用户名: 密码: 验证码:
部分煤气化与CO_2捕获的能源动力系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源、环境与经济的相容协调发展是21世纪能源科学研究的重要发展方向,以CO_2为主的温室气体引起的全球气候变暖是能源环境问题中的焦点和难点。煤基能源动力系统中控制CO_2已成为能源领域的重要研究课题,清洁能源载体氢气的制取也是能源系统发展的前沿课题。本文依托国家自然科学基金和国家高科技研究计划等重要科研项目,在关键过程机理、系统集成和技术路线的多层面上,开展了煤气化系统与双燃料重整系统的集成理论研究,提出了控制CO_2的部分煤气化系统和双燃料互补的氢电联产系统,预测了新系统的经济环境效益,并探索了适合中国的能源技术路线。
     为开拓高效环保的洁净煤发电系统,开展了煤气化系统中燃料转化过程整合机理以及CO_2分离一体化机理的研究。建立了煤气化、合成气燃烧和半焦燃烧过程整合的化学能与物理能梯级利用关系式;揭示组分和品位对燃料转化过程中能量匹配的影响;发现存在最佳的气化炉碳转化率,使燃料转化过程不可逆损失最小;分析燃料转化过程与CO_2分离过程的整合关系,揭示纯氧燃烧分离CO_2的部分煤气化系统实现了燃料转化过程与CO_2分离过程一体化。
     针对IGCC系统投资成本高的科技难题,本研究从“组分对口、分级转化”思路出发,基于燃料化学能与物理能综合梯级利用原理以及CO_2分离一体化的整合机理,提出控制CO_2的部分煤气化联合循环系统;揭示系统性能曲线簇具有包络线的特性规律,发现系统热效率在变量可行域内具有最佳值的特性。从热力性能、经济性能和环保性能等多方面与IGCC系统进行比较分析,指明新系统具有高发电效率、低投资成本和低能耗分离CO_2的优势。
     面临我国“煤多气少”的能源特点,以及针对传统天然气重整过程消耗大量优质燃料的问题,本研究提出了煤与天然气互补制氢联产系统。基于能的品位概念,建立煤与天然气互补的能量转化过程品位关系式;揭示双燃料化学能释放过程中能的梯级利用特性;采用图像(火用)分析方法,并通过与传统制氢系统比较,阐明煤与天然气互补制氢联产系统热力性能提高的根本原因。
     结合中国能源可持续发展战略,采用MESSAGE模型,对本文提出的部分煤气化系统和双燃料互补系统在中国电力和交通两大耗能领域的发展进行情景分析。通过对电力行业中控制CO_2的不同技术路线的发展情景比较,指出发展诸如本文提出的洁净煤发电系统能满足能源、经济、环境的协调发展,是适合中国的先进洁净煤发电技术路线。另外,交通燃料的剧增是导致中国石油对外依存度越来越大的一个主要原因。本研究以双燃料互补系统制甲醇代替交通燃料作为典型案例,预测新型交通燃料替代技术在中国未来交通领域发展情景,指出发展经济可行的煤代油技术路线是非常必要和迫切的。
Harmonious development of energy resource, environment and economy is the important forward direction of energy research in 21~(st) century. Global warming climate brought by main greenhouse gas CO_2 has been the focus and difficulty of energy science. CO_2 control of coal-based energy power system has been the topic of energy field, and the production of hydrogen that is clean energy carrier has been also paid attention. Supported by the National Natural Science Foundation of China and the Hi-tech Research and Development Program of China, from the aspects of key process mechanism, system integration and technology pathway, integration theories of coal gasification system and dual fuel reforming system are studied, and partial coal gasification system with CO2 capture and dual-fuel system with hydrogen and electricity production are proposed, and also, economic and envirmental benefits brought by the new systems are predicted, technology pathway suitable for China is suggested.
     To exploit high-efficiency and friendly-environment clean coal power system, integration mechanism of fuel conversion processes and integrative mechanism of CO_2 control in coal gasification system are developed. The equation of cascaded utilization of chemical energy and physical energy for integration of processes that include coal gasification, syngas combustion and char combustion is built. The equation reveals that the relation of composition and energy level to energy matching during the integration of the fuel conversion processes. This investigation shows there is an optimized GCCR (gasification carbon conversion ratio) to make irreversibility of fuel conversion processes minimal. Furthermore, integration relation between fuel conversion process and CO_2 separation process is analysized. It was revealed that partial coal gasification system adopting oxy-fuel combustion realizes integration of fuel conversion and CO_2 control.
     Aiming at high invest cost of IGCC system, based on cacaded conversion of fuel, the principle of cascaded utilization of chemical energy and physical energy, and integration mechanism of CO_2 control, partial coal gasification combined cycle with CO_2 capture is proposed. The performance characteristics of the system are revealed. Within the feasible range of variables, thermal efficiency of the system has maximal value. From the aspects of thermodynamic, economic and environmental performances, the new system is compared with IGCC system. The comparison shows the new system realizes higher thermal efficiency, lower investment cost and lower CO_2 separation energy consumption.
     In the face of China's energy resource structure with more coal and less natural gas, and aiming at a large of high quality fuel is consumed in the conventional reforming process of natural gas, dual fuel (natural gas and coal) energy system with hydrogen and electricity production is proposed. Based on the conception of energy level, the level equation of fuel conversion process, which describes the complementary utilization of coal and natural, is deduced. By the use of the equation, the characteristic of cascaded utilization of energy during chemical energy release of dual fuel is revealed. By the use of EUD, and compared with conventional systems with hydrogen production, the reasons of higher thermodynamic performance of the new system is explained.
     Based on sustainable energy development strategy of China, by the use of the MESSAGE model, scenarios of energy supply system of electricity and transportation are investigated, which include partial coal gasification system and dual fuel system with methanol production proposed by this thesis. Through comparison of different CO_2 control tenology pathways in electricity industry, it was pointed out that the clean coal technology such as the partial coal gasication system can meet harmonious development of energy, ecnomy and envirment. It is expected to be promised pathway suitable for China for CO_2 mitigation. Furthermore, speedy increasing fuel for transportation is an important reason that oil import increase speedily. This study use dual fuel system with methanol production as typical case, and predict scenario development of the new-type fuel for transportation substituting for oil, and point out that techonology patyway of economic feasible coal substituting for oil is necessary.
引文
[1]IPCC(Intergovernmental Panel on Climate Change).Climate Change 2001:The Scientific Basis.Summary for Policymakers.Cambridge:Cambridge University Press.2001.
    [2]IPCC.Climate Change 2001:Impacts,Adaptation,and Vulnerability.Summary for Policymakers.Cambridge:Cambridge University Press.2001.
    [3]IPCC.Climate Change 2007:Impacts,Adaptation,and Vulnerability.Summary for Policymakers.IPCC WG Ⅱ Fourth Assessment Report.2007.
    [4]Baumert K.A.and Blanchard O.,Llosa S.,Perkaus J.F..Building on the Kyoto Protocol:Options for Protecting the Climate.World Resource Institute.2002.
    [5]金红光,林汝谋.能的综合梯级利用与燃气轮机总能系统.北京:科学出版社,2008.
    [6]United Nations Framework Convention on Climate Change.FCCC/INFORMAL/84,GE.05-62220(E) 200705,United Nations,1992.
    [7]Kyoto Protocol to the United Nations Framework Convention on Climate Change.United Nations,1998.
    [8]DOE,Vision 21 Program Plan—Clean Energy Plants for the 21st Century US Department of Energy,1999.
    [9]Report to the President on Federal Energy Research and Development for the Challenges of the Twenty-first Century,President's Committee of Advisors on Science and Technology,Panel on Energy Research and Development,1997.
    [10]姚雨欣,杨芙,姚银燕.欧洲可再生能源技术发展现状与布局.中国科技产业,2000,59(131):48-50
    [11]European Communities.HYWAYS the European Hydrogen Roadmap.Project Report,Contract SES6-502596,2008.
    [12]Kaya Y,Tamaki M,Yamagishi K,Hayashi I.Japan's Strategy in Technology Development for Mitigating Global Warming.Energy Convers.Mgmt.,1996,37(6-8):679-684.
    [13]Fukuda K,Development of New Technology for Hydrogen Energy System,Proc.of the 3rd Conference of Energy Society of Japan,Tokyo,185-188,1994.
    [14]WE-NET(Word energy Network).Http://www.enaa.or.jp/WE-NET/contents e.html.
    [15]lwasaki W.Magnetic Refrigeration Technology for an International Clean Energy Network Using Hydrogen Energy(WE-NET).International Journal of Hydrogen Energy,2003,28(5):559-567.
    [16]World Commission on Environment and Development.Our Common Future.Oxford:Oxford University Press.1987.
    [17]Kim S.H.,Edmonds J.A..Potential for Advanced Carbon Capture and Sequestration Technologies in a Climate Constrained.DE-AC06-76RLO 1830,2000.
    [18]国家统计局工业交通统计司,国家发展和改革委员会能源局.中国能源统计手册2007,中国统计出版社,2007.
    [19]BP Group.BP Statistical Review of World Energy June 2008.Http://www.bp.com.
    [20]赵勇,刘大勇.全球气候变化——中国电力发展的挑战和机遇.电力技术经济,2004(3):14-18.
    [21]中国环境与发展国际合作委员会能源战略与技术工作组(CCICED).能源与可持续发展,中国环境科学出版社,北京,2003.
    [22]《中国电力年鉴》编辑委员会.2007中国电力年鉴.北京:中国电力出版社,2008.
    [23]吴仲华,张世铮.燃气轮机总能系统.能的梯级利用与燃气轮机总能系统.北京:机械工业出版社,1988.
    [24]林汝谋.燃气轮机总能系统发展和利用.燃气轮机技术,1990,3(4):6-8.
    [25]林汝谋,蔡睿贤,徐大懋。总能系统新概念与中国火电动力的发展.燃气轮机技术,1994,7(3):1-5.
    [26]林汝谋,金红光,蔡睿贤.燃气轮机总能系统及其梯级利用原理.燃气轮机技术,2008,21(1):1-12.
    [27]蔡睿贤,金红光,林汝谋,能源与环境领域综合的广义总能系统,二十一世纪100个科学交叉难题,科学出版社,2004.
    [28]金红光,温室气体控制一体化原理,二十一世纪100个科学交叉难题,科学出版社,2004.
    [29]林汝谋,金红光,蔡睿贤.新一代能源动力系统的研究方向与进展,动力工程,2003,23(3):2370-2376.
    [30]金红光,王宝群,刘泽龙,郑丹星.化工与动力广义总能系统的前景.化工学报,2001,52(7):565-571.
    [31]林汝谋,金红光,蔡睿贤.以燃气轮机为核心的多功能能源系统概念与集成机理.燃气轮机技术,2006,19(1):1-8.
    [32]林汝谋,金红光,蔡睿贤.以燃气轮机为核心的多功能能源系统基本形式与构成.燃气轮机技术,2006,19(2):1-10.
    [33]国家基础研究“十五”计划和2015年远景规划:能源科学《科学发展与优先领域》调研报告,2001.
    [34]焦树建.整体煤气化燃气——蒸汽联合循环(IGCC).北京:中国电力出版社,1996.
    [35]中国科学院工程热物理研究所,美国杜兰大学。中美专家关于整体煤气化联合循环(IGCC)技术报告.DOE/FE-0357,1996.
    [36]中国IGCC示范项目可行性研究课题组.整体煤气化联合循环(IGCC)发电示范项目技术可行性研究.内部报告,1996.
    [37]林汝谋,蔡睿贤.整体煤气化联合循环发电技术的综合研究.发电设备,1996,134(2):31-37.
    [38]清华大学,清华—BP清洁能源研究与教育中心.促进IGCC在中国的发展—用于发电和液体燃料生产.中国可持续能源项目,G-0610-08595,2008.
    [39]林汝谋,蔡睿贤,江丽霞.三种燃煤联合循环系统特性分析比较.燃气轮机技术,1996,12(3):22-28.
    [40]焦树建.烧煤的燃气——蒸汽联合循环装置.北京:清华大学出版社,1994.
    [41]Robertson,A.,et al.Second-Generation PFBC Systems Research and Development-Phase 2,Best Efficiency Approach in Light of Current Data.Proceedings of the Coal-Fired Power Systems 93-Advances in IGCC and PFBC Review Meeting,Don Bonk(ed.),DOE/METC 93/6131,1993.
    [42]Robertson,A.Development of Foster Wheeler's Vision 21 Partial Gasification Module.The Vision 21 Program Review Meeting,Morgantown,West Virginia,2001.
    [43]Nelson F.R.,Richard E.W..APFBC Repowering Makes Sense for Existing Coal-fired Units.Proceedings of 16th International Conference on Fluidized Bed Combustion,Reno,Nevada,FBCol-0054,2001.
    [44]Wheeldon J.M.,Bonsu A.K.,Foote J.P.,et al.Commissioning of the Circulating PFBC in the Foster Wheeler Advanced PFBC Train at the PSDF.Proceeding of the 16th International Conference on Fluidized Bed Combustion,Reno,Nevada,2001,13-16.
    [45]Robertson A,Bonk D.Effect of Pressure on Second-Generation PFB Combustion Plant.Journal of Engineering for Gas Turbines and Power,Transaction of the ASME,1994(116):345-351.
    [46]Foster Wheeler Development Corporation,Development of a High-performance Coal-fired Power Generating System with Pyrolysis and Char-fired High Temperature Furnace(HITAF).DE-AC22-91PC91154,1996.
    [47]Foster Wheeler Development Corporation,Engineering Development of Coal-fired High-performance Power System.DE-AC-95PC95143,Technical Progress Report 1-5,1995-1996.
    [48]Robertson A.Vision 21 Partial Gasification Module Pilot Plant Tests.The 27th International Technical Conference on Coal Utilization & Fuel System,Florida,USA,2002.
    [49]Center for Coal Utilization,Japan.Country Report on Coal Research and Development in Japan.The 27th Meeting of International Committee for Coal Research,Brisbane,Australia,2002.
    [50]R & D of Advanced Pressurized Fluidized Bed Combustion Technology(APFBC).http://www.ccuj.or.jp/gijutsu/pdf/ml-le.PDF.
    [51]Welford G.B.,Melling P.,Martin A.J.,et.al..Gasifier Developments and the Air Blown Gasification Cycle.Report No.Coal R195,DTI/Pub URN 00/968,2000.
    [52]Nigel P..Fuel Behaviour Studies in the Air-blown Gasification Cycle.Fuel,1997(76):1319-1325.
    [53]徐向东,钊丽.焦载热部分气化燃煤联合循环系统性能分析.热能动力工程,1997,12(5):354-357.
    [54]王立伟,徐向东.PG6581B燃气轮机构成燃煤联合循化系统的性能分析.热能动力工程,2005,20(4):346-349.
    [55]房倚天,周政,勾吉祥,张建民,王洋,张必江.循环流化床(CFB)煤/焦气化反应的研究.操作气速、固体循环速率对循环流化床气化反应的影响.燃料化学学报,1998,26(6):521-525.
    [56]房倚天,陈富艳.循环流化床(CFB)煤/焦气化反应的研究.温度、氧含量及煤种对 CFB 气化反应的影响.燃料化学学报,1999,27(1):23-28.
    [57]肖睿.煤加压部分气化试验研究与数值模拟.东南大学博士学位论文,2005.
    [58]肖屹东.加压喷动流化床煤部分气化试验研究和数学模型.东南大学硕士学位论文,2004.
    [59]黄军军.煤的流化床部分气化利用技术的实验研究.浙江大学硕士学位论文,2005.
    [60]International Energy Agency(IEA).Prospects for Hydrogen and Fuel Cells.Paris:Head of Publications Service,OECD/IEA,2005.
    [61]International Energy Agency(IEA).Hydrogen & Fuel Cells—Review of National R&D Programs.Paris:Head of Publications Service,OECD/IEA,2004.
    [62]United States Department of Energy.A National Vision of America's Transition to a Hydrogen Economy-to 2030 and beyond.2002.
    [63]High Level Group for hydrogen and Fuel Cells.Hydrogen Energy and Fuel cells-A Vision for our Future,Summary Report.2003.
    [64]Pena M.A.,Gomez J.P.,Fierro K.L.G..New Catalytic Routes for Syngas and Hydrogen Production.Applied Catalysis A:General,1996(144):7-57.
    [65]Kei Y.,Leonardo B..Integrated Energy Systems for the 21st Century:Coal Gasification for Co-producing Hydrogen,Electricity and Liquid Fuels.Interim Reports on work of the International Institute for Applied Systems Analysis(ⅡASA),IR-03-039,2003
    [66]Parsons Group(Parsons Infrastructure and Technology Group Inc.).Hudrogen Production Facilities.Plant Performance and Cost Comparisons.Final Report Prepared for the US Department of Energy,2002.
    [67]Basye L.,Swaminathan S..Hydrogen Production Costs-A Survey SENTECH,Inc.Report DOE/GO/10170-778,US Department of Energy,Maryland,US,1997.
    [68]Blok K.,Williams R.H.,Katofsky R.E.,Hendriks C.A..Hydrogen Production From Natural Gas Sequestration of Recovery.Energy 22(2/30:161-168.
    [69]Simbeck D.R.,Chang E..Hydrogen Supply:Cost Estimate for Hydrogen Pathways-Scoping Analysis.Prepared under Sucontract of National Renewable Energy Laboratory(NREL),2002.
    [70]曹立新,李燕馨,李文钊.甲烷部分氧化法制氢.分子催化,1994,8(5):375-382.
    [71]新民,郝茂荣,姚亦淳,格日勒.镍基甲烷化催化剂中的助剂作用:Ⅰ 稀土氢化物添加剂的电子效应.分子催化,4(4):321-328,1990.
    [72]Fujimoto K.,Yamazaki O.,Tomishige K..Development of Highly Stable Nickel Catalyst for Methane-steam Reaction Under Low Steam to Carbon Ratio.Applied Catalysis A:General,136(1):49-56,1996.
    [73]马婧.优化烃类蒸汽转化制氢工艺降低氢气生产成本.石油精炼与化工,33(11):31-35,2002.
    [74]Williams R.H.,Toward Zero Emissions from Coal in China.Energy for Sustainable Development(4):39-65,2001.
    [75]Gray D.,Tomlinson G..Hydrogen from Coal.Mitretek Technical Paper MTR 2002-31,2002.
    [76]Federal Energy Technology Center Office of Fossil Energy.U.S.Department of Energy.Vision 21 Program Plan,1999.
    [77]U.S.Department of Energy,Vision 21 Technology Roadmap.1999.
    [78]Scott M.K..World's First,Coal-based Zero-emission Electricity and Hydrogen Plant NARUC meeting.2003.
    [79]Lin S.Y.,Suzuki Y.,Hatanoel H.et al..Innovative Hydrogen Production by Reaction Integrated Novel Gasification Process.Proceedings of ECOS'99,Japan,Tokyo,1999.
    [80]Lin S.Y.,Suzuki Y.,Hatanoel H.and Harada M..The Concept of a New High Efficiency and Clean Coal Utilization Process(HyPr-RING).The 10th International Conference on Coal.China,Taiyuan,1999.
    [81]Lin S.Y.,Harada M.,Suzuki Y.,Hatanoel H..Hydrogen Production from Coal by Separating Carbon Dioxide During gasification.Fuel,2002(81):2079-2085.
    [82]Niksa S.,Liu G.S.,Hurt R.H..Coal Conversion Submodels for Design Applications at Elevated Pressures.Part Ⅰ.Devolatilization and Char Oxidation.Progress in Energy and Conbustion Science,2003(29):425-477.
    [83]Liu G.S.,Niksa S..Coal Conversion Submodels for Design Applications at Elevated Pressures.Part Ⅱ.Char Gasification.Progress in Energy and Conbustion Science,2004(30):679-717.
    [84]肖睿,金保升,熊源泉等.温度对中试规模的喷动流化床煤部分气化行为的影响.燃烧科学与技术,2005,11(5):395-399.
    [85]Wheeldon J.M.,Bonsu A.K.,Foote J.P.,et al..Commissioning of the Circulating PFBC in the Foster Wheeler Advanced PFBC Train at the PSDF.16~(th) International Conference on Fluidied Bed Combustion.Reno:ASME,2001,574-582.
    [86]李乾军,章名耀,施爱阳等.加压喷动流化床煤部分气化试验.东南大学学报,2006,36(5):765.768.
    [87]Takai M.,Liyama N.,Usami K.,et al..Development of Advanced PFBC Technology.Proceedings of the 8~(th) SCEJ Symposium on Fluidization,Kitakyusyu:SCEJ,2002.
    [88]Jin H.G.,Hong H.,Wang B.Q.,Han W..A New Principle of Synthetic Utilization of Chemical Energy and Physical Energy.Science in China ser.E Engineering & Materials Science,2005,48(2):163-179.
    [89]金红光,洪慧,王宝群,韩巍,林汝谋.化学能与物理能综合梯级利用原理.中国科学E 辑,2005,35(3):299-313.
    [90]Han W.,Jin H.G.and Lin R.M.et al.A New Approach of Cascade Utilization of the Chemical Energy of Fuel.2005,15(1):84-89.
    [91]Ishida M.Thermodynamics Made Comprehensible.Nova Science Publishers,Inc.,2001.
    [92]朱明善.能量系统的(火用)分析.第一版,北京:清华大学出版社,1998.
    [93]Ishida M.,Kawamura K..Energy and exergy analysis of a chemical process system with distributed parameters based on the energy-direction factor diagram.Industrial Engineering and Chemical Process Design & Development,1982(21):690-702.
    [94]Jin H.G.,Ishida M..Graphical Exergy Analysis of Complex Cycle.Energy,1993,18(6):615-625.
    [95]U.S.DOE Assistant Secretary for Fossil Energy.Clean coal technology demonstration program.Report of DOE/ASME,1993.
    [96]Cai R.X.,Lin R.M.,Xiao Y.H.,Xu D.M..Coal-fired combined cycle power generation technology with high efficiency,low pollution,and low water consumption.UNESCO,Senior Conference of Cleaning Coal-Fired Technology in China,Beijing,China,1993.
    [97]Benjamin Dr.,Hsieh C.B.,Overview of Clean Technology in the United States.The United States of America and the People's Republic of China Experts Report on Integrated Gasification Combined Cycle Technology(IGCC),1996.
    [98]邓世敏.“内外燃煤一体化联合循环发电系统及发电方法”.申请号:03100895.x,2003.
    [99]Lozza G.,Chiesa P.,DeVita L..Combined-cycle power stations using “clean-coal technologies”:thermodynamic analysis of full gasification versus fluidised bed combustion with partial gasification.Journal of Engineering for Gas Turbines and Power,1996,118(4):737-748.
    [100]Foster Wheeler Development Corporation.Development of pressurized circulating fluidized bed partial gasification module(PGM).Dept.of energy,contract No:DE-FC26-00NT40972,2003.
    [101]Makoto T.,Noriyuki I.,Keiji U.et al..Development of advanced PFBC technology.Proceedings of the 8th SCEJ Symposium on Fluidization,Kitakyusyu,Japan,2002:38-45.
    [102]Robertson A.,Van Hook J.,Burkhard F.,Carli O.,et al..Second-generation PFBC systems research and development—Phase 2,circulating PFBC test results.DOE/MC/21023-94/C0352,1994.
    [103]Jericha H.,Gottlich E.,Sanz W.,Heitmeir F..Design optimization of the Graz cycle prototype plant”,Journal of Engineering for Gas Turbines and Power,2004,127(4):765-772.
    [104]Chiesa P.,Lozza G..CO_2 Emission Abatement in IGCC Power Plants by Semiclosed Cycles:Part A-with Oxygen-blown Combustion.Journal of Engineering for Gas Turbine and Power.1999,121(4):635-641.
    [105]Audus H..Leading Options for the Capture of CO_2 at Power Stations.IEA Greenhouse gas R&D Programme.Proceedings of the 5th International Conference on Greenhouse Gas Control Technologies,Australia,2000
    [106]Davison J.,Bressan L.,Domenichini R..CO_2 capture in coal-based IGCC power Plants.Proceeding of the 7th international conference on Greenhouse Gas Control Technologies,Canada,2004.
    [107]Zheng D.X.,Moritsuka H.,Ishida M.Graphic energy analysis for coal gasification—combined power cycle based on energy utilization diagram.Fuel Processing Technology,1986(13):125-138.
    [108]Liu Z.L.,Jin H.G.,Lin R.M..Exergy analysis of integration between air separation process and IGCC.Proceedings of ASME TURBO EXPO 2000,Munich,2000.
    [109]林汝谋,段立强,金红光.CO_2 零排放的 IGCC 系统探索研究[J].工程热物理学报,2002,23(6):661-664.
    [110]Rao A.,Verma A.,Samuelsen G..Engineering and economic analyses of a coal-fueled solid oxide fuel cell hybrid power plant.Proceedings of GT2005 ASME Turbo Expo 2005:Power for Land,Sea and Air June 6-9,Reno-Tahoe,Nevada,USA,GT2005-68762,2005.
    [111]Sanz W.,Jericha H.,Moser M.,Heitmeir F..Thermodynamic and economic investigation of an improved GRAZ cycle power plant for CO_2 capture.Journal of Engineering for Gas Turbines and Power,2005,127(4):765-772.
    [112]张寒,郑洪,李政,倪维斗.整体煤气化联合循环的经济性计算和分析.燃气轮机技术,2003,16(3):6-12.
    [113]张娜,蔡睿贤.燃气轮机考虑经济性和环保因素的热力分析,工程热物理学报,1997,18(4):405-408.
    [114]徐钢,林汝谋,金红光.IGCC系统多目标性能统一量化评价准则.工程热物理学报,2005,26(4):545-548.
    [115]Kreutz T.,Williams R.,Consonni S.,Chiesa P.Co-production of hydrogen,electricity and CO_2from coal with commercially ready technology.Part B:Economic analysis.International Journal of Hydrogen Energy,2005(30):769-784.
    [116]GE Globe Research.Fuel-flexible gasification-combustion technology for production of H_2 and sequestration-ready CO_2.Report of DOE,DOE Award No.DE-FC26-00FT40974,2003.
    [117]Williams R.H.,Bunn M.,Consonni S.,Gunter W.,Holloway S.,Moore R.,et al.Advanced energy supply technologies.In:World energy assessment:energy and the challenge of sustainability,chapter 8 Washington/New York,US:UNDP/WEC/UNDESA;2000[ISBN:92-1-126126-0].
    [118]Rukes B.,Taud R..Status and perspectives of fossil power generation.Energy,2004,29:1853-1874.
    [119]Yamashita K.,Barreto L..Integrated energy systems for the 21st century:Coal gasification for co-producing hydrogen,electricity and liquid fuels.International Institute for Applied Systems Analysis,Interim report,IR-03-039,2003.
    [120]His S.,Hydrogen:an energy vector for the future?,www.ifp.fr,2004.
    [121]Gambini M.,Vellini M.,Comparative analysis of H_2/O_2 cycle power plants based on different hydrogen production systems from fossil fuels.International Journal of Hydrogen Energy,2005(30):593-604.
    [122]The United States Department of Energy National Energy Technology Laboratory(NETL).Capital and operating cost of hydrogen production from coal gasification.Report of DOE,Contract No.DE-AM26-99FT40465,2003.
    [123]Scott D.S..Hydrogen in the evolving energy system.International Journal of Hydrogen Energy,1993,18:197-204.
    [124]Jin H.G.,Han W.,Gao L..Multifunctional Energy System(MES) With Multifossil Fuels and Multi Products”,AMSE Trans.,Journal of Engineering for Gas Turbines and Power,2007(129):331-337.
    [125]韩巍.多能源互补的多功能能源系统及其集成机理.中国科学院工程热物理研究所博士学位论文,2006.
    [126]Kreutz T.G.,Williams R.H.,Socolow RH,Chiesa P,Lozza G.Production of hydrogen and electricity from coal with CO_2 capture,the Sixth Greenhouse Gas Control Technologies Conference,Kyoto,Japan,2002.
    [127]Bj¢rn G,Steinar L.Hydrogen from natural gas without release of CO_2 to the atmosphere.International Journal of Hydrogen Energy,1998,23(12):1087-1093.
    [128]Jin H.G.,Han W.,Gao L..A Novel MultiFunctional Energy System(MES) for CO_2 Removal with Zero Energy Penalty.AMSE Trans.,Journal of Engineering for Gas Turbines and Power, 2008,130(2):(021401).
    [129]IAEA,Model for Energy Supply Strategy Alternatives and Their Genral Environmental Impacts (MESSAGE)—User Manual.Vienna,2003.
    [130]中华人民共和国国家统计局.http://www.stats.gov.cn/tjsj/ndsj/.
    [131]周凤起,王庆.中国能源五十年.北京:中国电力出版社,2001.
    [132]周大地,郭元.我国能源发展的问题及对策.中国金融半月刊,2004(15):12-13.
    [133]戴彦德,任东明.从我国社会经济发展所面临的能源问题看可再生能源发展的地位和作用.政策与管理,可再生能源,2005,120(2):4-8.
    [134]Shi Z.I.,Su W.S..China-India-Japan-United States Cooperation to Promote Clean Air:Energy Use and Environment Pollution in China.Associates South North Institute for Sustainable Development,Beijing,China,2001.
    [135]国家发展和改革委员会能源局、能源研究所,中华人民共和国可再生能源法立法研究课题组.可再生能源立法研究报告.2004.
    [136]国家发展和改革委员会.节能中长期专项规划.
    [137]中华人民共和国国民经济和社会发展第十一个五年规划,“十一五”两大发展主题——“十一五”规划节能和环保专题报告.
    [138]刘京和.中国小水电技术现状与展望.中国可再生能源发展战略国际研讨会,2005:11-20.
    [139]施鹏飞.中国风电发展未来展望.中国可再生能源发展战略国际研讨会,2005:21-26.
    [140]Ni W.D.,Li Z.,Xue Y..National Energy Future Analysis and Energy Security Perspectives in China—Strategic Thinking on the Energy issue in the 10th Five-Year Plan Presentation for the Workshop in East Asia Energy Future.2000.
    [141]何建坤,张希良.促进可再生能源大规模发展的战略与政策.中国可再生能源发展战略国际研讨会,2005:1-10.
    [142]王斯成.中国光伏发电的现状和展望.中国可再生能源发展战略国际研讨会,2005:27-39.
    [143]国家发展和改革委员会能源研究所.中国可持续发展能源暨碳排放情景分析综合报告,2003.
    [1]林汝谋,金红光等编著.燃气轮机发电动力装置及应用.北京:中国电力出版社,2004
    [2]中华人民共和国国家标准.燃气轮机 词汇.GB/T15135-2002(ISO 11086,1996,MOD),2002
    [3]王永青,严家,闻雪友.一种新的热力循环性能的估算方法和HAT循环的性能估算公式.热能动力工程,1998,13(77):345-347
    [4]蔡睿贤.余热锅炉式燃气-汽轮机联合循环近似热力学分析.工程热物理学报,1981,2(4):304-309
    [5]张娜,蔡睿贤.双再热燃气—蒸汽轮机联合循环性能估算.动力工程,1996,16(6):55-57
    [6]焦树建.燃气—蒸汽联合循环.北京:机械工业出版社,2000
    [7]Alessandro Franco,Claudio Casarosa.On some perspectives for increasing the efficiency of combined cycle power plants.Applied Thermal Engineering,2002,22:1501-1518
    [8]Alessandro Franco,Alessandro Russo.Combined cycle plant efficiency increase based on the optimization of the heat recovery steam generator operating parameters.International Journal of Thermal Sciences,2002,41:843-859
    [9]Robert Farmer.730-MW combined cycle on 24-hr dispatch logging 97%availability.Gas Turbine World,February-March 2004:22-25
    [10]GTW.Gas Turbine World 1993-2002 Handbook.A Pequot Publication,Vol.15-22,1993-2002
    [1]林汝谋,段立强,金红光,邓润亚,邓世敏.IGCC系统全工况设计优化新方法[J].中国工程热物理学报,2004,25(4):541-545
    [2]James C.Corman,Douglas M.Todd,Technology Considerations For Optimization IGCC Plant Performance[J].ASME,93-GT-358,1993.
    [3]Tsatsaronis G,Lin L,Pisa J,Tawfik T.Design Optimization of IGCC Power Plants[C].Proceedings of the American Power Conference.lllinois Inst.Technol.,Chicago,IL,USA.1992
    [4]迟全虎,林汝谋,邓润亚,邓世敏,金红光.IGCC系统多变量综合优化设计[J].中国工程热物理学报,2004,25(3):361-365
    [5]林汝谋,段立强,金红光,江丽霞,蔡睿贤.整体煤气化联合循环热力系统设计优化研究[J].燃气轮机技术,2004,17(2):3-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700