用户名: 密码: 验证码:
尖吻蝮蛇毒糖苷水解酶的活性鉴定及影响因素分析和金属离子及配合物与Intein的结合和抑制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从生物无机化学角度对两种重要的酶---尖吻蝮蛇蛇毒糖苷水解酶(AA-NADase)和肺结核分枝杆菌RecA intein进行了功能和性质的研究。通过综合分析AA-NADase的多功能活性,首次发现其具有ATP/ADPase-like的新活性;进一步的探究发现AA-NADase的多功能活性依赖于Cu2+离子和二硫键。Intein自催化的蛋白剪接作用受到金属离子的抑制,采用金属离子与蛋白相互作用的多种实验方法我们研究了几种二价金属离子与intein的结合作用,并对其抑制作用进行了分析;初步的金属配合物抑制蛋白剪接作用的体内体外筛选,为金属配合物类药物成为潜在的抗结核新药提供了可能。详细内容归纳如下:
     第一章是对糖苷水解酶和生物无机化学常用实验手段的文献综述。第一小节重点介绍了ADP ribosyl环化酶家族三大成员Aplysia ADP ribosyl环化酶、人CD38、人CD157的酶催化功能,结构,保守基序以及其广泛的应用。来源于猪脑的首个具有类磷酸酯酶活性的糖苷水解酶(sNADase)以及来源于蛇毒中的几种糖苷水解酶的研究概况。第二小节概括总结了十种常用于金属离子与蛋白相互作用的实验方法,包括紫外光谱、色氨酸荧光淬灭、核磁共振、质谱、等温滴定量热、平衡透析,原子吸收、圆二色谱、动态光散射、扩展X-ray吸收精细结构、电子顺磁共振。
     第二章采用阴离子交换色谱和分子筛凝胶色谱分离纯化得到实验所需AA-NADase,利用高效液相色谱法分析了AA-NADase对NAD的水解作用和对NGD的环化水解双重作用,并测定了这两种底物的酶催化动力学参数。发现腺苷衍生物ATP、ADP、AMP是NAD水解活性的竞争性抑制剂,测定了相应的抑制常数。同时首次发现AA-NADase可以水解ATP、ADP中的P-O-P键生成AMP,但不能水解NAD和NGD中的P-O-P,这种水解又不同于ATPase,因为AA-NADase也水解ATPase的非酶水解底物AMPPNP,我们称这种新功能为ATP/ADPase-like的活性。进一步实验测定了AA-NADase水解ATP、ADP、AMPPNP的酶催化动力学参数。AMP不能被AA-NADase水解,但是等温滴定微量热实验发现AMP可以以很高的亲和力结合AA-NADase。这为理解腺苷衍生物抑制AA-NADase水解NAD提供了理论依据。
     第三章是对AA-NADase多功能活性影响因素的分析。实验发现AA-NADase中存在两类Cu2+离子结合位点:一个起激活作用的高亲和性特异性结合位点(Kd=10-12M)和多个起抑制作用的低亲和性结合位点(Kd=10-9M)。高亲和性位点上Cu2+是AA-NADase多种催化活性所必须的,但低亲和性位点上Cu2+抑制AA-NADase的活性。铜离子的价态与AA-NADase活性相关,AA-NADase的多功能催化活性依赖于Cu2+,Cu+不结合apo-AA-NADase ,也不能恢复apo-AA-NADase的活性。Cu2+离子对维持蛋白的结构稳定性具有非常重要的作用。其他金属离子替代实验发现Zn2+或Mn2+重组的AA-NADase具有比Cu2+-AA-NADase更强的多功能催化活性;Co2+重组的AA-NADase活性与Cu2+-AA-NADase活性相当;但Ni2+能抑制AA-NADase活性。AA-NADase的活性依赖于二硫键,二硫键还原剂通过破坏二硫键和还原蛋白中Cu2+抑制AA-NADase的活性。盐酸胍变性和热变性实验都说明二硫键对于维持蛋白稳定性具有重要的作用。
     第四章对蛋白剪接作用及蛋白内含子(intein)做了文献概述。分别介绍了蛋白剪切作用、intein的命名、分布、保守基序、结构域、种类、鉴定、生物学功能、三维结构特征、应用及蛋白剪接反应机理。分析了近些年来关于intein研究的状况和进展,为我们课题的开展做了基础铺垫,指导了后续实验。
     第五章综合利用金属离子与蛋白结合的常用方法,研究了Zn2+、Cd2+、Co2+、Ni2+、Mn2+、Cu2+、Cu+离子与ΔΔIhh-CM、ΔΔIhh-SM和ΔI-SM的相互作用,给出了相应的结合比例,结合亲和力和结合位点。实验发现金属离子与蛋白剪接活性中心关键残基的配位作用,是导致金属离子抑制蛋白剪接作用的原因。金属离子结合蛋白能力各不相同,亲和力范围从10-7 M到10-11M,但是金属离子与蛋白结合的亲和力强弱顺序与金属离子对蛋白剪接的抑制效率是一致的。这部分研究为设计合成intein抑制剂提供了理论依据。
     第六章是对金属配合物对蛋白剪接抑制作用的初步筛选。通过一系列的体内、体外检测实验我们发现金属铂类配合物具有很好的蛋白剪接抑制作用。就配合物P-0810而言,其体外活性分析的抑制IC50值为2.5μM;在TS体内报告体系中其良好的抑制效果表现为IC50值为7.71μM,同时在ALSII体内报告体系中的IC50值为18.47μM;无论是在结核菌H37Ra的固体还是液体培养中配合物P-0810都表现除了明显的抑制作用,其抑制生长的IC50值为10μM,MIC值小于40μM,处在常用临床抗菌药的相同浓度水平。铂类配合物对intein的抑制作用效果明显受到配合物结构的影响,顺式>单齿>>反式。初步的抑制机理探讨发现配合物P-0810和intein结合在溶液体系中产物并不单一,质谱分析显示至少存在两种加合物,NMR分析发现铂与intein活性中心关键残基(Cys1、His73等)的配位是抑制作用的根本原因。
In this dissertation, two important enzymes---Agkistrodon acutus venom NADase(AA-NADase) and Mycobacterium tuberculosis RecA intein are studied. We identify the multicatalytic activities of AA-NADase and firstly find a novel AT(D)Pase-like activity for AA-NADase. Further studies show that small-molecule reductants inhibited the multicatalytic activities of AA-NADase by reducing the disulfide-bonds and Cu(II) ion. Self-catalytic protein splicing is a post translational process in which the intervening protein, intein, is cleaved from the precursor proteins with the concomitant ligation of flanking sequences. Metal ions are reported to inhibit the protein splicing in vitro or in vivo. We analyze the binding and inhibtion of divalent metal ion to RecA inteis. The initial screen has been performed on five metal ions (platinum, ruthenium, copper, zinc and gold) with different ligands by in vitro and in vivo screenning system. Results suggest the potential application of metal complexes on anti-tuberculosis. The details are summarized as follows.
     Chapter 1 provides a brief review of NADase and various methods for study the interaction of metal ions and protein. Part one is a detail introduction about three members of ADP ribosyl cyclase family Aplysia ADP ribosyl cyclase, CD38 and CD157. Part two is a summarization of ten methods including UV-vis, Fluorescence, NMR, MS, ITC, Equilibrium dialysis, CD, DLS, EXAFS and EPR.
     In Chapter 2, The AA-NADase has been purified using DEAE-Sephadex A-50 anion exchange chromatography and G-75 size exclusive chromatography. HPLC assay shows that AA-NADase has a unique multicatalytic activity. It is not only able to cleave the C-N glycosyl bond of NAD and NGD, but also able to cleave the P-O-P bond of ATP, ADP and AMP-PNP to produce AMP. The hydrolysis reactions of NAD, ATP and ADP catalyzed by AA-NADase are mutually competitive. ITC results show that AA-NADase binds with one AMP with high affinity. AA-NADase has so far been identified as the first unique multicatalytic enzyme with both NADase and AT(D)Pase-like activities.
     In chapter 3, The effects of the reduction of the disulfide-bonds and Cu(II) in AA-NADase by small-molecule reductants on its NADase and ADPase activities have been investigated by polyacrylamide gel electrophoresis, high performance liquid chromatography (HPLC), electron paramagnetic resonance spectroscopy (EPR) and isothermal titration calorimetry (ITC). The multicatalytic activities of AA-NADase are dependent on Cu2+ and disulfide-bonds. AA-NADase possesses one specific Cu2+-binding site with high affinity and at least has four weak Cu2+-binding sites. The assay of activity shows that the specific Cu2+-binding site with high affinity is essential for activity but the weak binding of Cu2+ ions inhibit the activity. Cu+ does not bind to apo-AA-NADase and can not recover the activity of apo-AA-NADase. Zn(II)-reconstituted AA-NADase or Mn(II)-reconstituted AA-NADase can reacquisition more activity than Cu(II)-reconstituted AA-NADase, but Ni(II) ion inhibits the activity of AA-NADase. GdnHCl-induced chemical denaturation and thermal denaturation illustrate that Cu(II) ion and the disulfide bonds significantly stabilize the structure of AA-NADase.
     Chapter 4 provides a brief introduction of protein splicing and intein. It includes the nomenclature, distribution, conserved motifs, type, three-dimensional structures, domains, identification, biological function and application of intein and the mechanism of protein splicing.
     In chspter 5, the interactions between metal ions and three minimized recA inteins have been studied. The stoichiometry, binding sites and binding affinities of metal ion to inteins are measured. Results show the metal coordinations have negligible influence on protein structure and the mobility restriction of key residues from metal coordination is likely the key cause of metal inhibition of intein splicing. The affinities of metal ions binding to inteins are from 10-7~10-11M and correlate to the inhibition efficiency of metal ions.
     Finally in chapter 6, we screen five metal ions (platinum, ruthenium, copper, zinc and gold) with different ligands using GFP-Intein fusion protein in vitro and the growth of E.coli. and M. tuberculosi. in vivo. Platinum complexes show overall better inhibitory activities than other complexes. The structure of the platinum complexes is important for efficiency of inhibition. The in vitro inhibition activity generally follows the trend of cis > monofunctional >> trans for the platinum compounds. Take the complex P-0810 for example, the IC50 for inhibition the recovering the fluorescence of GFP protein is 2.5μM. The inhibition of intein splicing using TS reporter system has the IC50 7.71μM and in ALSII reporter system IC50 18.47μM. M. tuberculosis growing assays show that the inhibition with IC50 10μM and MIC 40μM. Mechanism study indicates that the coordination of thiol group to platinum will prevent the formation of thioester intermediate and consequently block the protein splicing. The results suggest the potential application of platinum complexes on anti-tuberculosis a novel approach for the drug designing on tuberculosis chemotherapy.
引文
1. P. Handler, J. R. Klein, Journal of Biological Chemistry 143, 49 (1942).
    2. O. Hayaishi, K. Veda, Annu Rev Biochem 46, 95 (1977).
    3. S. Takasawa, K. Nata, H. Yonekura, H. Okamoto, Science 259, 370 (1993).
    4. H. Kim, E. L. Jacobson, M. K. Jacobson, Science 261, 1330 (1993).
    5. H C Lee, TF Walseth, GT Bratt, RN Hayes, D. Clapper, J. Biol. Chem 264, 1608 (1989).
    6. M. Ziegler, D. Jorcke, A. Herrero-Yraola, M. Schweiger, Advances in experimental medicine and biology 419, 443 (1997).
    7. H. C. Lee, R. Aarhus, Biochimica et biophysica acta 1164, 68 (1993).
    8. V. Berthelier, J. M. Tixier, H. Muller-Steffner, F. Schuber, P. Deterre, The Biochemical journal 330 ( Pt 3), 1383 (1998).
    9. E. Zocchi et al., Biochem Biophys Res Commun 196, 1459 (1993).
    10. H. M. MullerSteffner, A. Augustin, F. Schuber, Journal of Biological Chemistry 271, 23967 (1996).
    11. M. Howard et al., Science 262, 1056 (1993).
    12. M. R. Hellmich, F. Strumwasser, Cell Regulation 2, 193 (1991).
    13. H. C. Lee, R. Aarhus, Cell Regul 2, 203 (1991).
    14. M. L. Love et al., Structure 12, 477 (2004).
    15. C. Munshi, C. Baumann, D. Levitt, V. A. Bloomfield, H. C. Lee, Biochimica et biophysica acta 1388, 428 (1998).
    16. G. S. Prasad et al., Nat Struct Biol 3, 957 (1996).
    17. G. S. Pradas, D. G. Levitt, H. C. Lee, C. D. Stout, Proteins 24, 138 (1996).
    18. Q. Liu et al., The Journal of biological chemistry, (2009).
    19. M. Orciani, O. Trubiani, S. Guarmieri, E. Ferrero, R. Di Primio, J Cell Biochem 105, 905 (2008).
    20. Ellis L. Reinherz, Patrick C. Kung, Gideon Goldstein, Raphael H. Levey, S. F. Schlossman, Proceedings of the National Academy of Sciences of the United States of America 77, 1588 (1980).
    21. D. G. Jackson, J. I. Bell, Journal of Immunology 144, 2811 (1990).
    22. F. Malavasi et al., Immunology Today 15, 95 (1994).
    23. A. Tohgo et al., The Journal of biological chemistry 269, 28555 (1994).
    24. H. C. Lee, Molecular Medicine 12, 317 (2006).
    25. Q. Liu et al., Structure 13, 1331 (2005).
    26. S. Deaglio et al., Faseb J 15, 580 (2001).
    27. A. De Flora, L. Franco, L. Guida, S. Bruzzone, E. Zocchi, Cell biochemistry and biophysics 28, 45 (1998).
    28.温新宇,戚中田,黎.燕,免疫学杂志19, 239 (2003).
    29. L. J. Young, Neuron 54, 353 (2007).
    30. I. D. Neumann, Cell metabolism 5, 231 (2007).
    31. D. Jin et al., Nature 446, 41 (2007).
    32. I. Tinhofer et al., Blood 108, 2950 (2006).
    33. S. Zupo et al., Blood 95, 1199 (2000).
    34. B. T. Costa-Carvalho, M. A. Viana, M. K. C. Brunialti, E. G. Kallas, R. Salomao, Clin Exp Immunol 136, 291 (2004).
    35. Y. Han et al., Zhonghua nei ke za zhi [Chinese journal of internal medicine] 45, 459 (2006).
    36. S. Sukwit et al., Journal of the Medical Association of Thailand = Chotmaihet thangphaet 88 Suppl 1, S48 (2005).
    37. M. Holub et al., Klinicka mikrobiologie a infekcni lekarstvi 10, 229 (2004).
    38. G. G. Sherman et al., Pediatric research 51, 740 (2002).
    39. A. Savarino, F. Bottarel, F. Malavasi, U. Dianzani, AIDS (London, England) 14, 1079 (2000).
    40. A. Vigano, M. Saresella, S. Rusconi, P. Ferrante, M. Clerici, Lancet 352, 1905 (1998).
    41. A. Savarino et al., Journal of biological regulators and homeostatic agents 10, 13 (1996).
    42. L. Kestens et al., AIDS (London, England) 6, 793 (1992).
    43. A. Antonelli, E. Ferrannini, Journal of endocrinological investigation 27, 695 (2004).
    44. H. Okamoto, Molecular and cellular biochemistry 193, 115 (1999).
    45. Q. Li et al., Biochem Biophys Res Commun 202, 629 (1994).
    46. S. Yamamoto-Katayama et al., Journal of molecular biology 316, 711 (2002).
    47. S. Tono-oka, M. Hatakeyama, Chemical & Pharmaceutical Bulletin 50, 831 (2002).
    48. T. Tatsuki, S. Iwanaga, G. Oshima, T. Suzuki, Toxicon 13, 211 (1975).
    49. D. A. Yost, B. M. Anderson, The Journal of biological chemistry 256, 3647 (1981).
    50. D. A. Yost, B. M. Anderson, The Journal of biological chemistry 257, 767 (1982).
    51. W.-Z. Huang, C. Wang, L.-Q. Luo, Z.-X. Lu, Toxicon 26, 535 (1988).
    52. S. D. Wu, Y. Liu, X. Xu, Z. Zhu, Protein Expression and Purification 25, 319 (2002).
    53. Q. Q. Huang, M. K. Teng, L. W. Niu, Acta crystallographica 55, 1444 (1999).
    54. M. Asadi, E. Safaei, B. Ranjbar, L. Hasani, New Journal of Chemistry 28, 1227 (2004).
    55. J. A. Halfen et al., Journal of the American Chemical Society 119, 8217 (1997).
    56. J. X. Pan, S. P. Zhang, Journal of Biological Inorganic Chemistry 14, 401 (2009).
    57. A. A. Saboury et al., Journal of Thermal Analysis and Calorimetry 89, 921 (2007).
    58. Z.-X. Wang, N. Ravi Kumar, D. K. Srivastava, Anal Biochem 206, 376 (1992).
    59. J. A. Sigman, B. C. Kwok, Y. Lu, Journal of the American Chemical Society 122, 8192 (2000).
    60. G. S. Jackson et al., Proc Natl Acad Sci U S A 98, 8531 (2001).
    61. M. F. Ahmad et al., J Mol Biol 382, 812 (2008).
    62. C. J. Sarell, C. D. Syme, S. E. Rigby, J. H. Viles, Biochemistry 48, 4388 (2009).
    63. L. E. Wilkinson-White, S. B. Easterbrook-Smith, Biochemistry 46, 9123 (2007).
    64. E. D. Walter, M. Chattopadhyay, G. L. Millhauser, Biochemistry 45, 13083 (2006).
    65. F. Arnesano, L. Banci, I. Bertini, S. Mangani, A. R. Thompsett, Proc Natl Acad Sci U S A 100, 3814 (2003).
    66. C. D. Syme, R. C. Nadal, S. E. J. Rigby, J. H. Viles, Journal of Biological Chemistry 279, 18169 (2004).
    67. Y. H. Sung, C. Rospigliosi, D. Eliezer, Biochimica Et Biophysica Acta-Proteins and Proteomics 1764, 5 (2006).
    68. Liyun Zhang et al., Molecular BioSystems, (2009).
    69. S. K. Weidt, C. L. Mackay, P. R. R. Langridge-Smith, P. J. Sadler, Chemical Communications, 1719 (2007).
    70. A. K. Boal, A. C. Rosenzweig, J. Am. Chem. Soc., (2009).
    71. Y. N. Wei, D. Fu, Journal of Biological Chemistry 281, 23492 (2006).
    72. Y. N. Wei, D. Fu, Journal of Biological Chemistry 280, 33716 (2005).
    73. Y. Chao, D. Fu, Journal of Biological Chemistry 279, 17173 (2004).
    74. M. L. Guerinot, Biochimica et Biophysica Acta (BBA) - Biomembranes 1465, 190 (2000).
    75. Y. O. Korshunova, D. Eide, W. G. Clark, M. L. Guerinot, H. B. Pakrasi, Plant Molecular Biology 40, 37 (1999).
    76. N. E. Grossoehme, S. Akilesh, M. L. Guerinot, D. E. Wilcox, Inorganic Chemistry 45, 8500 (2006).
    77. L. N. Lin, A. B. Mason, R. C. Woodworth, J. F. Brandts, Biochemistry 32, 9398 (1993).
    78. L. N. Lin, A. B. Mason, R. C. Woodworth, J. F. Brandts, Biochemistry 30, 11660 (1991).
    79. A. K. Wernimont, L. A. Yatsunyk, A. C. Rosenzweig, Journal of Biological Chemistry 279, 12269 (2004).
    80. N. E. Grossoehme, S. B. Mulrooney, R. P. Hausinger, D. E. Wilcox, Biochemistry 46, 10506 (2007).
    81. O. Okhrimenko, M. Jelesarov, Journal of Molecular Recognition 21, 1 (2008).
    82. J. Domenech et al., Biochimie 88, 583 (2006).
    83. Y. Zhang, D. E. Wilcox, J Biol Inorg Chem 7, 327 (2002).
    84. L. Zhang, X. Xu, Z. Luo, D. Shen, H. Wu, Biochimie 91, 240 (2009).
    85. J. Shearer, V. A. Szalai, Journal of the American Chemical Society 130, 17826 (2008).
    86. A. S. Hakemian et al., J Am Chem Soc 127, 17142 (2005).
    87. L. Basumallick et al., Journal of the American Chemical Society 127, 3531 (2005).
    88. M. Ralle et al., J Am Chem Soc 126, 7244 (2004).
    89. S. M. Berry, M. Ralle, D. W. Low, N. J. Blackburn, Y. Lu, J Am Chem Soc 125, 8760 (2003).
    90. J. S. Boswell, B. J. Reedy, R. Kulathila, D. Merkler, N. J. Blackburn, Biochemistry 35, 12241 (1996).
    91. J. P. Stasser, J. F. Eisses, A. N. Barry, J. H. Kaplan, N. J. Blackburn, Biochemistry 44, 3143 (2005).
    92.韦世强et al.,中国科学技术大学学报37, 426-440 (2007).
    93. G. L. Wilson, R. J. Greenwood, J. R. Pilbrow, J. T. Spence, A. G. Wedd, Journal of the American Chemical Society 113, 6803 (1991).
    94. M. Chauveau, J. Roussaux, Plant and Cell Physiology 37, 914 (1996).
    95. T. E. Machonkin, E. I. Solomon, Journal of the American Chemical Society 122, 12547 (2000).
    96. X. D. Ding et al., Journal of the American Chemical Society 121, 128 (1999).
    97. T. Yonetani, A. Tsuneshige, Y. X. Zhou, X. S. Chen, Journal of Biological Chemistry 273, 20323 (1998).
    98. C. D. Brondino et al., Journal of Biological Inorganic Chemistry 9, 145 (2004).
    99. A. J. Pierik, W. R. Hagen, European Journal of Biochemistry 195, 505 (1991).
    100. T. Shirakawa et al., Biochemistry 44, 12402 (2005).
    101. R. Kappl, M. Ebelshauser, F. Hannemann, R. Bernhardt, J. Huttermann, Applied Magnetic Resonance 30, 427 (2006).
    1. M. Ziegler, D. Jorcke, A. Herrero-Yraola, M. Schweiger, Advances in experimental medicine and biology 419, 443 (1997).
    2. P. Handler, J. R. Klein, Journal of Biological Chemistry 143, 49 (1942).
    3. T. Tatsuki, S. Iwanaga, G. Oshima, T. Suzuki, Toxicon 13, 211 (1975).
    4. D. A. Yost, B. M. Anderson, The Journal of biological chemistry 256, 3647 (1981).
    5. W.-Z. Huang, C. Wang, L.-Q. Luo, Z.-X. Lu, Toxicon 26, 535 (1988).
    6. P. Aksoy, T. A. White, M. Thompson, E. N. Chini, Biochemical and Biophysical Research Communications 345, 1386 (2006).
    7. S. D. Wu, Y. Liu, X. Xu, Z. Zhu, Protein Expression and Purification 25, 319 (2002).
    8. D. A. Yost, B. M. Anderson, The Journal of biological chemistry 257, 767 (1982).
    9. A. Tohgo et al., The Journal of biological chemistry 272, 3879 (1997).
    10. C. Ceni et al., Journal of Biological Chemistry 278, 40670 (2003).
    11. R. M. Graeff, K. Mehta, H. C. Lee, Biochem Biophys Res Commun 205, 722 (1994).
    12. R. Nurten, I. Ustundag, N. Sayhan, E. Bermek, Biochem Biophys Res Commun 200, 450 (1994).
    13. H. Mullersteffner, M. Muzard, N. Oppenheimer, F. Schuber, Biochemical and Biophysical Research Communications 204, 1279 (1994).
    14. A. Velazquez-Campoy, E. Freire, Nature Protocols 1, 186 (2006).
    15. A. D. Nielsen, C. C. Fuglsang, P. Westha, Anal Biochem 314, 227 (2003).
    1. Q. Liu et al., Structure 13, 1331 (2005).
    2. S. Yamamoto-Katayama et al., Journal of molecular biology 316, 711 (2002).
    3. G. S. Prasad et al., Nat Struct Biol 3, 957 (1996).
    4. S. Hoshino et al., Journal of Immunology 158, 741 (1997).
    5. A. Tohgo et al., The Journal of biological chemistry 269, 28555 (1994).
    6. L. Guida, L. Franco, E. Zocchi, A. De Flora, FEBS Lett 368, 481 (1995).
    7. E. Cayama, R. A.-. Castro, Journal of Biological Chemistry 248, 6479 (1973).
    8. H. R. Kaslow, D. D. Lesikar, Biochemistry 26, 4397 (1987).
    9. I. Kukimoto et al., European Journal of Biochemistry 239, 177 (1996).
    10. E. Zocchi et al., Biochem Biophys Res Commun 196, 1459 (1993).
    11. M. Ziegler et al., Biochemistry 35, 5207 (1996).
    12. S. D. Wu et al., Chemistry Letters 31, 354 (2002).
    13. W.-Z. Huang, C. Wang, L.-Q. Luo, Z.-X. Lu, Toxicon 26, 535 (1988).
    14. S. D. Wu, Y. Liu, X. Xu, Z. Zhu, Protein Expression and Purification 25, 319 (2002).
    15. E. Sedlak, E. Valusova, M. Nesper-Brock, M. Antalik, M. Sprinzl, Biochemistry 40, 9579 (2001).
    16. X. Q. Liu, C. C. Wang, Journal of Biological Chemistry 276, 1146 (2001).
    17. A. R. Chaudhuri, I. A. Khan, R. F. Luduena, Biochemistry 40, 8834 (2001).
    18. A. Perczel, K. Park, G. D. Fasman, Analytical Biochemistry 203, 83 (1992).
    19. D. C. Vaz, J. R. Rodrigues, W. Sebald, C. M. Dobson, R. M. M. Brito, Protein Science 15, 33 (2006).
    20. C. M. Chung et al., Biophys J 88, 4232 (2005).
    21. J. M. Sturtevant, Annual Review of Physical Chemistry 38, 463 (1987).
    22. O. W. Griffith, Anal Biochem 106, 207 (1980).
    23. A. J. Brenner, E. D. Harris, Anal Biochem 226, 80 (1995).
    24. P. K. Smith et al., Anal Biochem 150, 76 (1985).
    25. K. Huus, S. Havelund, H. B. Olsen, M. van de Weert, S. Frokjaer, Biochemistry 44, 11171 (2005).
    26. S. O. Hashim, R. H. Kaul, M. Andersson, F. J. Mulaa, B. Mattiasson, Biochimica et biophysica acta 1723, 184 (2005).
    27. V. S. Devi et al., Biochemistry 45, 1599 (2006).
    28. K. Kontani, H. Nishina, Y. Ohoka, K. Takahashi, T. Katada, Journal of Biological Chemistry 268, 16895 (1993).
    29. L. Zhang, X. Xu, Z. Luo, D. Shen, H. Wu, Biochimie 91, 240 (2009).
    30. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic, M. Mazur, Chem Biol Interact 160, 1 (2006).
    31. C. Qian et al., Journal of molecular biology 359, 86 (2006).
    32. P. J. Britto, L. Knipling, P. McPhie, J. Wolff, Biochemical Journal 389, 549 (2005).
    33. T. A. Klink, K. J. Woycechowsky, K. M. Taylor, R. T. Raines, European Journal of Biochemistry 267, 566 (2000).
    1. F. B. Perler et al., Nucleic Acids Res 22, 1125 (1994).
    2. A. A. Cooper, Y. J. Chen, M. A. Lindorfer, T. H. Stevens, Embo Journal 12, 2575 (1993).
    3. Y. Shao, S. B. H. Kent, Chem Biol 4, 187 (1997).
    4. M. Belfort, R. J. Roberts, Nucleic Acids Res 25, 3379 (1997).
    5. J. P. Gogarten, A. G. Senejani, O. Zhaxybayeva, L. Olendzenski, E. Hilario, Annual Review of Microbiology 56, 263 (2002).
    6. S. Pietrokovski, Trends in Genetics 17, 465 (2001).
    7. S. Pietrokovski, Protein Sci 3, 2340 (1994).
    8. F. B. Perler, G. J. Olsen, E. Adam, Nucleic Acids Res 25, 1087 (1997).
    9. F. B. Perler, E. Adam, Curr Opin Biotechnol 11, 377 (2000).
    10. S. Pietrokovski, Protein Sci 7, 64 (1998).
    11. M. Q. Xu, F. B. Perler, The EMBO journal 15, 5146 (1996).
    12. S. R. Chong, M. Q. Xu, Journal of Biological Chemistry 272, 15587 (1997).
    13. V. Derbyshire et al., Proc Natl Acad Sci U S A 95, 762 (1998).
    14. K. Shingledecker, S.-q. Jiang, H. Paulus, Gene 207, 187 (1998).
    15. T. C. Evans, Jr., M. Q. Xu, S. Pradhan, Annual review of plant biology 56, 375 (2005).
    16. T. C. Evans, Jr., J. Benner, M. Q. Xu, The Journal of biological chemistry 274, 3923 (1999).
    17. S. Elleuche, K. Doring, S. Poggeler, Biochem Biophys Res Commun 366, 239 (2008).
    18. K. Ichiyanagi, Y. Ishino, M. Ariyoshi, K. Komori, K. Morikawa, J Mol Biol 300, 889 (2000).
    19. X. Q. Liu, Annual review of genetics 34, 61 (2000).
    20. F. S. Gimble, B. W. Stephens, Journal of Biological Chemistry 270, 5849 (1995).
    21. I. Saves, M.-A. Laneelle, M. Daffe, J.-M. Masson, FEBS Lett 480, 221 (2000).
    22. B. S. Chevalier, B. L. Stoddard, Nucleic Acids Res 29, 3757 (2001).
    23. T. M. T. Hall et al., Cell 91, 85 (1997).
    24. X. Duan, F. S. Gimble, F. A. Quiocho, Cell 89, 555 (1997).
    25. T. Klabunde, S. Sharma, A. Telenti, W. R. Jacobs, Jr., J. C. Sacchettini, Nat Struct Biol 5, 31 (1998).
    26. B. Dassa, H. Haviv, G. Amitai, S. Pietrokovski, Journal of Biological Chemistry 279, 32001 (2004).
    27. J. Xie, C. Q. Liu, J. F. Huang, X. F. Shi, D. Shao, Prog Biochem Biophys 28, 184 (2001).
    28. M. Q. Xu, M. W. Southworth, F. B. Mersha, L. J. Hornstra, F. B. Perler, Cell 75, 1371 (1993).
    29. M. Q. Xu et al., Embo Journal 13, 5517 (1994).
    30. K. Shingledecker, S. Jiang, H. Paulus, Archives of biochemistry and biophysics 375, 138 (2000).
    31. M. Q. Xu, H. Paulus, S. R. Chong, in Applications of Chimeric Genes and Hybrid Proteins, Pt A. (2000), vol. 326, pp. 376-418.
    32. D. W. Wood, Journal of Chemical Technology and Biotechnology 78, 103 (2003).
    33. M. R. Banki, D. W. Wood, Microbial cell factories 4, 32 (2005).
    34. R. L. Churchill, H. Lee, J. C. Hall, Journal of industrial microbiology & biotechnology 32, 355 (2005).
    35. P. E. Dawson, T. W. Muir, I. Clarklewis, S. B. H. Kent, Science 266, 776 (1994).
    36. Christopher, J. Noren, J. Wang, F. B. Perler, Angew. Chem. Int. Ed. 39, 450 (2000).
    37. M. Q. Xu, T. C. Evans, Methods 24, 257 (2001).
    38. R. Xu, B. Ayers, D. Cowburn, T. W. Muir, Proc Natl Acad Sci U S A 96, 388 (1999).
    39. K. Severinov, T. W. Muir, The Journal of biological chemistry 273, 16205 (1998).
    40. H. Iwai, A. Lingel, A. Pluckthun, Journal of Biological Chemistry 276, 16548 (2001).
    41. C. P. Scott, E. Abel-Santos, M. Wall, D. C. Wahnon, S. J. Benkovic, Proc Natl Acad Sci U S A 96, 13638 (1999).
    42. J. Li, W. C. Sun, B. Wang, X. Xiao, X. Q. Liu, Human Gene Therapy 19, 958 (2008).
    43. H. Paulus, Drugs of the Future 32, 973 (2007).
    44. H. Fsihi, V. Vincent, S. T. Cole, Proc Natl Acad Sci U S A 93, 3410 (1996).
    45. E. Adam, F. B. Perler, J Mol Microbiol Biotechnol 4, 479 (2002).
    46. X.-Q. Liu, J. Yang, FEBS Lett 572, 46 (2004).
    47. K. Nagasaki, Y. Shirai, Y. Tomaru, K. Nishida, S. Pietrokovski, Applied and environmental microbiology 71, 3599 (2005).
    1. B. W. Poland, M. Q. Xu, F. A. Quiocho, The Journal of biological chemistry 275, 16408 (2000).
    2. I. Ghosh, L. Sun, M. Q. Xu, Journal of Biological Chemistry 276, 24051 (2001).
    3. K. V. Mills, H. Paulus, Journal of Biological Chemistry 276, 10832 (2001).
    4. P. Van Roey et al., J Mol Biol 367, 162 (2007).
    5. K. Hiraga, V. Derbyshire, J. T. Dansereau, P. Van Roey, M. Belfort, J Mol Biol 354, 916 (2005).
    6. N. Guhan, K. Muniyappa, The Journal of biological chemistry 277, 16257 (2002).
    7. B. Dassa, G. Amitai, J. Caspi, O. Schueler-Furman, S. Pietrokovski, Biochemistry 46, 322 (2007).
    8. G. Chen, Biochemical Pharmacology 67, 1355 (2004).
    9. H. Tavakoli, H. Ghourchian, A. A. Moosavi-Movahedi, A. A. Saboury, Process Biochemistry 41, 477 (2006).
    10. Y. Rahimi, S. Shrestha, T. Banerjee, S. K. Deo, Analytical Biochemistry 370, 60 (2007).
    11. Z. M. Du et al., Biomolecular Nmr Assignments 2, 111 (2008).
    12. A. Perczel, K. Park, G. D. Fasman, Analytical Biochemistry 203, 83 (1992).
    13. G. S. Jackson et al., Proc Natl Acad Sci U S A 98, 8531 (2001).
    14. A. J. Brenner, E. D. Harris, Anal Biochem 226, 80 (1995).
    15. P. W. Riddles, R. L. Blakeley, B. Zerner, Anal Biochem 94, 75 (1979).
    16. P. J. Britto, L. Knipling, P. McPhie, J. Wolff, Biochemical Journal 389, 549 (2005).
    17. Z. wenjie, b. He, Z. Li, W. shiqiang, Journal of University of Science and Technology of China 31, 328 (2001).
    18. D. E. Sayers, B. A. Bunker, D. C. Koningsberger, R. Prins, Eds. (Wiley, New York, 1988), pp. 211-253.
    19. J. J. Rehr, R. C. Albers, S. I. Zabinsky, Physical Review Letters 69, 3397 (1992).
    20. J. P. Gangopadhyay, S. Q. Jaing, H. Paulus, Anal Chem 75, 2456 (2003).
    21. A. R. Thompsett, S. R. Abdelraheim, M. Daniels, D. R. Brown, Journal of Biological Chemistry 280, 42750 (2005).
    22. O. Okhrimenko, M. Jelesarov, Journal of Molecular Recognition 21, 1 (2008).
    23. M. W. Brazier et al., Journal of Biological Chemistry 283, 12831 (2008).
    24. H. B. Gray., B. G.Malmstrom., R. J. P. Williams, Journal of Biological Inorganic Chemistry 5, 551 (2000).
    25. T. C. Evans, Jr. et al., The Journal of biological chemistry 275, 9091 (2000).
    26. E. I. Solomon, D. W. Randall, T. Glaser, Coordination Chemistry Reviews 200-202, 595 (2000).
    27. M. F. Ahmad et al., J Mol Biol 382, 812 (2008).
    28. N. J. Blackburn, M. E. Barr, W. H. Woodruff, J. Vanderooost, S. Devries, Biochemistry 33, 10401 (1994).
    29. X. Jian, E. C. Wasinger, J. V. Lockard, L. X. Chen, C. He, J Am Chem Soc 131, 10869 (2009).
    30. M. Ralle, S. Lutsenko, N. J. Blackburn, Journal of Biological Chemistry 278, 23163 (2003).
    31. F. Arnesano, L. Banci, I. Bertini, S. Mangani, A. R. Thompsett, Proc Natl Acad Sci U S A 100, 3814 (2003).
    32. R. A. Pufahl et al., Science 31, 853 (1997).
    33. M. D. Wirt, L. Bubacco, J. Peisach, Inorganic Chemistry 34, 2377 (1995).
    34. L. S. Kau et al., J. AM. CHEM. SOC. 109, 6433 (1987).
    35. L. Zhang et al., Mol Biosyst 5, 644 (2009).
    36. E. Wiberg, N. Wiberg, A. F. Holleman, in Inorganic Chemistry, E. Wiberg, N. Wiberg, A. F. Holleman, Eds. (Academic Press, California, 2001), pp. 1296.
    1.陈国良,谭国良,孙平华,药学进展28, 529 (2004).
    2.全国结核病流行病学抽样调查技术指导组,中华结核和呼吸杂志25, 3 (2002).
    3. G. Huet, J. P. Castaing, D. Fournier, M. Daffe, I. Saves, J Bacteriol 188, 3412 (2006).
    4. C. M. Sassetti, D. H. Boyd, E. J. Rubin, Mol Microbiol 48, 77 (2003).
    5. H. Paulus, Drugs of the Future 32, 973 (2007).
    6. J. P. Gangopadhyay, S. Q. Jaing, H. Paulus, Anal Chem 75, 2456 (2003).
    7. V. Derbyshire et al., Proc Natl Acad Sci U S A 95, 762 (1998).
    8. L. Sun, I. Ghosh, H. Paulus, M. Q. Xu, Applied and environmental microbiology 67, 1025 (2001).
    9. K. V. Mills, H. Paulus, Journal of Biological Chemistry 276, 10832 (2001).
    10. H. Wu, Z. Hu, X. Q. Liu, Proc Natl Acad Sci U S A 95, 9226 (1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700