用户名: 密码: 验证码:
轻型木结构齿板及剪力墙性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻型木结构作为一种新型结构形式,在国内正得到重视和认可,因此我国迫切需要开展这方面的研究。本文从齿板连接件力学性能、钉节点荷载性能以及木剪力墙有限元分析三个方面入手,利用实验研究和模拟分析两种方法对国产材料用于轻型木结构工程的可行性进行了论述。在此基础上以一栋自行设计建造的实际木结构房屋为实例,进行了工程实践。主要进行的研究工作如下:
     (1)参考国外成熟齿板产品,结合实际加工能力和材料,设计了一款齿板连接件,并参照木结构规范对其承载能力进行了检测。试验结果表明,齿板连接件的板齿承载力和极限抗剪承载力受荷载与木纹夹角、荷载与板轴夹角等因素影响,并且自行设计的齿板在板齿承载力上较国外产品SK-20有一定差距,需要进行改进,以提升性能。
     (2)通过面板钉和骨架钉连接的单向加载试验,表明其荷载位移曲线具有高度非线性的特点,并且在面板钉连接试验中长钉荷载性能优于干壁钉,而在骨架钉连接试验中干壁钉抗拉和抗剪性能优于长钉;比较分析本研究的钉连接性能和国外钉连接试验结果,表明本研究的钉连接节点相比国外钉连接节点有更好的抗侧性能和最大承载力,但是刚度要低于国外试验结果。需要提高其刚度,这样可以在承受侧向荷载时,使结构具有更好的刚性。
     (3)基于模拟分析的思想,利用SAP2000结构有限元分析软件,模拟了木剪力墙在侧向荷载作用下的最大承载力和刚度。设置了不同覆面板的布置方式、钉种类以及钉间距等因素,模拟分析了不同因素对木剪力墙侧向性能的影响程度。结果表明:对于2.44m×2.44m墙体,覆面板竖向布置以及增加横撑可以有效提高剪力墙的侧向性能;对于钉节点,应该采用本试验中所提及的长钉,这样墙体的抗侧能力强于采用干壁钉的墙体;边缘部位的钉间距会有效影响剪力墙的侧向性能,较小的间距有利于最大限度的发挥钉节点的受力能力;剪力墙开洞会降低剪力墙在侧向荷载作用下的最大承载力。
     (4)本文运用同样的模拟方法,对一块4.88m×4.88m剪力墙进行比较,表明采用国产材料的剪力墙侧向承载力要高于采用国外材料的墙体,但是其刚度要低于采用国外材料的墙体刚度。
     (5)结合以上试验和模拟分析结果,本研究通过一项实际房屋的建造,表明国产材料可以运用于实际工程中,但在工程材料和分析研究方面,还需要进一步提升,加快我国轻型木结构真正国产化的步伐。
Light wood-framed structure, which is being gained attention and recognized, is a new structure system in China, so there are many work need to do in this field. Through experimental research and simulation analysis, the paper studied the tooth plate connector mechanical performance, nail connector load performance and the finite element analysis of wood shear walls and then verified the feasibility of building house using domestic raw material. At this basis, through a real light wood-framed house that was designed and built by ourselves, the paper carried on engineering practice. The main researchs are listed as following:
     (1) Refered with mature tooth metal plate products abroad and combined the actual processing capacity and materials, the paper designed a tooth metal plate connector and detected the connector mechanical performance by referencing wooden structure standard. The results showed the ultimate bearing and the ultimate shear capacity were influenced by the load and wood grain angle, shaft angle and plate load and other factors, and the ultimate bearing capacity of the self-designed tooth metal plate was less than that of the foreign product-SK-20; and there were many research works need to be improved to enhance performance.
     (2) The load-slip curves of nail connection in monotonic tests showed the character of high nonlinear, and the results showed the load performance of the spike is better than that of the wood screw in the panel nail connection testing, but the tensile and shear performance of screw is superior to that of spike. And through comparing the performance of domestic nail with aboard nail, the results indicated the performance of domestic nail connection is no less than abroad products, but the rigidity of the nail should be improved, which could improve the stiffness of the whole structure.
     (3) At base of the idea of simulation analysis, the paper, by using the software-SAP2000, simulated the maximum carrying capacity and stiffness of the wood shear walls under lateral loads. At this basis, the study, through set a series influence factors, which include different cover panel layout, types of nails and nail spacing, discussed the influence of different factors on the performance of wood shear wall under lateral load in the simulation analysis. The result indicated that for the 2.44m×2.44m wall, the vertical layout of the panel and cross brace can enhance the lateral performance; nail node, should be used the spikes referred in this experiment; In addition, the nail distance in the edge in the panel, which will effectively affect the lateral performance of the wall, should be small; the shear wall with opening performance will reduce the lateral wall.
     (4) The lateral performance of the wood shear wall, made form these domestic materials involved in the testing, is not inferior to the wood shear wall with foreign materials, but need to improve on the stiffness.
     (5) At base of these experimental and simulation analysis results, this study, through constructed a real house indicated that these domestic materials that can be used in practical projects, but in the field of engineering materials and analysis research, there, were many woks need to do, and then accelerated the localization of the technology of light wood-framed structure.
引文
[1]许晓梁。轻型木桁架承载能力研究。同济大学硕士论文。2005:2~3
    [2]《木结构设计手册》编辑委员会。木结构设计手册。北京:中国建筑工业出版社,2006:214~215
    [3]Johansen KW. Theory of timber connections. Publication 9. International Association of Bridge and Structural Engineering, Bern,1949,249-262
    [4]Foschi RO. Load-slip characteristic of nails. Wood Science 1974,7(1):69-76
    [5]Smith I, Whale LRJ. Characteristic properties of nailed and bolted joints under short-term lateral load, part 1. Wood Science 1987,11(2):53-59
    [6]Folz B, A Filiatrault. Cyclic analysis of wood shear walls. Journal of Structural Engineering, 2001.127(4):433-441
    [7]Johnn P. Judd, Fernando S. Fonseca. Analytical model for sheathing-to-framing connections in wood shear walls and diaphragms. Journal of Structural Engineering 2005,131(2):345-352
    [8]A.S. Blasetti, R. M. Hoffman. D. W. Dinehart. Simplified hysteretic finite-element model for wood and viscoelastic polymer connections for the dynamic analysis of shear walls. Journal of Structural Engineering,2008,134(1):77-86
    [9]Misra, R.D, M.L. Esmay. Stress distribution in the punched metal plate of a timber joint. Transactions of the ASAE,19669:839-842,845
    [10]Foschi, R.O. Analysis of wood diaphragms and trusses. Part Ⅱ:Truss-plate connection. Canadian Journal of Civil Engineering,1977,4:353-362
    [11]Beineke, L.A., S.K. Sudarth. Modeling joints made with light-gage metal connector plates. Forest Products Journal,1979,29(8):39-45
    [12]Noguchi, M. Ultimate resisting moment of butt joints with plate connectors stressed in pure bending. Wood Science,1980,12(3):168-175
    [13]Triche, M.H. Analysis and design of metal plate connections. Master thesis,1984. Purdue University, West Lafayette, Indiana
    [14]Palka, L.C. Exploratory study of short-term and long-term behaviour of truss-plate joints in tension under ambient laboratory conditions. Forintek Canada Corporation, Vancouver, B.C., Canada,1985
    [15]Reynolds, G.M. Analysis and testing of toothed metal plate wood truss connections. Master thesis.1988. Michigan Technological University, Houghton, Michigan.
    [16]Cramer, S.M., D. Shrestha, W.B. Fohrel. Theoretical consideration of metal-plate connected wood-splice joints. Journal of Structural Engineering,1990,116:3458-3474
    [17]Groom, L.H., A. Polensek. Nonlinear modeling of truss-plate joints. Journal of Structural Engineering,1992,118:2514-2531
    [18]Scott M. Kent, Rakesh Gupta, Thomas H. Miller, Dynamic Behavior of Metal-Plate-Connected Wood Truss Joints [J]. Journal of Structural Engineering,1997,123(8):1037-1045
    [19]R. N. Emerson, T. A. Collins. Effect of Toothed Metal Plate Connector Size on Wood Frame Behavior, Structures Congress 2004
    [20]Peter Ellegaard. Finite-Element Modeling of Timber Joints with Punched Metal Plate Fasteners. Journal of Structural Engineering,2006 132(3):409-417
    [21]McCutcheon. W. J. Racking deformations in wood shear walls. Journal of Structural Engineering,1985 111(2):257-269
    [22]David W. Dinehart, Harry W. Shenton Ⅲ. Model for Dynamic Analysis of Wood Frame Shear Walls. J. Engrg. Mech.,2000,126(9):899-908
    [23]A. Filiatrault. Static and dynamic analyses of timber shear walls. Can. J. Civ. Eng,1990 17(4):643-651
    [24]J. D. Dolan, R. O. Foschi, Structural Analysis Model for Static Loads on Timber Shear Walls. Journal of Structural Engineering,1991,117(3):851-861
    [25]Maurice W. White, J. Daniel Dolan. Nonlinear Shear-Wall Analysis. Journal of Structural Engineering,1995,121(11):1629-1635
    [26]Bryan Folz, Andre Filiatrault. Cyclic Analysis of Wood Shear Walls. Journal of Structural Engineering,2001,127(4):433-441
    [27]W. C. Pang, D. V. Rosowsky, S. Pei, J. W. van de Lindt. Evolutionary Parameter Hysteretic Model for Wood Shear Walls. Journal of Structural Engineering,2007,133(8): 1118-1129
    [28]Kasal, B., Collins, M., Foliente, G. Paevere, P. A hybrid deterministic and stochastic approach to inelastic modeling and analysis of light-frame buildings. Proc., RILEM Int. Symp. in Timber Engrg.,1999 Sweden
    [29]Greg C. Foliente, Bo Kasal, Phillip Paevere, Michael Collins. Whole Building Testing and Modeling for Improved Design of Light-Frame Buildings. Journal of Structural Engineering,2000:1-8
    [30]Foliente, G.C., Paevere, P., Saito, T. and Kawai, N. Seismic reliability analysis of timber buildings. Proc. Pacific Timber Engrg. Conf. (PTEC'99), Rotorua,1999 New Zealand.3: 166-173
    [31]Foliente, G.C., Paevere, P., Saito, T. and Kawai, N. Reliability assessment of timber shear walls under earthquake loads. Proc. World Conf. Earthquake Engrg.12WCEE,2000 Auckland, New Zealand Journal of Structural Engineering,2002 128 (1):39-47
    [33]Rosowsky, D., Ellingwood, B. Performance-based engineering of wood frame housing: Fragility analysis methodology. Journal of Structural Engineering,2002 128(1):32-38
    [34]Zhang, J., Foschi, R. O., Performance-based design and seismic reliability analysis using designed experiments and neural networks. Probab. Eng. Mech.,2004 19:259-267
    [35]John W. van de Lindt, Hongyan Liu. Nonstructural Elements in Performance-Based Seismic Design of Wood Frame Structures. Journal of Structural Engineering,2007 133(3):432-439
    [36]John W. van de Lindt, Shiling Pei, Hongyan Liu. Performance-Based Seismic Design of Wood Frame Buildings Using a Probabilistic System Identification Concept. Journal of Structural Engineering,2008 134(2):240-247
    [37]周海滨,费本华,任海青.世界木结构房屋研究的最新进展.木材工业,2006,20(4):1~4
    [38]何敏娟,Frank Lam.北美轻型木结构住宅建筑的特点。结构工程师,2004,1(1):1~5
    [39]刘雁,周定国。国外木结构建筑的抗震性能研究,世界林业研究,2005,18(2):
    [40]刘杰,赵东梅,田振昆。现代木结构建筑在上海。新建筑,2005,5
    [41]林利民,唐伟,王厚军,徐兰英,张长武。轻型木结构建筑胶合板覆板的握钉力性能。木材工业,2005,19(5):
    [42]王戈,费本华,林利民,唐伟,徐兰英。轻型木结构建筑覆板的集中静载性能。木材工业,2005,19(4):9~11
    [43]林利民,耿绍辉,王厚军。轻型木结构建筑用覆面胶合板的产品特点及性能要求。人造板通讯,2004,11(7):
    [44]王永维、龙卫国、杨学兵。规格材机械分级方法的研究。四川建筑科学研究,2005,31(6):
    [45]吕西林、程海江、卢文胜、倪春。两层轻型木结构足尺房屋模型模拟地震振动台试验研究。土木工程学报,2007,40(10):41~49
    [46]Zhang, S., Ni, C., Karacabeyli, E. A, Deflection Formula for Wood Walls without Hold-Down. Proceedings of the International Symposium on innovation and Sustainability of Structures in Civil Engineering, November 20-22, Nanjing, China. 2005:2528-2537
    [47]程海江、倪春、吕西林。有翼缘和竖向荷载的带洞口木框架剪力墙的试验研究。土木工程学报,2006,39(12):39~47
    [48]王焕杰、陆洲导、张盛东、王晓光。无填充块木结构的剪力墙变形实验研究。结构工程师,2007,23(5):82~85
    [49]周丽娜,何敏娟,倪春。有横撑高剪力墙抗侧力分析。结构工程师,2008, 24(2):48~51
    [50]何敏娟,何桂荣,倪骏,杨春梅。轻木结构正交主轴齿板连接承载力试验及分析。同济大学学报(自然科学版),2009,37(12):1581~1584
    [51]赵亮,刘利清,郑晓燕,孙德贤。均布荷载下意杨结构胶合板的性能研究。四川建筑科学研究,2010,36(1):22~25
    [52]邹晓静,郭云,刘雁。轻型木结构中钉节点试验研究。建筑结构,2010,40(3):111~114
    [53]陈佛喜,李爽,王焕,许民。轻型木桁架齿板的承载性能分析。木材工业,2009,23(6):14~17
    [54]许民,陈佛喜。平台框架式木结构住宅设计方法探讨。林业科学,2008,44(12):105~111
    [55]程海江。轻型木结构房屋抗震性能研究。同济大学博士论文。2007:25~26
    [56]程海江。轻型木结构房屋抗震性能研究。同济大学博士论文。2007:29~30
    [57]周丽娜.高剪力墙抗侧性能有限元分析.同济大学硕士论文.2008:56~57
    [58]Canadian Wood Council. Wood Design Manual. Canada:Canadian Wood Council,2001: 15-18
    [59]中国林业科学研究院木材工业研究所。中国主要树种的木材物理力学性质。北京中国林业出版社,1984:55~56
    [60]许民,陈磊,李坚。基于ANSYS的稻草/PS层合复合材料保温性能仿真分析。林业科学,2007,43(12):122~125

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700