用户名: 密码: 验证码:
丙烷脱氢氧化制丙烯过程的模型化与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来丙烯生产能力的增长远远低于丙烯需求的增长,丙烷脱氢是增产丙烯的一条重要技术路径。丙烷脱氢氧化制丙烯是指在丙烷脱氢后,对反应过程中产生的氢进行选择性氧化的过程,与传统的催化脱氢相比,不但能提高平衡转化率,还能够实现反应体系的自热或放热操作。但脱氢与氢选择性氧化的耦合增加了过程的复杂性。
     本研究针对丙烷脱氢氧化制丙烯技术,对脱氢、氢选择性氧化和再生反应过程开展模拟和优化研究工作,目的是要解决反应器优化设计与放大及反应-再生和脱氢-氢选择性氧化组合工艺优化的关键工程问题,为丙烷脱氢氧化新技术的开发提供理论依据。本文大致可分为四个部分:
     一是脱氢过程的模型化与模拟研究,在Cr2O3/Al2O3催化剂和Pt-Sn/Al2O3催化剂脱氢动力学的基础上,分别建立了催化剂失活时的轴向和径向一维固定床绝热脱氢反应器动态模型。模拟显示脱氢催化剂的活性下降迅速。虽然等温操作时在反应初期C3H8的转化率较绝热操作要高,但因其反应器整体温度更高,催化剂的活性下降更快,导致C3H8的转化率和C3H6的选择性也下降更快。
     二是催化剂再生过程的模型化与模拟研究,应用内扩散效率因子修正的均匀模型,在研究了内外扩散影响计算方法的基础上,建立了综合考虑内外扩散影响的轴向与径向绝热固定床一维非均相烧焦动态模型。模拟显示,对于有催化烧焦作用的Cr2O3/Al2O3催化剂,由于外扩散的影响,催化剂颗粒温度与气相主体温度有显著的差别并造成催化剂颗粒多态的存在,降低氧浓度或提高气体流速能够消除多态现象的发生;当烧焦再生过程受外扩散控制时,烧焦首先在反应器入口处完成,外扩散影响减弱时,则首先完成烧焦再生的位置向后移动直至反应器出口;对于烧焦速率很慢的Pt-Sn催化剂,气相主体温度和催化剂颗粒温度相差很小,床层各处结焦量基本上以同一速率下降;不管是Cr2O3/AlO3催化剂还是Pt-Sn催化剂,实行反转烧焦操作并没有明显的优势。
     反应器出口压力相同时,脱氢过程径向反应器丙烯的选择性和收率都高于轴向反应器。但再生过程轴向反应器烧焦速度要快于径向反应器。采用径向反应器常压烧焦是不利于整个丙烷-脱氢再生周期的,要想使径向反应器有竞争力,必须提高再生过程反应器的入口压力。
     三是脱氢单元和再生单元的动态优化以及在此基础上的反应-再生周期优化。针对再生过程优化目标-再生时间不确定的特殊性,提出了两种动态优化方法。两种优化方法的结果很接近,但第二种优化方法能大大减少优化执行的时间;合理的优化方案是在氧浓度上限优化反应器入口温度,它不但得到了优化问题的最优解,而且也降低了优化问题的复杂性,节省了优化时间;通过反应-完全再生和反应-不完全再生两种操作模式的分层优化,得到了最优残余焦水平,最佳脱氢反应时间和反应/再生过程操作参数三个层次的优化值。结果表明反应-不完全再生模式是最佳的操作模式,最优的再生后残余焦含量为0.00071 g coke/g cat,最优的脱氢反应时间为12分钟,对应的烧焦再生时间为9.27分钟。
     四是氢选择性氧化过程的模型化与模拟及脱氢-氢选择性氧化耦合过程的模拟与优化。建立了氢选择性氧化反应器数学模型并实现了脱氢-氢选择性氧化耦合过程的模拟和优化。模拟显示耦合级数越大,总转化率、选择性和收率随时间下降越快。稳态优化显示将氢全部烧掉是最优的操作模式。而动态优化显示当采用多级氢选择性氧化操作时,在反应后期氢选择性氧化反应器入口氧氢比有所降低。
     通过这样层层递进的研究,不但对脱氢、再生和氢选择性氧化过程有了深刻的认识,而且还获得了过程的最优操作参数和最优的反应-再生-氢选择性氧化系统操作模式。研究的结果将对反应器的设计和过程的开发起到重要的指导作用。
The increasing demand for propene derivatives has produced a correspondingly heavy increase in propylene demand during the last 20 years. Propane dehydrogenation is believed to have a great potential as a propene booster in the future. In contrast to conventional catalytic dehydrogenation, alternative approach for obtaining higher-than-equilibrium olefin yields and for making the overall process thermoneutral or exothermic is combination processes of catalytic dehydrogenation (DH) and selective hydrogen combustion (SHC). But the process becomes complex due to coupling of dehydrogenation and selective hydrogen combustion.
     In this study, simulation and optimization are carried out to the reaction process of the dehydrogenation, the selective hydrogen combustion and the regeneration of coked catalyst. The purpose is to solve reactor optimization design and scale up, the process optimization of the reaction-regeneration and the dehydrogenation-selective hydrogen combustion, so as to provide theoretical reference for new technology development of propane dehydrogenation oxidation. This paper can be divided into four parts:
     First, modeling and simulation of the dehydrogenation process:based on dehydrogenation kinetics of Cr2O3/Al2O3 catalyst and Pt-Sn/Al2O3 catalyst, the one-dimensional dynamic adiabatic fixed bed reactor models of axial and radial are established respectively with catalyst deactivation. Simulations show the rapid decline of catalyst activity. Although C3H8 conversion is higher at initial reaction stage under the isothermal operation than the adiabatic operation, higher overall temperature and the faster decrease of the catalyst activity result in faster decrease of the C3H8 conversion and C3H6 selectivity under the isothermal operation.
     Second, modeling and simulation of the catalyst regeneration process:an effectiveness factor modified coke burning-off physical model is used to establish the axial and radial heterogeneous dynamic reactor model for regeneration process by considering the pore and film diffusion influence. Simulations show that, due to the catalytic effect of Cr2O3/Al2O3 catalyst on the coke combustion, multi-steady states exist for the catalyst pellets and the catalyst temperature is sensitive to gas temperature caused by the film diffusion influence, however, at increased mass flow rate or lowered oxygen concentration, multi-steady states will not appear. Under the strong influences of film diffusion, the coke in the packed bed reactor will first be exhausted at the inlet, while if the film diffusion resistance is decreased, the position of first coke exhaustion moves toward the outlet of the reactor. For Pt-Sn catalyst, the difference between the gas temperature and the catalyst temperature are very small because of the very slow coke combustion rate, coke decline at the same rate basically at different location of the bed. Whether the Cr2O3/Al2O3 catalyst or the Pt-Sn catalyst, the reverse coke combustion operation has no obvious advantage.
     Keeping the same outlet pressure, the yield and selectivity of C3H6 at the radial reactor is higher, however, the regeneration time is shorter at the axial reactor. Therefore, increase of the inlet pressure of radial reactor is needed so that the average yield of the radial reactor exceeds the axial reactor in the entire reaction-regeneration cycle.
     Third, dynamic optimization of the dehydrogenation and the regeneration units and the optimization of reaction-regeneration cycle:two kinds of dynamic optimization methods are proposaled for the regeneration process due to the specificity of uncertain regeneration time. The results of two kinds of optimization methods are closed, but the second optimization method can significantly reduce the implementation time of the optimization. Reasonable optimization strategy is to optimize the inlet temperature at upper limit of oxygen concentration, which not only get the optimal solution but also reduces the complexity and save optimization time. Through hierarchical optimization to two operation modes of reaction-complete regeneration and reaction-incomplete regeneration, the optimization value at three levels has obtained-the optimal residual coke content, the best dehydrogenation time and the optimal operating parameters of reaction/regeneration unit. The results show that the optimal operation mode is reaction-incomplete regeneration, the optimal residual coke content is 0.00071 g coke/g cat, the best dehydrogenation time is 12 minutes and the corresponding regeneration time is 9.27 minutes.
     Fourth, modeling and simulation of the SHC and simulation and optimization of DH-SHC coupling process:a model of the SHC is established, simulation and optimization are realized to DH-SHC process. Simulations show that the more DH-SHC stage, the total conversion of C3H8, the selectivity and yield of C3H6 decrease faster with time. Steady-state optimization shows that the optimal operation mode is that all the hydrogen is combustion. But dynamically optimization shows that, to multi-stage DH-SHC operation, the ratio of O2 to H2 of SHC reactor need decrease at the later period of reaction.
     Through this research, there is more understanding to the dehydrogenation, regeneration and selective hydrogen combustion processes, further, the optimal operating parameters of these processes and the optimal operation mode of the reaction-regeneration-selective hydrogen combustion are obtained. The results are helpful to the reactor design and the process development.
引文
[1]Domenico S., Ivano M. Dehydrogenation of paraffins:synergies between catalyst design and reactor engineering [J]. Catalysis Today,2006,111:133-139.
    [2]Daniel E. R. Dehydrogenation-Heterogeneous. Encyclopedia of Catalysis [M], John Wiley & Sons, Inc,2002.
    [3]Bhasin M. M., McCaina J. H., Vora B. V., Imai T., Pujad'o P.R. Dehydrogenation and oxydehydrogenation of paraffins to olefins[J]. Applied Catalysis A,2001,221: 397-419.
    [4]陈建九,史海英,汪泳.丙烷脱氢制丙烯工艺工艺[J].精细石油化工进展,2000,1(12):23-28.
    [5]苏建伟,牛海宁.丙烷脱氢制丙烯技术进展[J].化工科技,2006,14(4):62-66.
    [6]常侃,兰州石化公司丙烯精馏塔模拟计算及系统诊断[硕士论文].天津大学,2005
    [7]Peter Eisele, Richard Killpack. Propane-Ullmann's Encyclopedia of Industrial Chemistry[M]. Wiley-VCH, Weinheim,2005
    [8]钱伯章.增产丙烯的技术进展[J].化工技术经济,2006,24(04):33-40.
    [9]朱明慧,王红秋.国外丙烯生产技术最新进展及技术经济比较[J].国际石油经济,2006,1:38-42.
    [10]余长林,葛庆杰,徐恒泳等.丙烷脱氢制丙烯研究新进展[J].化工进展,2006,25(9):977-982.
    [11]R(?)sjorde A., Kjelstrup S., Johannessen E., Hansen R. Minimizing the entropy production in a chemical process for dehydrogenation of propane[J]. Energy,2007,32: 335-343.
    [12]Ivano M., Laura P. Light paraffins dehydrogenation in a fuidized bed reactor[J]. Catalysis Today,1999,52:259-269.
    [13]Gascon J., Tellez C., Herguido J., Menendez M. A two-zone fluidized bed reactor for catalytic propane dehydrogenation [J]. Chemical Engineering Journal,2005,106: 91-96.
    [14]Andy P., Davis M. E. Dehydrogenation of Propane over Platinum Containing CIT-6[J]. Ind. Eng. Chem. Res.2004,43:2922-2928.
    [15]Martin van Sint Annaland. A novel reverse flow reactor coupling endothermic and exothermic reactions [D]. Universiteit Twente,2000.
    [16]Baerns M., Buyevskaya O. Simple chemical processes based on low molecular-mass alkanes as chemical feedstocks [J]. Catalysis Today,1998,45:13-22.
    [17]Kotelnikov G R. Catalysts and dehydrogenation processes:problems of use and operation[J]. React. Kinet. Catal. Lett.,1995,55(2):537-545.
    [18]张一卫,周钰明,许艺,吴沛成.丙烷临氢脱氢催化剂的研究进展[J].化工进展,2005,24(7):729-732.
    [19]尤廷秀,由宏君.丙烷脱氢氧化制丙烯反应动力学研究进展[J].天然气化工,2004,29(6):51-56.
    [20]Guidotti M., Dal Santo V., Gallo A., et al. Catalytic dehydrogenation of propane over cluster-derived Ir-Sn/SiO2 catalysts[J]. Catalysis Letters,2006,112(1-2):89-95.
    [21]Nijhuis T. A., Tinnemans S. J., Visser T., et al. Towards real-time spectroscopic process control for the dehydrogenation of propane over supported chromium oxide catalysts[J]. Chemical Engineering Science,2004,59:5487-5492.
    [22]余长林,葛庆杰,徐恒泳,李文钊.Cr对Pt-Sn/Al2O3催化剂丙烷脱氢性能的影响.燃料化学学报,2006,34(2):209-213.
    [23]Yu Changlin, Ge Qingjie., Xu Hengyong, et al. Effects of Ce addition on the Pt-Sn/y-A12O3 catalyst for propane dehydrogenation to propylene[J]. Applied Catalysis A,2006,315:58-67.
    [24]Yu Changlin, Ge Qingjie., Xu Hengyong, et al. Propane dehydrogenation to propylene over Pt-based catalysts[J]. Catalysis Letters,2006,112(3-4):197-201.
    [25]Akporiaye D., Jensen S. F., Olsbye U., et al. A Novel, Highly Efficient Catalyst for Propane Dehydrogenation[J]. Ind. Eng. Chem. Res.,2001,40(22):4741-4748.
    [26]Zhang Yiwei, Zhou Yuming, Qiu Anding, et al. Propane dehydrogenation on Pt-Sn/ZSM-5 catalyst:Effect of tin as a promoter[J]. Catalysis Communications,2006, 7:860-866.
    [27]陈光文,阳永荣,戎顺熙.在Pt-Sn/Al2O3催化剂上丙烷脱氢反应动力学[J].化学反应工程与工艺,1998,14(2):130-137.
    [28]董文生,王心葵,彭少逸.Ca对Pt-Sn/MgAl2O4结构及丙烷脱氢性能的影响[J].分子催化,1998,12(3):83-88.
    [29]余长林,徐恒泳,葛庆杰,李文钊.Zn对Pt-Sn/γ-Al2O3催化剂中Sn的活性状态及丙烷脱氢反应的影响[J].高等学校化学学报,2006,27(8):1492-1495.
    [30]张一卫,周钰明,邱安定等.Na对PtSn/ZSM-5催化丙烷脱氢反应性能的影响[J].物理化学学报,2006,22(6):672-67.
    [31]徐竹生,胡爱华,林励吾等.一种低碳烷烃脱氢催化剂的制备方法[P].CN:1069226C,2001.
    [32]Kumar M. S., Chen D., Walmsley J. C., et al. Dehydrogenation of propane over Pt-SBA-15:Effect of Pt particle size[J]. Catalysis Communications,2008,9(5): 747-750.
    [33]Casella M. L., Siri G. J., Santori G. F., et al. Surface characterization of Li-modified platinum/tin catalysts for isobutane dehydrogenation[J]. Langmuir,2000,16: 5639-5643.
    [34]Audo C., Lamberta J. F., Che M., et al. Synthesis of platinum-tin/alumina reforming catalysts from a well-defined platinum-tin precursor complex[J]. Catalysis Today, 2001,65:157-162.
    [35]余长林,葛庆杰,徐恒泳等.助剂对Pt/γ-Al2O3催化剂丙烷脱氢性能的影响[J].石油化工,2006,35(3):217-220.
    [36]Larese C., Campos-Martin J. M., Fierro J. L. G. Alumina and zirconia-alumina loaded tin-platinum. surface features and performance for butane dehydrogenation[J]. Langmuir,2000,16,10294-10300
    [37]Armendariz H., Guzman A., Toledo J. A., et al. Isopentane dehydrogenation on Pt-Sn catalysts supported on Al-Mg-O mixed oxides:effect of Al/Mg atomic ratio [J]. Applied Catalysis A:General,2001,211:69-80.
    [38]邱安定.不同介质中合成的Sn-ZSM-5及其作为丙烷脱氢催化剂载体的研究[J].精细石油化工进展,2005,6(7):24-30.
    [39]董文生,王浩静,王心葵等.不同载体的Pt-Sn催化剂上丙烷脱氢性能的研究[J].1999,24(3):9-12.
    [40]Salmones J., Wang J. A., Galicia J. A., et al. H2 reduction behaviors and catalytic performance of bimetallic tin-modified platinum catalysts for propane dehydrogenation[J]. Journal of Molecular Catalysis A,2002,184:203-213.
    [41]董文生,王心葵,彭少逸.Pt-Sn/MgAl2O4催化剂的TPR和H2-TPD研究[J].催化学报,1999,20(5):577-580.
    [42]Chandler B. D. The preparation and characterization of highly dispersed supported bimetallic catalysts from inorganic and organometallic molecular precursors[D], The university of Minnesota, Twin Cities,1999.
    [43]上官荣昌,葛欣,李明时等.丙烷脱氢制丙烯Pt-Sn/y-Al2O3催化剂的微量吸附量热研究[J].石油与天然气化工,2000,29(4):157-159.
    [44]de Graaf E. A., Zwanenburg G., Rothenberg G., et al. Two-step catalytic oxidative dehydrogenation of propane:an alternative route to propene[J]. Organic Process Research & Development,2005,9(4):397-403.
    [45]Creaser D., Andersson B., Hudgins R. R., et al. Cyclic operation of the oxidative dehydrogenation of propane[J]. Chemical Engineering Science,1999,54:4437-4448.
    [46]Ballarini N., Battisti A., Cavani F., et al. The combination of propane partial oxidation and of WGS reaction in a single catalytic bed and the self-adapting catalytic properties of vanadium oxide catalyst[J]. Applied Catalysis A,2006,307:148-155.
    [47]Ballarini N., Cavani F., Ferrari M., et al. Oxydehydrogenation of propane catalyzed by V-Si-O cogels:enhancement of the selectivity to propylene by operationunder cyclic conditions[J]. Journal of Catalysis,2003,213:95-102.
    [48]Arias-Perez S., Garcia-Alamilla R., Cardenas-Galindo M. G, et al. Evaluation of vanadium-phosphorus oxide (VPO) catalysts for the oxidative dehydrogenation of propane[J]. Ind. Eng. Chem. Res.2009,48,1215-1219
    [49]Wang R. C., Xie M. M., Li P. Catalytic and electrocatalytic oxidation of propane on V-Mg-O and V-Mg-O (Ag) catalysts[J]. Catalysis Letters,1994,24:67-77.
    [50]Wolfrath O., Kiwi-Minsker L., Renken A., Novel Membrane Reactor with Filamentous Catalytic Bed for Propane Dehydrogenation[J]. Ind. Eng. Chem. Res., 2001,40(23):5234-5239.
    [51]Schafer R., Noack M., Kolsch P., et al. Comparison of different catalysts in the membrane-supported dehydrogenation of propane[J]. Catalysis Today,2003,82: 15-23.
    [52]Hollein V., Thornton M., Quickerb P., et al. Preparation and characterization of palladium composite membranes for hydrogen removal in hydrocarbon dehydrogenation membrane reactors[J]. Catalysis Today,2001,67:33-42.
    [53]Agaskar A. Process for the catalytic dehydrogenation of alkanes to alkenes with simultaneous combustion of hydrogen[P]. US Patent:5430209,1995.
    [54]de Graaf E. A., Andreini A., Hensen E. J. M., et al. Selective hydrogen oxidation in a mixture with ethane/ethene using cerium zirconium oxide [J]. Applied Catalysis A, 2004,262:201-206.
    [55]Late L., Rundereim J.-I., Blekkan E.A., Selective combustion of hydrogen in the presence of hydrocarbons 1. Pt-based catalysts[J]. Applied Catalysis A,2004,262: 53-61.
    [56]Tsikoyiannis J. G, Stern D. L., Grasselli R. K., Metal Oxides As Selective Hydrogen Combustion (SHC) Catalysts and Their Potential in Light Paraffin Dehydrogenation[J]. Journal of Catalysis,1999,184:77-86.
    [57]Late L., Thelin W., Blekkan E. A. Selective combustion of hydrogen in the presence of hydrocarbons Part 2. Metal oxide based catalysts[J]. Applied Catalysis A,2004,262: 63-68.
    [58]Grasselli R. K., Stern D. L., Tsikoyiannis J. G Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC) I. DH-SHC-DH catalysts in series (co-fed process mode)[J]. Applied Catalysis A,1999,189:1-8.
    [59]Grasselli R. K., Stern D. L., Tsikoyiannis J. G Catalytic dehydrogenation (DH) of light paraffins combined with selective hydrogen combustion (SHC) Ⅱ. DH+SHC catalysts physically mixed (redox process mode)[J]. Applied Catalysis A,1999,189: 9-14.
    [60]张濂,许志美,袁向前.化学反应工程原理(第二版)[M].上海:华东理工大学出版社,2007.
    [61]Nauman E. B. Chemical reactor design, optimization, and scaleup[M]. McGraw-Hill, 2002.
    [62]朱开宏,袁渭康.化学反应工程分析[M].北京:高等教育出版社,2002.
    [63]李绍芬.化学与催化反应工程[M].北京:化学工业出版社,1986.
    [64](美)H.斯科特.福格勒.化学反应工程原理(第四版)(英文影印版)[M].北京:化学工业出版社,2006.
    [65]陈甘棠.化学反应工程(第三版)[M].北京:化学工业出版社,2008.
    [66]杨冀宏,麻德贤.过程系统工程导论[M].北京:烃加工出版社,1989.
    [67]杨友麒.化工系统工程[M].北京:化学工业出版社,1989.
    [68]姚平经.化工过程系统工程[M].大连:大连理工大学出版社,1992.
    [69]彭秉璞.化工系统分析与模拟[M].北京:化学工业出版社,1990.
    [70]杨友麒.过程流程模拟[J].计算机与应用化学,1995,12(1):1-6.
    [71]杨友麒.化工过程模拟[J].化工进展,1996,3:1-7.
    [72]张建候.化工过程分析与计算机模拟[M].北京:化学工业出版社,1989.
    [73]李文波,毛鹏生,王长英等.化工流程模拟技术的现状与发展[J].化工时刊,1998,12(6):3-6.
    [74]陆恩锡,张慧娟,尹清华.化工过程模拟及相关高新技术(Ⅰ)化工过程稳态模拟[J].化工进展,1999,4:63-64.
    [75]胡永有.催化重整流程模拟及优化研究[D].浙江大学,2004.
    [76]侯卫锋.催化重整流程模拟与优化技术及其应用研究[D].浙江大学,2006.
    [77]杨友麒,项曙光.化工过程模拟与优化作者[M].北京:化学工业出版社出版,2006.
    [78]韩方煌,郑世清,荣本光.过程系统模拟技术[M].北京:中国石化出版社,1999.
    [79]胡仰栋,周传光,郑世清.ECSS工程化学模拟系统及其在化工过程中的应用[J].化工进展,1996,3:64-65.
    [80]贺来宾,杨霞,岳金彩等.基于SQP法的ECSS-化工之星优化功能的实现[J].计算机与应用化学,2004,21(5):753-757.
    [81]Asprey S. P., Macchietto S. Dynamic model development:methods, theory and applications[M]. Elsevier Science,2003.
    [82]Preisig H. A., Kimmich M., Rippin D. W. T. A study of dynamic system modeling[J]. Comput. Chem. Engineering,1988,12(5):455-460.
    [83]王骥程.过程动态模型[M].杭州:浙江大学出版社,1994.
    [84]罗雄麟.化工过程动态学[M].北京:化学工业出版社,2005.
    [85]Lindborg H., Eide V., Unger S., et al. Parallelization and performance optimization of a dynamic PDE fixed bed reactor model for practical applications[J]. Comput. Chem. Engineering,2004,28(9):1585-1597.
    [86]Rezaie N., Jahanmiri A., Moghtaderi B. A comparison of homogeneous and heterogeneous dynamic models for industrial methanol reactors in the presence of catalyst deactivation[J]. Chemical Engineering and Processing,2005,44(8):911-921.
    [87]Gabarain L., Castellari A. T., Cechini J., et al. Reactors, kinetics, and catalysis analysis of rate enhancement in a periodically operated trickle-bed reactor[J]. AIChE Journal, 2004,43(1):166-172.
    [88]Kolios G, Frauhammer J., Eigenberger G Efficient reactor concepts for coupling of endothermic and exothermic reactions[J]. Chemical Engineering Science,2002,57(9): 1505-1510
    [89]Xiao WenDe, Yuan WeiKang. Modelling and simulation for adiabatic fixed-bed reactor with flow reversal [J]. Chemical Engineering Science,1994,49(21): 3631-3641.
    [90]Kolios G, Frauhammer J., Eigenberger G Autothermal fixed-bed reactor concepts[J]. Chemical Engineering Science,2000,55(24):5945-5967.
    [91]Bonvin D., Rinkera R. G, Mellichamp D. A. On controlling an autothermal fixed-bed reactor at an unstable state-1:Steady-state and dynamic modeling[J]. Chemical Engineering Science,1983,38(2):233-244.
    [92]Matros Y. S., Bunimovich G. A. Reverse-flow operation in fixed bed catalytic reactors[J]. Catalysis Reviews,1996,38(1):1-68.
    [93]陆恩锡,张慧娟.化工过程模拟及相关高新技术(Ⅱ)化工过程动态模拟[J].化工进展,2000,5:76-78.
    [94]陈晓春,马桂荣.动态模拟技术与化学工程[J].现代化工,2002,22(3):14-17.
    [95]郭广智.石油化工动态模拟软件HYSYS[J].石油化工设计,1997,14(3):29-33.
    [96]王健红,陈晓春,魏杰等.化工装置动态模拟与优化工艺软件平台[J].化工进展,1997,4:49-51.
    [97]张余岳.化工过程模拟与在线优化[D].浙江大学,1998.
    [98]胡国静.甲醇合成装置的模拟与优化[硕士论文].北京化工大学,2006。
    [99]张兵.化工动态优化方法的研究与应用[D].浙江大学,2005.
    [100]蒲黎明,俞欢军,陈德钊.连续多蚁群算法的构建及其在过程动态优化中的应用[J].高校化学工程学报,2008,22(5):871-876.
    [101]袁渭康,周兴贵.石油化工过程与装置的在线操作优化,金山油化纤,2001,1:1
    [102]Vasanthamjan S., Biegler L.T. Simultaneous solution of reactor models within flowsheet optimization[J]. Chem. Eng. Res. Des.,1988,66(9):396-406.
    [103]Pantelides C., Sargent R.W.H., Vassiliadis V.S. Solution of a class of multistage dynamic optimization problems 2. problems with path constrains[J]. Ind. Eng. Chem. Res.,1994,33:2123-2133.
    [104]Biegler L.T. Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation[J]. Comput. Chem. Engineering,1984, 8(3/4):243-248.
    [105]Biegler L. T., Nocedal J., Schmid C. A reduced hessian method for large-scale constrained optimization, SIAM Journal on Optimization,1995,5(2):314-347.
    [106]Biegler L. T., Hughes R. R. Infeasible path optimization with sequential modular simulator[J]. AIChE Journal,1982,28(6):994-1002.
    [107]Gascon J., Tellez C., Herguido J., et al. Propane dehydrogenation over a Cr203/Al203 catalyst:transient kinetic modeling of propene and coke formation[J]. Applied Catalysis A,2003,248:105-116.
    [108]Gascon J., Tellez C., Herguido J., et al. Corrigendum to "Propane dehydrogenation over a Cr2O3/Al2O3 catalyst:transient kinetic modeling of propene and coke formation" [J]. Applied Catalysis A,2005,282:343.
    [109]van Sint Annaland M., Kuipers, J. A. M., van Swaaij W. P. M. A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst[J]. Catalysis Today, 2001,66:427-436.
    [110]Lobera M. P., Tellez C., Herguido J., et al. Transient kinetic modelling of propane dehydrogenation over a Pt-Sn-K/Al2O3 catalyst[J].. Applied Catalysis A,2008,349: 156-164.
    [111]时钧,汪家鼎,余国琮,陈敏恒[M].化学工程手册.北京:化学工业出版社,1996.
    [112]关治,陆金甫.数值分析基础[M].北京:高等教育出版社,2004.
    [113]蔡大用,白峰杉.高等数值分析[M].北京:清华大学出版社,1997.
    [114]黄华江.实用化工计算机模拟[M].北京:化学工业出版社,2004.
    [115]Constantinides A., Mostoufi N. Numerical methods for chemical engineers with MATLAB application[M]. Prentice hall,1999.
    [116]Moulijn J. A., van Diepen A. E. Kapteijn F. Catalyst deactivation:is it predictable? What to do? [J]. Applied Catalysis A,2001,212:3-16.
    [117]Ivanov D. P., Sobolev V. I. Panov G. I. Deactivation by coking and regeneration of zeolite catalysts for benzene-to-phenol oxidation[J]. Applied Catalysis A,2003,241: 113-121.
    [118]Andres T. A., Gayubo A. G, Erena J., et al. Study of the regeneration stage of the MTG process in a pseudoadiabatic fixed bed reactor[J]. Chemical Engineering Journal, 2003,92:141-150.
    [119]刘耀芳,杨九金,杨光华.铂锡催化剂再生过程中的化学行为及动力学[J].炼油设计,1991,2:18-23.
    [120]刘耀芳,杨朝合,杨九金等.铂锡重整催化剂再生过程研究(3)烧炭过程的动力学参数[J].石油炼制,1989,9:37-42.
    [121]Keskitalo T. J., Lipiinen K. J. T., Krause A.O.I. Modelling of carbon and hydrogen oxidation kinetics of a coked ferrierite catalyst[J]. Chemical Engineering Journal, 2006,120:63-71.
    [122]李素珍,韩明汉,陈曙等.几种新型裂化催化剂再生动力学的研究[J].炼油设计,1996,26(6):54-57.
    [123]Gayubo A. G., Aguayo A. T., Castilla M. Catalyst reactivation kinetics for methanol transformation into hydrocarbons. Expressions for designing reaction-regeneration cycles in isothermal and adiabatic fixed bed reactor [J]. Chemical Engineering Science, 2001,56:5059-5071.
    [124]Heynderickx G. J., Schools E. M., Marin G B. Coke combustion and gasification kinetics in ethane steam crackers[J]. AIChE Journal,2005,51(5):1415-1428.
    [125]Kanervo J. M., Krause A. O. I., Aittamaa J. et al. Kinetics of the regeneration of a cracking catalyst derived from TPO measurements [J]. Chemical Engineering Science, 2001,56:1221-1227.
    [126]燕青芝,李青彬,肖琼等.结炭裂化催化剂烧炭再生的本征动力学研究[J].石油与天然气化工,2000,29(5):42-44.
    [127]高劲松,卢春喜,吕瑾.连续重整新型铂锡催化剂的表观烧炭动力学[J].炼油设计,1999,29(11):41-44.
    [128]李经球.长链烷烃脱氢催化剂的再生研究(硕士论文).大连化物所,2006
    [129]Mickley H. S., Nesyor J. W., Leonard Jr., et al. A kinetic study of the regeneration of a dehydrogenation catalyst[J]. The Canadian Journal of Chemical Engineering,1965,4: 61-68.
    [130]葛庆仁.气固反应动力学[M].北京:原子能出版社,1991.
    [131]Gilbert F. F., Kenneth B. B. Chemical reactor analysis and design[M]. Wiley,1979.
    [132]Sampath, B. S., Hughes, R. A review of mathematical models in single particle gas solid non-catalytic reactions[J]. Chem. Engr.,1973,278:485-497.
    [133]解新安,华贲,陈清林.催化裂化结焦催化剂烧焦再生模型的研究(Ⅰ)-烧焦再生物理模型的建立[J].炼油设计,2001,31(4):40-43.
    [134]解新安,华贲,陈清林.催化裂化结焦催化剂烧焦再生模型的研究(Ⅱ)-烧焦再生数学模型的建立[J].炼油设计,2001,31(4):40-43.
    [135]Sampath, B. S., Ramachandran, P. A., Hughes, R. Modelling of non-catalytic gas-solid reactions-I. transient analysis of the particle-pellet model[J]. Chem. Eng. Sci.,1975, 30,125-134.
    [136]Sampath, B. S., Ramachandran, P. A., Hughes, R. Modelling of non-catalytic gas-solid reactions-Ⅱ. transient simulation of a packed bed model[J]. Chem. Eng. Sci.,1975,30, 135-143.
    [137]Tang Dahai, Kern C., Jess A. Influence of chemical reaction rate, diffusion and pore structure on the regeneration of a coked Al2O3 catalyst[J]. Appl. Catal. A,2004,272: 187-199.
    [138]Kern C., Jess A. Regeneration of coked catalysts-modeling and verification of coke burn-off in single particles and fixed bed reactors[J]. Chem. Eng. Sci.,2005,60: 4249-4264.
    [139]Brito A., Arvelo R., Garcia F. J., et al. The modified grain model applied to regeneration of a coked fixed-bed reactor:The catalytic effect of chromium on the coke burn-off reaction[J]. Appl. Catal. A,1996,145:285-295.
    [140]张文生.科学计算中的偏微分方程有限差分法[M].北京:高等教育出版社,2006.
    [141]马逸尘,梅立泉,王阿霞.偏微分方程现代数值方法[M].北京:科学出版社,2006.
    [142]李荣华.偏微分方程数值解法[M].北京:高等教育出版社,2005.
    [143]Borio D. O., Menendez M., Santamaria J., Simulation and optimization of a fixed bed reactor operating in coking-regeneration cycles[J]. Ind. Eng. Chem. Res.,1992,31: 2699-2707.
    [144]Pieck C. L., Vera C. R., Querini C. A., et al. Differences in coke burning-off from Pt-Sn/Al2O3 catalyst with oxygen or ozone[J]. Applied Catalysis A,2005,278: 173-180.
    [144]朱炳辰,翁惠新,朱子彬.催化反应工程[M].北京:中国石化出版社,2000.
    [145]徐志刚,朱子彬,张成芳等.乙苯负压脱氢径向反应器的模拟[J].化学反应工程与工艺,1998,14(3):282-286.
    [146]叶启亮,应卫勇,房鼎业.大型径向氨合成反应器的模拟计算和设计优化[J].华东理工大学学报,1999,25(6):545-549.
    [147]房鼎业,应卫勇,朱炳展.径向流动甲醇合成反应器的数学模型与优化设计[J].高校化学工程学报,1995,9(3):244-251.
    [148]Berger R. J., Perez-Ramirez J., Kapteijn F., et al. Catalyst performance testing:radial and axial dispersion related to dilution in fixed-bed laboratory reactors [J]. Applied Catalysis A,2002,227:321-333.
    [149]Mu Zuze, Wang Jinfu, Wang Tiefeng, et al. Optimum design of radial flow moving-bed reactors based on a mathematical hydrodynamic model [J]. Chemical Engineering and Processing,2003,42(5):409-417.
    [150]Zardi F., Bonvin D. Modeling, simulation and model validation for an axial-radial ammonia synthesis reactor[J]. Chemical Engineering Science,1992,47(9-11): 2523-2528.
    [151]Zhou XingGui, Yuan WeiKang, Optimization of the fixed-bed reactor for ethylene epoxidation[J]. Chemical Engineering and Processing,2005,44:1098-1107.
    [152]黄琦,王弘轼,凌泽济.环氧乙烷合成反应器温度一时间优化策略[J].化工学报2005,56(5):870-874.
    [153]洪梅,钱刚,周兴贵.催化剂失活时甲醇反应器的优化[J].化工学报,2007,58(9):2238-2243.
    [154]邓正龙.化工中的优化方法[M].北京:化学工业出版社,1992.
    [155]李泽,刘俊杰.罗茨真空泵及其使用[M].成都:四川科学技术出版社,1985.
    [156]Taskar U., Riggs J. B. Modeling and optimization of a semi regenerative catalytic naphtha reformer[J]. AIChE Journal,1997,43(3):740-753.
    [157]Lovik I., Hillestad M. Hertzberg T. Long term dynamic optimization of a catalytic reactor system[J]. Computers Chem. Engng,1998,22:S707-S710.
    [158]Kordabadi H., Jahanmiri A. Optimization of methanol synthesis reactor using genetic algorithms [J]. Chemical Engineering Journal,2005,108:249-255.
    [159]Kordabadi H., Jahanmiri A. A pseudo-dynamic optimization of a dual-stage methanol synthesis reactor in the face of catalyst deactivation[J]. Chemical Engineering and Processing,2007,46:1299-1309.
    [160]Hartig F., Keil F. J. Large-scale spherical fixed bed reactors:modeling and optimization[J]. Ind. Eng. Chem. Res.,1993,32:424-437
    [161]Zhou XingGui, Liu LiangHong, Yuan WeiKang. Optimizing control of a wall-cooled fixed-bed reactor[J]. Chemical Engineering Science,1999,54:2739-2744.
    [162]Cheng Y. S., Abi C. F., Kershenbaum L. S. Online estimation for a fixed-bed reactor with catalyst deactivation using nonlinear programming techniques [J]. Computers chem. Engng.,1996,20:s793-s798.
    [163]Cheng Y. S., Mongkhonsi T., Kershenbaum L. S. Nonlinear dynamic estimation for a fixed-bed reactor with decaying catalysts[J]. Chemical Engineering Science,1996, 51(10):1909-1918.
    [164]钱夕元,钱刚,周兴贵.乙烯氧化反应器模拟与优化软件设计[J].石油化工,2005,34(5):445-449.
    [165]Borio D. O., Schbib N. S. Simulation and optimization of a set of catalytic reactors used for dehydrogenation of butane into butadiene[J]. Computers Chem. Engng.,1995, 19:S345-S350.
    [166]Borio D. O., Schbib N. S., Gatica J. E. Reversal flow in fixed-bed reactors operating under reaction-regeneration cycles[J]. Chemical Engineering Science,1999,54: 1313-1318.
    [167]Szwast Z., Sieniutycz S. Optimization of the reactor-regenerator system with catalytic parallel-consecutive reactions[J]. Catalysis Today,1999,48:175-184.
    [168]Szwast Z., Sieniutycz S. Optimal temperature profiles for parallel-consecutive reactions with deactivating catalyst[J]. Catalysis Today,2001,66:461-466.
    [169]Szwast Z., Sieniutycz S. Optimal dynamical processes in tubular reactor with deactivation of multi-run moving catalyst[J]. Chemical Engineering Journal,2004, 103:45-50.
    [170]Gayubo A. G, Ortega J. M., Aguayo A. T., et al. MTG fluidized bed reactor-regenerator unit with catalyst circulation:process simulation and operation of an experimental setup[J]. Chemical Engineering Science,2000,55:3223-3235.
    [171]Kaneko S., Tsuyoshi A., Ohshima M., et al. Dehydrogenation of propane combined with selective hydrogen combustion over Pt-Sn bimetallic catalysts[J]. Applied Catalysis A,2009,356:80-87.
    [172]Waku T., Biscardi J. A., Iglesia E. Catalytic dehydrogenation of alkanes on Pt/Na-[Fe]ZSM5 and staged 02 introduction for selective H2 remova[J]. Journal of Catalysis,2004,222:481-492.
    [173]Imai T., Jan D. Y, Catalytic oxidative steam dehydrogenation process[P]. US Patent: 4788371,1987.
    [174]Tagamolila C. P., Use of steam educator to supply oxygen for oxidative reheating in dehydrogenation of C3+ hydrocarbons[P]. US Patent:5043500,1989.
    [175]Woodle G. B. Lithium aluminate layered catalyst and selective oxidation process using the catalyst[P]. US Patent:6858769,2005.
    [176]de Graaf E. A., Zwanenburg G., Rothenberg G., et al. Two-step catalytic oxidative dehydrogenation of propane:an alternative route to propene[J]. Organic Process Research & Development,2005,9(4):397-403.
    [177]Lodeng R., Soraker P. Reactor for catalytic dehydrogenation of hydrocarbons with selective oxidation of hydrogen[P]. US Patent:5997826,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700