. Identification of AFLP markers linked to fertility restorer genes for tournefortii cytoplasmic male-sterility in Brassica napus. Them Appl Genet, 2003, 107:148-154.
    145. Javahery R, Khachi A, Lo K, et al. DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol. Cell Biol, 1994, 14(1): 116-127.
    146. Jean M, Brown G Q, Landry B S. Genetic mapping of nuclear fertility restorer genes for 'Polirna' cytoplasmic male sterility in canola (Brassica napus L.) using DNA markers. Theor Appl Genet, 1997, 95: 321-328.
    147. Johal G S, Bridgs S P. Reductase activity encoded by the HM1 disease resistance gene in maize. Science, 1992,258:985-987.
    148. Johnson W C, Jackson L E, Ochoa o, et al. Lettuce, a shallow-rooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation. Theoretical & Applied Genetics, 2000, 101(7):1066-1073.
    149. Jefferson R A. The GUS reporter gene system. Nature, 1989, 342:837-838.
    150. Jefferson R A, Kavanagh T A, Bevan M W. GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO, 1987, J 6:3901-3907.
    151. Josefsson L G, Lenman M, Ericson M L, et al. Structure of a gene encoding the 1.7S storage protein, napin, from Brassica napus. J Biol Chem, 1987, 262(25): 12196-201.
    152. Joshi C P. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res, 1987, 15:6643-6653.
    153. Jourdren C, Barret P, Horvais Ret al. Identification of RAPD markers linked to the loci controlling erucic acid level in rapeseed. Mol Breed, 1996, 23:61-71.
    154. Joyeux A, Fortin M Q, Mayerhofer R, et al. Genetic mapping of plant disease resistance gene homologues using a minimal Brassica napus L. population. Genome, 1999, 42:735-743.
    155. Kao C H, Zen Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci. Genetics, 1999, 152:1203-1216.
    156. Kardish N, Magal N, Aviv D, et al. The tomato gene for the chloroplastic Cu, Zn super-oxide dismutase: regulation of expression imposed in transgenic tobacco plants by a short promoter. Plant Mol Biol, 1994, 25(5):887-897.
    157. KatavicV, FriesenW, Barton D L, et al. Utility of the Arabidopsis FAE1 and yeast SLC1-1 genes for improvements in erucic acid and oil content in rapeseed. Biochem Soc Trans, 2000, 28(6):935-937.
    158. Katavica V, Dennis L, Bartona E, et al. Gaining insight into the role of serine 282 in B. napus FAE1 condensing enzyme. FEBS Letters, 2004, 562:118-124.
    159. Koizuka N, Imai R, Fujimoto H, et al. Genetic characterization of a pentatricopeptide repeat protein gene, orf687 thatrestores fertility in the cytoplasmic male-sterile Kosena radish. Plant J, 2003, 34: 407-415.
    160. Kole C, Thormann C E, Karlsson B H, et al. Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B.napus. Molecular Breeding, 2002, 9: 201-210.
    161. Kumpatla S P, Chandrasekharan M B, lyer L M, et al. Genome intruder scanning and modulation systems
    112 and transgene silencing. Trends Plant Sci, 1998, 3:96-104.
    162. KunstL. Tayl DC, Underhill E W. Fatty acid elongation in developing seeds of Arabidopsis thaliana. Plant Physiol Biochem, 1992, 30:42 5-434.
    163. Lamppa G, Nagy F, Chua N H. Light regulated and organ specific expression of a wheat Cab gene in transgenic tobacco. Nature, 1985, 316(6030):750-752.
    164. Lander E S, Botstein D .Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989,121:18-199.
    165. Landry B S, Hubert N, Crete R, et al. A genetic map of Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance gene to race 2 of Plasmodiophora brassicae (Woronin). Genome, 1992, 35: 409-420.
    166. Landry B S, Hubert N. A genetic map of Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991, 34: 543-552.
    167. Lassner M W, Lardizabal K, Metz J G. A jojoba ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plant. Plant Cell, 1996, 8:281-292.
    168. Lan T H, Paterson A H. Comparative mapping of QTLs determining the plant size of Brassica oleracea. Theor Appl Genet, 2001, 103:383-397.
    169. Lan T H, Paterson A H. Comparative mapping of quantitative trait loci sculpting the card of Brassica oleracea. Genetics, 2000, 155:1927-1954.
    170. Lemieux B, MiquelM, Somerville C, et al. Mutants of Arabidopsis with alterations in seed lipid fatty acid composition. Theor Appl Genet, 1990 80:234-240.
    171. Liang M S, Zeng Y, Wang Y P, et al. Isolation and characterization of gene promoter from Crambe abyssinica. Chinese J Oil Crop Sci, 1998, 20(1): 1-6.
    172. Liu L Z, Meng J L, Lin N, QTL Mapping of Seed Coat Color for Yellow Seeded Brassica napus. Acta Genetica Sinica, 2006, 33(2): 181 -187.
    173. Liu R, Qian W, Meng J. Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus xB. campestris). Theor Appl Genet, 2002, 105:1050-1057.
    174. Li Z T, Gray D J. Isolation by improved thermal asymmetric interlaced PCR and characterization of a seed-specific Salbumin gene and its promoter from grape. Genome, 2005, 48(2):312-320.
    175. Liu H L (刘后利) (ed). The genetics and breeding of rapeseed. Beijing: Chinese agriculture university publishing house, 2000:237-253.
    176. Liu X P, Tu J X, Liu Z W, et al. Construction of a molecular marker linkage map and its use for QTL analysis of erucic acid content in Brassica napus L. ACTA AGRONOMICA SINICA, 2005, 31(3):275-282.
    177. Liu Y G, Chen Y, Zhang Q, et al. Amplification of genomic sequences flanking T-DNA insertions by thermal asymmertric interlaced polymerase chain reaction. Methods Mol Biol, 2005, 286:341-348.
    178. Lombard V, Delourme R. A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theoretical and Applied Genetics, 2001, 103 (4):491-507.
    179. Loppes R, Radoux M. identification of short promoter regions involved in the transcriptional expression of the nitrate reductase gene in chalamydomonns reinhadtii. Plant Molecular Biology, 2001, 45(2):215-227.
    180. Lowe A J, Moule C, Trick M, et al. Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet, 2004, 108:1103-1112.
    181. Lucia J, Pablo V. Local and systemic induction of two defense related subtilisin like protease promoters in transgenic Arabidopsis plants. Luciferin induction of PR gene expression. Plant Physiol, 2000, 124(3):1049-1058.
    182. Lu G Y, Yang G S, Fu T D. Molecular mapping of a dominant genie male sterility gene Ms in rapeseed (Brassica napus). Plant Breed, 2004, 123 (3):262-265.
    183. Luo Z W ,Wu C 1, Kearsey M J. Precision and High-Resolution Mapping of Quantitative Trait Loci by Use of Recurrent Selection, Backcross or Intercross Schemes. Genetics, 2002, 161:915- 929.
    184. Mahmood T, Rahman M H, Stringam G R, et al. Molecular markers for seed color in Brassica juncea. Genome, 2005, 48:755-760.
    185. Mahmood T, Rahman M H, Stringam G R, et al. Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theor Appl Genet, 2006, 113:1211-1220.
    186. Mahmood T, Rahman M H, Stringam G R, et al. Quantitative trait loci for early maturity and their potential in breeding for earliness in Brassica juncea. Euphytica, 2007, 154: 101-111.
    187. Mandal M N A, Santha I M, Lodha M L, et al. Molecular cloning and characterization of oleoyl-ACP thioesterase gene from Brassica juncea. J Plant Biochem Biotech, 2002, 11:27-31.
    188. Manzanares D M J, Delourme R, Baron F. Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus. Theor Appl Genet, 2000, 101: 885-891.
    189. Mariani C, De Beuckeleer M, Truettner J, et al. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature, 1990, 347:737-741.
    190. Mariani C, Gossele V, De Beuckeleer M, et al. A chimaeric ribonuclease-inductor gene restores fertility to male sterility plants. Nature, 1992, 357:384-387.
    191. Mary B, Finch-savage W E, King G J. Quantitative genetic analysis of seed vigor and pre-emergence seedling growth traits in Brassica oleracea. The New Plantsman, 2000, 148: 277-286.
    192. Mary E, Williams R F, Chua N H. Sequences flanking the hexameric G-Box core CACGTG affects the specificity of protein binding. The Plant Cell, 1992, 4:485-496.
    193. Mayerhofer R, Bansal V K, Thiagarajah M R, et al. Molecular mapping of resistance to Leptosphaeria maculans in Australian cultivars of Brassica napus. Genome, 1997, 40:294-301.
    194. McElroy D, Zhang W, Cao J, et al. Isolation of an efficient action promoter for use in rice transformation. Plant cell, 1990, 2:163-171.
    195. Michael W, Lassner, Kathryn et al. A Jojoba β-ketoacyl-CoA synthase cDNA complements the Canola fatty acid elongation mutation in transgenic plants. The Plant Cell, 1996, 8:281-292.
    196. Millar A A, Wrischer M, Kunst L. Accumulation of very-long-chain fatty acids in membrane glycerolipids is associated with dramatic alterations in plant morphology. Plant Cell, 1998, 11: 1889-1902.
    197. Millar A A, Kunst L. Very-long- chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J, 1997, 12:121-131.
    198. Moriguchi K, Kimizuka T C, Ishil K, et al. A genetic map based on RAPD, RFLP, isozyme, morphological markers and QTL analysis for clubroot resistance in Brassica oleracea. Breeding Sci, 1999, 49:257-265.
    199. Murayama S, Habuchi T, Yamagishi H, et al. Identification of a sequence-tagged site (STS) marker linked to a restorer gene for Ogura cytoplasmic male sterility in radish (Raphanus sativus L.) by non-radioactive AFLP analysis. Euphytica, 2003, 129 (1): 61-68.
    200. Nagao R T, Coekjian V H, et al. Identification of protein-binding DNA sequence in an auxin-regulated gene of soybean. Plant Mol Biol, 1993, 21:1147-1162.
    201. nand I J, ADowney R K. A study of erucic acid alleles in digenomic rapeseed (Brassica napus L.) .Can J Plant Sci, 1981,61:199-203.
    202. Naomi S S, Ichiro M, Shigeo N, et al. Constitutive promoters available for transgene expression instead of CaMV35S RNA promoter: Arabidopsis promoters of tryptophan synthase protein β subunit and phytochrome B. Plant Biotech, 2002, 19(1): 19
    203. Neve R L, West R W, Rodriguez R L, et al. Eukaryotic DNA fragment which act as promoters for a plasmid gene. Nature, 1979, 277(5694):324-325.
    204. Okazaki K, Sakamoto K, Kikuchi R, et al. .Mapping and characterization of FLC homologs and QTL analysis of fowering time in Brassica oleracea. Theor Appl Genet. 2007, 114:595-608.
    205. Osborn T C, Kole C, Parkin A P, et al. Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics, 1997, 146:1123-1129.
    206. Ouwerkerk P B F, Memelink J. A G-box element from the Catharanthus roseus strictosidine synthase (Str) gene promoter confers seed - specific expression in transgenic tobacco plants. Mol Gen Genet, 1999, 261: 635-643.
    207. Ozer H, Oral E, Dogru U. Relationships between yield and yield components on currently improved spring rapeseed cultivars. Turkish-Journal-of-Agriculture-and-Forestry. 1999, 23(6):603-607.
    208. Palosz T, Sienkowski, A, Grala, B. Statistic relations between several factors of rape production. Archives-of-phytopathology-and-plant-protection (Germany). 1994, 29(1): 101-106.
    209. Park D J, Renfree M B, Marshall G J A, et al. Universal fast walking applied to cDNA. Preparative Biochem Biotechnol, 2004, 34(2): 123-133.
    210. Paterson A H. Lander E S, Hewitt J D, et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature, 1998, 335(20):721-726
    211. Pejic I, Ajmone M P, Morgante M. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs and AFLPs. Theor Appl. Genet, 1998, (97):1248-1255.
    212. Phillips R L, Freeling M. Plant genomics and our food supply: an introduction. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(5): 1969-1970.
    213. Pilet M L, Duplan G, Archipiano H, et al. Stability of QTL for field resistance to blackleg across two genetic backgrounds in oilseed rape. Crop Sci, 2001, 41:197-205.
    214. Pilet M L, Delourme R, Foisset N, et al. Identification of loci contributing to quantitative field resistance to blackleg disease, causal agent Leptosphaeria maculans(Desm) Ces et de Not, in winter rapeseed (Brassica napus L). Theor Appl Genet, 1998, 96: 23-30.
    215. Pilet M L, Delourme R, Foisset N, et al. Identification of QTL involved in field resistance to light leaf spot(Prenopeziza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L). Theor Appl Genet, 1998, 97: 398-406.
    216. Powell W, Morgante M, Andre C. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 1996, (2):225-238.
    217. Primmer C R, Ellegren H. Patterns of molecular evolution in avian microsatellites. Mol Biol Evol, 1998, 15(8):997-1008.
    218. Puyaubert J, Garbay B, Costaglioli P, et al. Acyl-CoA elongase expression during seed development in Brassica napus. Biochimicaet Biophysica Acta, 2001, 1533:141-152.
    219. Qiu D, Morgan C, Shi J, Long Y, et al. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet, 2006, 114:67-80.
    220. Rajcan I, Kasha K J, Kott L S, et al. Detection of molecular markers associated with linolenic and erucic acid levels in spring rapeseed (Brassica napus L). Euphytica, 1999, 105: 173-181.
    221. Ribaut J M, HoiSington D. Marker-assisted selection: new tools and strategies. Trends in Plant Science, 1998, 3(6):236-238.
    222. Robinson D J. Environmental risk assessment of release of transgenic plants containing virus-derived inserts. Transgen Res, 1996, 5:359-362.
    223. Rocherieux J, Glory P, Giboulot A, et al, Thomas G, Manzanares-Dauleux M J. Isolate-specific and broad-spectrum QTLs are involved in the control of clubroot in Brassica oleracea. Theor Appl Genet, 2004, 108: 1555-1563.
    224. Roesler K, Shintani D, Sacvage L, et al. Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol, 1997, 113(1):75-81.
    225. Rojas A, Almoguera C, Carranco R, et al. Selective activation of The developmental regulated hahsp 17.6 C\ promoter by heat stress transcription factors. Plant Physiology, 2002, 129:1207-1215.
    226. Rongwen J, Akkaya M S, Lavi U, et al. The use of microsatellite DNA markers for soybean genotype identification. Theor Appl Genet, 1995, 90:43-48.
    227. Roscoe T J, Lessire R, Puyaubert J et al. Mutations in the fatty acid elongation 1 gene are associated with a loss of β -ketoacyl-CoA synthase activity in low erucic acid rapeseed. FEBS Letters, 2001, 492:107-111.
    228. Rossak M, Smith M, Kunst L. Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana. Plant Mol Biol, 2001, 46:717-725.
    229. Rrandl R, Schoffl F. Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation. Plant Mol Biol, 1996, 3: 157-162.
    230. Saal B, Plieske J, Hu J, et al. Microsatellite markers for genome analysis in Brassica. II. Assignment of rapeseed microsatellites to the A and C genomes and genetic mapping in Brassica oleracea L. Theor Appl Genet, 2001, 102:695-699.
    231. Sabharwal V, Negi M S, Banga S S, Lakshmikumaran M. Mapping of AFLP markers linked to seed coat colour lociin Brassica juncea (L.) Czern. Theor Appl Genet, 2004, 109:160-166.
    232. Sadder M T,Ponelies N ,Bom U, et al. Physical localization of single-copys equences on Pachytene chromosomes in maize(Zea mays L.)by chromosome in situ suppression hybridization. Genome, 2000, 43:1081-1083.
    233. Salah E D E A, Carlos A B, Anton J M P, et al. A QTL for flowering time in Aribiodopsis reveals a novel allele of CRY2. Nature Genet, 2001, 29:435-440.
    234. Sandhu J S, Webster C I, Gray J C. A/ T - rich sequences act as quantitative enhancers of gene expression in transgenic tobacco and potato plants. Plant Mol Biol, 1998, 37:885-896.
    235. Sanguined M C, Tuberosa R, Landi P, et al. QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. Journal of Experimental Botany, 1999, 50(337):1289-1297.
    236. Satagopan J M, Yandell B S, Newton M A, et al. A Bayesian approach to detect Quantitative trait loci using markov chain monte carlo. Genetics, 1996, 144:805-816.
    237. Schierholt A, Becker H C, Ecke W. Mapping a high oleic acid mutation in winter oilseed rape (Brassica napus L). Theor Appl Genet, 2002, 101: 897-901.
    238. Schulte W, Topfer R, Stracke R, et al. Multi-functional acetyl-CoA carboxylase from Brassica napus is encoded by a multi-gene family: indication for plastidic localization of at least one isoform. Proc Natl Acad Sci USA, 1997, 94(7):3465-3470.
    239. Scofield S R, Crouch M L. Nucleotide sequence of a member of the napin storage protein family from Brassica napus .J Biol Chem, 1987, 262(25): 12202-8.
    240. Sharma R, Aggarwal R A, Kumar R, et al. Construction of an RAPD linkage map and localization of QTLs for oleic acid level using recombinant inbreds in mustard (Brassica juncea). Genome, 2002, 45: 467-472.
    241. Shen Q, Chen C N, Brands A, et al. The stress and abscisic and induced barley gene HVA22: developmental regulation and homologues in diverse organisms. Plant Mol Biol, 2001, 45(3): 327-340.
    242. Sidhu R S, Mathewes S, Bollon A P, et al. Selection of secretary protein-encoding genes by fusion with PHO5 in Saccharomyces cerevisiae. Gene, 1991, 107(1): 111-118.
    243. Simko I, McMurry S, Yang HongMin, et al. Evidence from polygene mapping for a causal relationship between potato tuber dormancy and abscisic acid content. Plant Physiology, 1997,115(4):1453-1459.
    244. Small I D, Peeters N. TPR-related motif prevalent in plant organellar proteins. Trends Biochem Sci, 2000, 25: 46-47.
    245. Smith J S C, Smith 0 S. An evaluation of SSR loci as molecular markers in maize (Zea mays L.): Comparison with data from RFLPs and pedigree. Theor Appl Genet, 1997, 95:163-173.
    246. Soengas P, Hand P, Vicent J G, et al. Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor Appl Genet, 2007, 114:637-645.
    247. Sohal A K, Pallas J A, Jenkins G I. The promoter of a Brassica napus lipid transfer protein gene is active in a range of tissues and stimulated by light and viral infection in transgenic Arabidopsis. Plant Mol Biol, 1999, 41:75-87.
    248. Somers D J, Rakow C, Prabhu V K, et al. Identification of a major gene and RAPD markers for yellow seed coat color in Brassica napus. Genome, 2001, 44: 1077-1082.
    249. Somers D J, Friesen K R D, Rakow G. Identification of molecular markers associated with linoleic acid desaturation in Brassica napus. Theor Appl Genet, 1998, 96: 897-903.
    250. Stualberg K, Ellerstrem M, Ezcurra I, et al .Disruption of an overlapping E box/ ABRE motif abolished high transcription of the napA storage protein promoter in transgenic Brassica napus seeds. Planta, 1996, 199:515-519.
    251. Stuber C W. Mapping and manipulating quantitative trait in maize. Trend Genet. 1995,11:477-481.
    252. Stumpf P K and Pollard M R. Pathways of fatty acid biosynthesis in higher plants with particular reference to developing rapeseed [A] . In: Kramer J K G, Sauer F D, Pigden W J ( eds. ) High and Low Erucic Acid Rapeseed Oils [C] .New York: Academic Press, 1983:131-141.
    253. Tada Y, Sakamoto M, Matsuoka M, et al. Expression of a monocot LHCP promoter in transgenic rice. Embo J, 1991, 10(7):1803-1808.
    254. Takasaki T, Hatakeyama K, Suzuki G et al. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature, 2000, 403: 913-916.
    255. Tanhuanpaa P. Identification and mapping of resistance gene analogs and a white rust resistance locus in Brassica rapa ssp. Oleifera. Theor Appl Genet, 2004, 108: 1039-1046.
    256. Tanhuanpaa P, Schulman A. Mapping of genes affecting linolenic acid content in Brassica rapa ssp. Oleifera. Mol Breeding, 2002, 10: 51 -62.
    257. Tanksley S D, Nelson J C. Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92:191-203.
    258. TarksleySD. Mapping polygenes. Anna Rev Ganet, 1993, 27:205-233.
    259. Taylor J E, Renwick K F, Webb A A, et al. ABA regulated promoter activity in stomatal guard cells. Plant J. 1995, 7(1):129-134.
    260. Teutonico R A, Osborn T C. Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. Theor Appl Genet, 1994, 89: 885-894.
    261. Thomas TL. Gene expression during plant embryogenesis and germination: an overview. Plant Cell, 1993. 5:1401-1410.
    262. Thormann C E, Romero J, Mantet J, et al. Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of B. napus L. Theor Appl Genet, 1996, 93: 282-286.
    263. Toroser D, Thormann C E, Osborn T C. RFLP mapping of quantitative trait loci controlling seed aliphatic glucosinolate content in oilseed rape (Brassica napes L.). Theor Appl Genet, 1995, 91:802-808.
    264. Uzunova M, Ecke W, Weissleder K, et al. Mapping the genome of rapeseed (Brassica napus L.) I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet, 1995, 90: 194-204.
    265. Varshney A, Mohapatra T, Sharma R P. Development and validation of CAPS and AFLP markers for white rust resistance gene in Brassica juncea. Theor Appl Genet, 2004, 109: 153-159.
    266. Vesna K, Elzbieta M, Dennis L, et al. Restoring enzyme activity in nonfunctional low erucic acid Brassica napus fatty acid elongase 1 by a single amino acid substitution. Eur J Biochem, 2002, 5625-5631.
    267. Voorrips R E, Jongerius M C, Kanne H J. mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of double haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor Appl Genet, 1997, 94:75-82.
    268. Walsh J A, Sharpe A G, Jenner C E, et al. Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theor Appl Genet, 1999, 99:1149-1154.
    269. Welsh J, Mmclelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research, 1990, 18:7213-7218.
    270. Whitfield H V, Murphy D J , Hills M J. Sub-cellular localization of fatty acid elongase in developing seeds of Lunaria annua and Brassica napus. Phytochemistry, 1993, 32:255-258.
    271. Williams J G K, Kubelik A R, Livak J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Research, 1990, 18:6531-6535.
    272. Wojtowicz M, Musnicki Cz. Variability and interaction between yield and its components of winter oilseed rape. Roczniki-Akademii-Rolniczej-w-Poznaniu.-Rolnictwo (Poland). 2001, (61):123-137.
    273. Wu C Y, Haruhiko W, Yasuyuki O, et al. Quantitative nature of the prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal ciselement requirements for endosperm-specific gene expression. The Plant Journal, 2000, 23(3):415-421.
    274. Xiao J, Li J, Yuan L, et al. Genetic diversity and its relationship to hybrid Performance and heterosis in rice as revealed by PCR-based markers. Theor Appl Genet, 1996, 92:637-643.
    275. Xu D, McElroy D, Thornburg R W, et al. Systemic induction of a potato pin2 promoter by wounding, methyl jasmonate, and abscisic acid in transgenic rice plants. Plant Mol Biol, 1993, 22(4):573-588.
    276. Xu F S, Wang Y H, Meng J L. Mapping boron efficiency gene(s) in Brassica napus using RFLP and AFLP markers. Plant Breeding, 2001, 120: 319-324.
    277. Xu S Z. Mapping quantitative trait loci using multiple families of line crosses. Genetics, 1998, 148:517-524.
    278. Yano M, Katayose Y, Ashikari M, et al. Hdl,a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS.Plant Cell, 2000, 12:2473-2483.
    279. Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant Molecular Biology, 1997,35: 145-153.
    280. YiN J, Xu S H. Bayesian mapping of quantitative trait loci for complex binary traits. Genetics, 2000, 155:1391-1403.
    281. Yoon I S, Park D H, Mori H, et al. Characterization of an auxin-inducible 1-aminocyclo-propane-l-carboxylate synthase gene, VR-ACS6, of mungbean(Vigna radiate(L.) Wilczek) and hormonal interactions on the promoter activity in transgenic tobacco. Plant Cell Physiol, 1999, 40(4):431-438.
    282. Yu, C Y, Hu, S W, Zhao, H X, et al. Genetic distances revealed by morphological characters, isozymes, proteins and RAPD markers and their relationships with hybrid performance in oilseed rape (Brassica napus L). TheorAppl Genet, 2005, 110(3):511-518.
    283. Yu Z H, Mackill O J, Bonman J M, et al. Tagging gene for blast resistance in rice via Linkage to RFLP markers. Theor Appl Genet, 1991,81:471-476.
    284. Zabeau M, Vos P. Selective restriction fragment amplification: a general method for DNA fingerprinting. European Patent Application No.0534 858 Al, 1993.
    285. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994,136:1457-1468.
    286. Zhang Z H, Yu S B, Yu T, et al. Mapping quantitative trait loci (QTLs) for seedling-vicror using recombinant inbred lines of rice (Oryza saliva L.). Field Crops Research, 2005, 91 (2): 161-170.
    287. Zhao J W, Meng J L. Genetic analysis of loci associated with partial resistance to Sclerotinia Sclerotioram in rapeseed (Brassica napus L.). Theor Appl Genet, 2003, 106: 759-764.
    288. Zhao J W, Meng J L. Detection of loci controlling seed gulcosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breed, 2003, 122: 19-23.
    289. Zhang J X, Nguyen Henry T, Blum A. Genetic analysis of osmotic adjustment in crop plants. Journal of Experimental Botany, 1999, 50(332):291-302.
    290. Zhao J Y, Becker H C, Zhang D Q, et al. Oil content in a European x Chinese Rapeseed population: QTL with additive and epistatic effects and their genotype-environment Interactions. Crap Sci, 2005, 45:51-59.
    291. Zhao J Y, Becker H C, Ding H D, et al. QTL of Three Agronomically Important Traits and Their Interactions with Environment in a European x Chinese Rapeseed population. Acta Genetica Sinica, 2005, 32(9):969-978.
    292. Zhu Q, Doerner PW, Lamb CJ. Stress induction and developmental regulation of a rice chitinase gene promoter in transgenic tobacco. Plant J, 1993, 3:203-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700