用户名: 密码: 验证码:
以gbss、ssⅢ和ssⅡ为靶标的RNAi载体构建及转基因马铃薯植株的获得
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马铃薯(Solanum tuberosum L)是淀粉生产的重要原料,其淀粉具有优良的特性,广泛应用于工业、食品及化工行业。但在大多数应用领域中,一般要求淀粉具有较低的糊化温度和较弱的凝沉(老化)性,因而淀粉的糊化和凝沉特性成为其应用的重要参考指标,而这两种性质主要与直链淀粉与支链淀粉比例、淀粉链长以及淀粉的结构有关。因此,培育具有较低糊化温度和优良凝沉特性的品种,对于提高马铃薯淀粉的应用范围和促进产业的发展具有重要的意义。
     随着人们对淀粉生物合成途径相关酶生化代谢途径及分子机理研究的不断深入,使得应用基因工程技术调控淀粉合成过程中相关酶基因的表达,从而使得降低淀粉糊化温度和提高冻融稳定性成为可能。为此,本研究开展了以RNAi技术对马铃薯块茎内源gbss、ssⅢ和ssⅡ基因进行同时干扰,期望通过改变淀粉合成相关酶的活性,进而改变块茎中积累的淀粉分子组成,获得糊化温度低且冻融稳定性更好的加工型马铃薯品种。经过研究,已取得了如下结果:
     (1)应用blast及分子生物学软件DNAstar对gbss、ssⅡ和ssⅢ基因的cDNA序列同源性进行分析比较,分别从gbss、ssⅢ和ssⅡ基因cDNA片段ORF中筛选出了1~261、2 164~2 407、161~441之间的序列片段作为靶标,采用一步PCR法将靶标基因片段进行融合,得到了大小为785 bp的gbss、ssⅡ和ssⅢ三个基因片段的融合基因。
     (2)为便于构建RNAi载体,分别以LS-8质粒(含gbss基因5'侧翼序列)、LS-4质粒(含patatin启动子序列)为模板,亚克隆了马铃薯块茎颗粒结合型淀粉合成酶gbss基因5'侧翼序列及马铃薯patatin启动子,并在这两个启动子5'和3'加入了Sac I和Xho I限制性酶切位点。
     (3)分别构建了以gbss基因5'侧翼序列和patatin组织特异性启动子驱动的含有“正向gbs3s2融合片段-pdk内含子-反向gbs3s2融合片段”的植物表达载体pART-GF、pART-PF,并将其成功导入根癌农杆菌LBA4404。
     (4)选用马铃薯“NHD3”、“NF”和“NC”的茎段作为外植体材料,在MS培养基基本成分的基础上,对生长激素的浓度和配比进行了优化,筛选出有利于受体材料高效再生的培养基配方,其中有利于茎段愈伤诱导的培养基为:MS0 + 1.0 mg/L 6-BA + 0.3 mg/L NAA(NHD3);MS0 + 1.0 mg/L 6-BA + 0.2 mg/L NAA(NC);MS0 + 1.0 mg/L 6-BA + 0.4 mg/L NAA(NF)。初步建立并优化了遗传转化体系。
     (5)用携带pART-GF植物表达载体的农杆菌对NHD3、NF和NC三个优良马铃薯品种进行了遗传转化,初步获得了抗性植株,经PCR检测有10株呈阳性,其中在NC、NF和NHD3品种上分别得到的转基因阳性植株为2株、3株和5株。
Potato(Solanum tuberosum L) is an important raw material for starch production.So potato starch has superior trait and have been an important raw material for many industrial applications,such as industry,food service industry and chemical engineering.In the most application domains,the potato starch is requested to possess lower-gelatinization temperature and faintish retrogradation,so they have been the important index.However,the two natures are related to the chain length,the ratio of amylose content to amylopectin and the structure of starch.Therefore,to cultivate a kind of potato with the low gelatinization temperature and faintish retrogradation has important significance for improving the application range of potato starch and the promote the industrial development.In the past few years,with the further reserch of enzemy related to the biosynthesis and molecular mechanism of potato starch,it will be possible to use technique of genetic engineering to regulation the key enzymatic gene expression for improving the content,branching degree and the length of amylopectin.For the above mentioned goals,we do some research and expect to get the new variety of potato which has lower-gelatinization temperature and faintish retrogradation nature by silencing the gbss,ssⅢand ssⅡendogenous genes of potato tuber with RNA interference.The following are the main works we did:
     (1)The gbss,ssⅢand ssⅡgene sequence homology of potato were analysed with the blast method and molecular biology software DNA Star,the gbss(1~261),ssⅢ(2 164~2 407) and ssⅡ(161~441)fragments were selected from these genes and were taken as target.At the same time,the three acquainted gene fragments were fused by the one-step PCR method,the fused gene we obtained is a 785 bp fragment.
     (2)In order to construction of RNAi expression vector,the 5' flanking region of gbss gene was sub-cloned from plasmid LS-8 and the tuber-specific-promoter patatin was also sub-cloned from plasmid LS-4,the two kinds of promoter were inserted the restriction site Sac I at the 5' end and the restriction site Xho I at the 3' end.
     (3)Construction of ihRNAi Expression Vectors of“forward direction gbs3s2-pdk(intro)-reverse gbs3s2”regulating by the 5' flanking region of gbss gene and patatin tissue specificity promotor for breeding a low gelatinization temperature potato.
     (4)In this study,the item of potato as the explant,Some parameters of Agrobaterium tumefaciens mediated inheritable transfromation was established.Based on the MS medium,the density and the assignment of the hormones was optimized,finally to confirm the optimum medium in favor of the growth of the callus:MS0+1.0 mg/L 6-BA +0.3 mg/L NAA(NHD3);MS0+1.0 mg/L 6-BA +0.2 mg/L NAA (NC);MS0 + 1.0 mg/L 6-BA +0.4 mg/L NAA(NF).
     (5)The pARTGF was transferred to three fine potato varieties plants by agrobacterium tumefaciens system.the resistance plants were obtained and the results of pcr indicated that 10 regenerated plants were positive,there were 2 NC plants,3 NF plants and 5 NHD3 plants among the total.
引文
[1]农业部拟加速发展马铃薯产业[J].农民科技培训,2007,5:5.
    [2]屈冬玉,谢开云,金黎平等.中国马铃薯产业与现代农业[J].农业技术与装备,2007,7:4-7.
    [3]周庆锋.中国马铃薯淀粉产业发展报告[J].中国食品添加剂, 2007,z1:62-71.
    [4] Smith AM,Denyer K,Martin C.What controls the amount and structure of starch in storage organs[J].Plant Physiol. 1995,107:673-677.
    [5]姚新灵,丁向真,陈彦云等.淀粉分支酶和去分支酶编码基因的功能[J].植物生理学通讯,2005,41(2):253-259
    [6]康国章,王永华,郭天财等.植物淀粉合成的调控酶[J].遗传,2006,28(1):110-116.
    [7]徐军望,李旭刚,朱祯..基因工程改良淀粉品质[J],生物技术通报,2000(1):11-19.
    [8] Simth AM,Denyer K,Martin C.The synthesis of the starch granule[J].Plant Mol.Biol,1997,48:67-87.
    [9] Edwards A,Marshall J,Sidebottom C,et al.Biochemical and molecular characterization of a novel starch synthase from potato tubers[J].Plant J,1995,8:183.
    [10] Marshall J,Sidebottom C,Debet M,et al.Identification of the major starch synthase in the soluble fraction of potato tubers[J].Plant Cell.1996,8(7):1121-35.
    [11] Lloyd JR, Landschutze V, Kossmann J. Simultaneous antisense inhibition of two starch-synthase isoforms in potato tubers leads to accumulation of grossly modified amylopectin[J]. Biochem J.1999,338:515-21.
    [12]彭信松,郑志仁,刘涤等.淀粉的生物合成及其关键酶[J].植物生理学通讯,1997,33(4),297-303 .
    [13]包劲松.植物淀粉生物合成研究进展[J].生命科学,1999,11(6):104-107.
    [14]孙成斌.直链淀粉与支链淀粉的差异[J].黔南民族师范学院学报,2002,2:36- 38.
    [15]唐联坤.淀粉糊化、老化特性与食品加工[J].陕西粮油科技,1996,21(3):26-29.
    [16] Gidley M J, Bulpin P V. Crystallisation of malto-oligosaccharides as models of the crystalline forms of starch: minimum chain-length requirement for the formation of double helices [J].Carbohydrate Research,1987,161:291-300.
    [17] Jobling SA,Westcott RJ,Tayal A,et al. Production of a freeze-thaw-stable potato starch by antisense inhibition of three starch synthase genes[J].Nat Biotechnol,2002,20(3):295-299.
    [18] Fulton DC,Edwards A,Pilling E,et al.Role of granule-bound starch synthase in determination of amylopectin structure and starch granule morphology in potato[J].Biol Chem.2002,277(13):10834-41.
    [19] Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans[J].Plant Cell, 1990, 2:279-289.
    [20] Cogoni C,Macino G.Suppression of gene expression by homologous transgenes《Antonie Van Leeuwenboek》1994, 65 :205-209.
    [21] Guo S,Kemphues KJ.Par-1 a gene required for establishing polarity in C.elegans embryos,encodes a putative Ser/Thr kinase that is asymmetrically distributed[J].Cell,1995,8:611-620.
    [22] Fire A,Xu S,Mello CC,et al. Potent and specific genetic interference by double-strandedRNA in Caenorhabditis elegans. Nature,1998,39: 806-811.
    [23] Chuang CF,Meyerowitz EM,et al.Sepcific and heridable genetic interference by dsRNA in Arbidopsis thaliana[J].Pro.Nalt.Acad.Sci.USA 2000,97(9):4985-5054.
    [24] Lobman JU,et al.Silencing of developmental genes in Hydra [J].Dev.Biol 1999,214:211-214.
    [25] Ngo H,Tschudi C,Gull K,et al. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei[J].PNAS.USA 1998,95:14687-14698.
    [26] Sharp P A,Zamore PD. RNA interference [J]. Science 2000,287:2431-2433.
    [27] Wargelius A,Ellingsen S,Fjose A.Double-stranded RNA induces specific developmental defecu in zabrafish embryos[J]. Biochem.Biophys Res.Commun,1999,263:156-161.
    [28] Vople TA,Kidner C,Hal IM,et al.Regulation of heterochromatic silencing and histone H3 lysine-9methylation by RNAi [J].Science,2002,297:1833-1837.
    [29] Allshirer.Molecula rbiology RNAi and heterochromat in a hushed up affair[J].Science,2002,297:1818-1819.
    [30] Hall M,Shankaranarayana GD,Nom AK,et al.Establishment and maintenance of a heterochromatin domain[J].Science, 2002,297:2232-2237.
    [31] Mochizuki K and Martin A.Gorovsky Conjugation-specific small RNAs in Tetrahymena have predicted properties of scan (scn) RNAs involvedin genome rearrangement[J].Genes & Dev,2004,18:2068-2073.
    [32] Stefan A,Jurane k,Sina R,et al.Lipps snRNA and Heterochromatin Formation Are Involved in DNA Excision during Macronuclear Development in Stichotrichous Ciliates[J].EUKARYOTIC CELL,2005,11:1934-1941.
    [33] Elbashir S,Harborth J,Lendeckel W,etal.Duplexed of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells[J].Nature,200,411:494-498.
    [34] Holen T,Amarzguioui M,Wiiger MT,etal.Positional effects of shor tinterfering RNAs targeting the human coagulation trigger Tissue Factor[J].Nucleic Acids Res,2002,30(8):1757-1766.
    [35] Elbashir S,Lendeckel W,Tuschl T.RNA interference is mediated by 21-and 22-nucleotide RNAs[J].Genes& Dev, 2001,15:188-200.
    [36] Brummel kamp TR, Bernards R,Agami R.Asystem for stable expression of short interfering RNAs in mammalian cells[J].Science,2002,296:550-553.
    [37] Jorgensen RA,Atkinson RG, Forster RLS,et al.An RNA-based information super highway in plants[J]. Science,1998, 279:1486-1487.
    [38] Himber C,Dunoyel P,Moissiard G,et al.Transitivity-dependent and-independent cell-to-cell movement of RNA silencing [J]. EMBO J,2003,22 (17):4523-4533.
    [39] Hamilton AJ,Voinnet O,Chappell L,,et al.Two classes of short interfering RNA in RNA silencing [J].EMBO Journal, 2002,21(17):4671-4679.
    [40] Feinberg EH,Hunter CP.Transport of dsRNA into cells by the transmembrane protein SID-1[J].Science,2003, 301:1545-1547.
    [41] Fire A,Xu SQ,Montgomery MK,et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J].Nature,1998,391:806-811.
    [42] Travella S,Klimm TE,Keller B.RNA Interference-based Gene silencing as an efficient tool forf unctional genomics In hexaploid bread wheat[J].Plant Physiology,2006,142:6-20.
    [43] Stoutjesdijk PA,Singh SP,Liu Q,etal.hpRNA-mediated targeting of the Arabidiosis FAD2 gene gives highly efficienta stable silencing[J].Plant Physiology,2002,129(4):1723-1731.
    [44] Jen-Tsan C,Howard YC,Nancy NW,et al.Genomewide view of gene silencing by small interfering RNAs[J].PNAS USA,2003,100 (11):6343-6346.
    [45] Nancy AE.RNA goes mobile[J].Plant Cell,2002,14:1433-1436.
    [46] Miki D,Itoh R,Shimamoto K.RNA silencing of single and multiple members in a gene family of rice[J].Plant Physiol,2005,138(4):1903-1913.
    [47] Liu Q,Singh S,Green AG.Genetic modification of cotton seed oil using inverted-repeat gene-silencing techniques[J]. Biochem Soc Trans, 2000,28:927–929.
    [48] Liu Q,Singh SP,Green AG.High-stearic and High-oleic cotton seed oils produced by hairpin RNA-mediated post- transcriptional gene silencing[J].Plant Physiol,2002,129 (4):1732-1743.
    [49]梁会娟,曹刚强,苗利娟等.根癌农杆菌介导的fad2RNA干扰体基因转化甘蓝型油菜的研究[J].河南农业科学, 2007.01:34-38.
    [50]陈苇,李劲峰,董云松等.甘蓝型油菜Fad2基因的RNA干扰及无筛选标记高油酸含量转基因油菜新种质的获得[J].植物生理与分子生物学学报,2006,32 (6): 665-671.
    [51] Cassagne C,Lessire R,Bessoule J J,et al.Biosynthesis of very long chain fatty acids in higher plants [J].Prog Lipid Res, 1994,33(1-2):55-69.
    [52] Clemens S,Kunst L.Isolation of Brassica napus cDNA encoding b-ketoacyl-CoA synthase, a condensing enzyme involved in the biosynthesis of very long chain fatty acids in seeds [J].Plant Physiol,1997,12:313-314.
    [53] ]田保明,陈占宽,苗利娟等.甘蓝型油菜脂肪酸延长酶FAE1 RNA干扰体的构建[J].河南农业科学,2006.03:43-47.
    [54]田保明,陈占宽,杨光圣等.基于RNAi技术转移脂肪酸延长酶基因fae1及转基因油菜的获得[J].中国油料作物学报, 2007,29(2):27-31.
    [55]柴晓杰,王丕武,关淑艳等.应用RNA干扰技术降低玉米支链淀粉含量[J].植物生理与分子生物学学报, 2005,31(6):625-630.
    [56] Regina A,Bird A,Topping D, et al..High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats[J]. Proc Natl Acad Sci USA,2006,103(10):3546-3551.
    [57]陈忠正,郭健,李斌等.RNAi沉默淀粉分支酶sbe3基因对水稻直链淀粉的影响[J].食品科学,2007,28(07):291-295.
    [58] Shimada T,Otanim, Hamad T,et al.Increase of amylose content of sweetpotato by RNA interference of the starch branching enzymeⅡgene (IbSBEⅡ)[J].Plant Biotechnol, 2006,23:85-90.
    [59]李加瑞,赵伟,李全梓等.Waxy基因的RNA沉默使转基因小麦种子中直链淀粉含量下降[J].遗传学报, 2005,32(8):846-854.
    [60]黄冰艳,李忠谊,吉万全等.利用RNA干扰技术抑制水稻淀粉极限糊精酶基因表达[J].农业生物技术学报, 2007,15(1):71-75.
    [61] Gianfranco D,Raffaela T,Ralf W,et al.Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase [J].BMC Plant Biology 2006,6:13.
    [62] Davulurj GR,Van Tuinen A,Fraser PD,et al.Fruit-specific RNAi-mediate suppression of DETl enhances carotenoid andflavonoid content in tomaoes[J].Nature Biotechnology 2005,21: 890-895.
    [63]万群,张兴国,宋明.果实特异性RNAi介导的Lcy基因沉默来增加番茄中番茄红素的含量[J].生物工程学报, 2007,23(3): 429-433.
    [64] Liu YS ,Roof S,Ye ZB,et al.Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato [J].Proc Natl Acad Sci USA,2004,101:9897-9902.
    [65] Segal G,Song R,Messing J,et al.A new opaque variant of maize by a single dominant RNA- interference inducing transgene[J].Genetics.2003,165(1):387-397.
    [66] Huang S,Frizzi A,Florida CA,et al.high lysine and high trytophan transgenic maize resulting from the reduction of both 19-and 22-KDα-zeins[J].Plant Molecular Biology,2006,61:525-535.
    [67] Jorgensen K,Bak S,Busk PK,et al.Cassava Plants with a depleted cyanogenic glucoside content in leaves and tubers distribution of cyanogenic glucosides,their site of synthesis and transport,and blockage of the bio -synthesis by RNA interference technology[J].Plant Physiology,2005,139:363-374.
    [68] Ganesan S,LeAnne MC,Lorraine P,et al.Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypo[J].PNAS, 2006,103(48):18054–18059.
    [69] Shinjiro O,Hirotaka U,Yube Y,et al. Producing decaffeinated coffee plants[J]. Nature,2003,423(19):823.
    [70] Xiong AS,Yao QH,Peng RH,et al.Diferent effection ACC oxidase gene silencing triggered by RNA interference in transgenic tomato[J].Plant Cell Rep,2005,23:639-646.
    [71] Chen YH,OU Yang B,Li HX,et al.Cloning of ACO gene and inhibition of ethylene evolution in tomatoes with RNA interference[J].Journal of Agricultural Biotechnology,2007,15 (3):464-468.
    [72]唐霞,周志平,赵丛枝等.富有柿果ACC合成酶基因RNA干扰植物表达载体的构建[J].华北农学报,2007,22(1):73-77.
    [73]胡钟东,乔玉山,王三红等.梨ACC氧化酶基因(ACO)的片段克隆及其RNAi载体构建[J].果树学报, 2006,23(6):877-879.
    [74]胡钟东,乔玉山,王三红等.砂梨脂氧合酶cDNA片段克隆与RNAi载体构建[J].西北植物学报,2007,27(7):1285-1290.
    [75]王燕.农杆菌介导PeACC基因利用RNA干扰载体对东方百合遗传转化的研究[D].陕西杨陵,西北农林科技大学,2006.06.
    [76]陈银华,张俊红,欧阳波等.花椰菜ACC氧化酶基因的克隆及其RNAi对内源基因表达的抑制作用[J].遗传学报, 2005,32(7):764-769.
    [77] Coetzer C,Corsini D,Love S,et al.Control of enzymatic browning in potato by sense and antisense RNA from tomato polyphenol oxidase[J].Agric Food Chem,2001,49(2):652- 657.
    [78]曹艳红.苹果多酚氧化酶双链RNA干扰(dsRNAi)研究[D].南京:南京农业大学,2004.06.
    [79] Liang RQ,Yang F P,Zhang LQ,et al.Silencing grain ppo genes expression to improve wheat flour whiteness by RNAi,In:Plant Genomics in ChinaⅦ[J],Hei long jiang University Press,Harbin,China,pp.2006,208.
    [80] Allen RS,Millgate AG,Chitty JA,et al.RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy[J]..Nat Biotechnol,2004,22(12):1559-1566.
    [81]胡新玲,徐妙云,刘德虎等.紫杉烷14β-羟基化酶基因片段的克隆及其植物表达载体的构建[J].分子植物育种,2006, 4(2):243-250.
    [82] Fujii N,Inui T,Iwasa K,et al.Knockdown of berberine bridge enzyme by RNAi accumulates (S)-reticuline and activates a silent pathway in cultured California poppy cells[J].Transgenic Res,2007,16:363-375.
    [83] Dubouzet JG,Morishige T,Fujii N,et al.RNA silencing of scoulerine 9-O-methyl transferase expression by double stranded RNA in Coptis japonica protoplasta[J].Biosci Biotechnol Biochem,2005,69(1):63-70.
    [84] Charlier N,Molenkamp R,Leyssen P,et al.A rapid and convenient variant of fusion-PCR to construct chimeric flaviviruses[J].2003,Virol Metheds,108(1):67-74.
    [85]范宝昌,赵卫,胡志君等.扩增我国登革2型病毒的全长cDNA分子的融合PCR方法[J].军事医学院院刊,2001,25 (2):137-139.
    [86] Kuwayama H,Obara S,Morio T,et al.PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vector[J].Nucleic acid Res,2002,30(2):E2.
    [87]刘和,陈英旭,张文波等.PCR一步法构建融合蛋自基因fpg[J].遗传,2004,26(4):525-528.
    [88]黄留玉主编, PCR最新技术原理、方法及应用[M].北京:化学工业出版社,2005.
    [89] Wesley SV,Helliwell CA,Smith NA,et al.Construct design for efficient, effective and high-throughput gene silencing in plants[J].The Plant Journal,2001,27( 6):581-590.
    [90] Sayaka H,Shin-ichiro O,Eri A,et al.The effects of spacer sequences on silencing efficiency of plant RNAi vectors[J].Plant Cell Reports,2007,5(26):651-659.
    [91] Abel GJ,Springer F,Willmitzer L,et al.Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (Solanum tuberosum L.) [J].Plant J.1996,l0:981-991.
    [92] Edwards A,Fulton D,Hylton C.M,et al.A combined reduction in activity of starch synthasesⅡandⅢof potato has novel effects on the starch of tubers[J].The Plant Journal,1999,17(3):251-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700