用户名: 密码: 验证码:
Akt/PTEN在低氧肺血管重建中的作用和机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺动脉平滑肌细胞(PASMCs)从中膜大量迁移至内膜并异常增殖是低氧肺动脉高压肺血管重建的基本病理变化。在此病理过程中,多种细胞因子、生长因子通过细胞内信号传递途径将细胞外增殖信号传至核内,在核内调节基因表达,启动细胞增殖反应。
     目前探讨低氧肺动脉高压(hypoxia pulmonary hypertension,HPH)中血管重建的细胞内信号传导通路的研究主要集中在STATs途径、MLCK途径和PKC途径。丝氨酸/苏氨酸蛋白激酶Akt (serine/threonine kinase,Akt)参与的经磷脂酰肌醇3激酶(phosphoinositide 3 kinase,PI3K)激活的细胞内信号通路与细胞分化、生长、凋亡和迁移等多种生物学活动密切相关。与细胞张力蛋白同源在10号染色体有缺失的磷酸酶(phosohatase and tensin homolog deleted on chromosome 10,PTEN)迄今为止发现的第一个具有脂质磷酸酶活性的抑癌基因。其功能是对脂质第二信使PI-3,4,5-P3进行3位脱磷酸,从而降低细胞内PIP3水平,下调Akt通路。本课题建立体外PASMCs培养模型,观察低氧培养时PASMCs Akt/PTEN信号通路中主要信号分子表达和活性的变化;并通过Ad-PTEN转染上调PTEN的表达,研究PTEN活性变化对低氧条件下PASMCs增殖和迁移的影响,以阐明Akt/PTEN信号通路调控低氧诱导PASMCs异常增殖及迁移的作用及机制,明确这一信号通路中参与肺血管重建的关键环节,从而为HPH的防治提供理论依据。
     研究内容:
     1 .原代培养PASMCs并鉴定后, RT-PCR检测常氧及低氧条件下PTEN/Akt1/Akt2/Akt3基因mRNA表达变化;免疫细胞化学和Western blot法检测上述基因蛋白定位和表达变化。
     2.Ad-PTEN的扩增、鉴定、转染效率、MOI、滴度测定。
     3.RT-PCR和Western blot检测Ad-PTEN转染后细胞PTEN基因mRNA表达及其蛋白活性变化。MTT、3H-TdR掺入实验和流式细胞仪检测常氧及低氧条件下Ad-PTEN转染前后细胞增殖变化。
     4.Ad-PTEN转染后常氧及低氧条件下PASMCs平面迁移距离的变化。
     5.RT-PCR和Western blot检测常氧及低氧条件下转染前后细胞Akt1/Akt2/Akt3 mRNA表达变化。
     结果:
     1.原代培养的大鼠PASMCs经α-SM-actin免疫细胞化学染色得到证实,并冻存第四代细胞。组织块法和酶法培养的PASMC的生长曲线和蛋白质含量上有一定程度上的差异,但差异并不显著(p>0.05),二者均于7~8 d达高峰,而后由于接触抑制而下降。组织块法培养PASMC的胞内[Ca2+]含量为(195.32±14.62) nmol/L,而酶消化法为(150.18±11.87) nmol/l,差异有显著性意义(P<0.05)。
     2.常氧及低氧条件下PASMCs中,RT-PCR、Western blot法在常氧条件下PASMCs中检测到PTEN/Akt1,2,3基因的表达;在低氧刺激下,PTEN的mRNA和蛋白水平均逐渐升高;低氧刺激下2h PASMCs中Akt1,2,3表达升高,6 h达高峰,12 h下降,24 h恢复到常氧水平,其mRNA和蛋白表达变化一致;免疫细胞化学结果示PTEN蛋白在PASMCs胞浆和胞核中均表达;Akt1,2,3仅在胞浆中表达。
     3.扩增并冻存了Ad-PTEN(CVL液)约2ml。滴度大约1.03×109 pfu/ml。经鉴定所得到的重组腺病毒确实携带着外源性目的基因PTEN片段。Ad-PTEN对PASMCs有较高的感染效率,最佳MOI为60。Ad-PTEN转染PASMCs后,PTEN在PASMCs中明显过表达。在低氧刺激下,Ad-PTEN的转染仍然能够保证PTEN在PASMCs中过表达。
     4.MTT检测发现低氧刺激下,PASMCs增殖明显增强并且随着低氧处理时间的延长而进一步升高,Ad-PTEN转染组PASMCs增殖明显低于未转染组。3H-TdR掺入检测发现未转染组低氧时PASMCs的3H-TdR掺入量比常氧时升高,而Ad-PTEN转染后PASMCs的3H-TdR掺入量明显低于未转染组。流式细胞仪结果显示低氧使未转染组PASMCs的G0/G1比例降低,而S+G2/M比例升高,Ad-PTEN转染使PASMCs中PTEN基因表达增强以后,低氧仅使转染组PASMCs的G0/G1比例稍有降低,但降低不显著。
     5.常氧培养的PASMCs随着培养时间的延长,迁移的距离逐渐增加,其中与36h比较,48h和72h的迁移距离增加有显著性意义(p<0.05)。在低氧刺激下,PASMCs迁移的距离显著行增加。Ad-PTEN转染组PASMCs迁移的距离较常氧组以及低氧处理组显著性减少。
     6.PASMCs Akt1,2,3 mRNA表达量在低氧2 h开始升高,6h达高峰,12 h开始降低,24 h下降至常氧水平。而Ad-PTEN转染后PASMCs Akt1 mRNA表达量升高幅度较小,各时相点间无显著差异。
     结论:
     1.正常大鼠PASMCs检测到PTEN/Akt1,2,3基因表达。低氧可刺激大鼠PASMCs S PTEN/Akt1,2,3基因表达增强。
     2.扩增的Ad-PTEN能够转染PASMCs并在细胞中高效的过表达PTEN。
     3.低氧可能通过诱导PTEN/Akt的表达和活化促进PASMCs增殖,其中Akt的表达和活化可能起主要作用。而Ad-PETN转染能够抑制低氧刺激导致的PASMCs增殖。
     4.低氧可能通过诱导PTEN/Akt的表达和活化促进PASMCs迁移,其中Akt的表达和活化可能起主要作用。而Ad-PETN转染能够抑制低氧刺激导致的PASMCs迁移。
     5. Ad-PTEN转染PASMCs致细胞内过表达PTEN能够显著性抑制Akt1,2,3基因的转录,可能是Ad-PTEN转染抑制低氧刺激导致的PASMCs增殖和迁移的分子基础。
A great deal of pulmonary artery smooth muscle cells (PASMCs) migrating from tunica media to endomemebrane and abnomal proliferating is an improtant contributor to the vascular remodeling that occurs in chronic hypoxic pulmonary hypertension (HPH). Different growth factors, cytokine and proinflammatory mediators convey extracelluar signal to the nucleus by interacting with receptors on the cell surface, then regulate expression of target genes and contribute to cell differentiation, growth and proliferation.
     Now the main studies about signal transmitting passway of vascular remodeling in HPH focused on STATs passway, MLCK passway and PKC passway. Serine/threonine kinase (Akt) participates in the signal transduction actived by phosphoinositide 3 kinase (PI3K), which is closely correlated to cell differentiation,cell growth,apoptosis,migration and other biological actions. Phosohatase and tensin homolog deleted on chromosome 10(PTEN) is the first discovered anticoncogene with lipid-phosphatase activity so far. PTEN can carry out 3-location dephosphorylation, that can lower the level of PIP3 in cell and down regulate Akt signal condutive passway. When hypoxia actived intracellular signal transdutive passway and inducted a series of pathological actions of (PASMCs phenotype switching, proliferation and migration ), what role did the PTEN/Akt play in hypoxia lung vascular remodeling? Along the nature course of disease, whether the expression of PTEN/Akt descended even depleted?
     Methods
     1. After PASMCs were primarily cultured, expression of PTEN/Akt1,2,3 mRNA was detected by RT-PCR under normoxic or hypoxia conditions (3% O2); expressions of SOCS3 proteins were performed by immunocytochemistry and Western blot under normoxic or hypoxia conditions.
     2. Amplification, appraisement, transfective effciency,MOI and titre measuration of Ad-PTEN.
     3. The PASMCs transfected with Ad-PTEN and the control cells were cultured under normoxic and hypoxia conditions respectively. The expression of PTEN mRNA and protein activity were performed by RT-PCR and Western blot. The changes of cell proliferation were observed by MTT,flow cytometric DNA analysis and 3H-TdR incorporation.
     4. After PASMCs transfected with Ad-PTEN, level of migratory distance was detected under normoxia or hypoxia conditions.
     5. Expression of Akt1,2,3 mRNA in PASMCs before and after transfection were detected by RT-PCR under normoxic and hypoxia conditions.
     Results
     1. Rat PASMCs primarily cultured were confirmed by immunocytochemistry usingα-SM-actin antibody. The fourth generation was freezed and reserved. There existed a certain extent of degree diversity in growth curve and protein content of PASMCs between cultured by tissue clump or enzymic method, but it was not remarkable(p>0.05). Both reached its peak after 7~8d, and then declined due to contact inhibition. The content of intracellular Ca2+ of PASMC cultured by tissue clump method was (195.32±14.62) nmol/L, and (150.18±11.87) nmol/l by the enzymic method. The difference between both was obvious (P<0.05).
     2. Expression of PTEN/Akt1,2,3 mRNA and proteins in PASMCs was detected by RT-PCR and western blot under normoxic and hypoxia conditions. When PASMCs were cultured under hypoxia conditions, the level of expression of PTEN mRNA and protein gradually heightened. The experession of Akt1,2,3 mRNA was detected highter at 2 h of hypoxia and reached its maximal at 6 h or 12 h, declined to previous normoxic level at 24 h. The change of protein expression induced by hypoxia was similar to that of mRNA. Immunocytochemistry was used to confirm Akt1,2,3 protein only related to cytoplasmic distribution of rat PASMCs,but PTEN protein dealt with to be both in cytoplasmic and mucelus distribution both.
     3. About 2 ml Ad-PTEN was freezed after amplification. The titer was about 1.03×109 pfu/ml. It was identificated that the exogenous objective gene PTEN fragment existed in recombinative adenovirus. Ad-PTEN has high efficiency of infection for PASMCs, and the best MOI was 60. The hyperexpression of PTEN gene was found in PASMCs after Ad-PTEN transfection, And that was the same under hypoxia condition.
     4. In MTT study, proliferation of PASMCs was enhanced and was hypoxia time lengthen related. The proliferation of PASMCs in transfected by Ad-PTEN decresed obviouly. 3H-TdR incorporation increased obviously in hypoxia in contrast to normoxia condition. And 3H-TdR incorporation n transfected by Ad-PTEN began to decrease obviously. In contrast to the same hour in normal PASMCs exposed to hypoxia, cells transfected with Ad-PTEN at G0/G1 increased, cells in S+G2/M decreased significantly.
     5. In normoxia culture, the migratory distance of PASMCs gradually increased along with cultivate time prolongation. The migratory distance in 48h and 72h increased obviously in contrast to 36h(p<0.05). The hypoxia could stimulate PASMCs migration. The migratory distance in infected by Ad-PTEN cells decreased obviously no matter whether it was under normoxic or hypoxia condition.
     6. The expression of Akt1,2,3 mRNA increased after exposure of cells to hypoxia and reached its maximum at 6 h, then declined at 12 h, and decreased to level of normoxia at 24h. The magnitude of expression enhancement of Akt1,2,3 mRNA in PTEN gene-transfected cells were significantly lower than that in normal PASMCs whether under normoxic or hypoxia condition.
     Conclusions
     1. Akt1,2,3 and PTEN mRNA and proteins are detected in rat PASMCs exposed to normoxia. Hypoxia can stimulate the expression intensity of Akt1,2,3 and PTEN.
     2. Ad-PTEN amplificated can transfect PASMCs and caused hyperexpress PTEN in cells.
     3. Maybe hypoxia promotes proliferation of PASMCs through inducting the expression and activation of PTEN/Akt. And the expression of activation of Akt may plays a more important role.
     4. Hypoxia may promotes migration of PASMCs through inducting the expression and activation of PTEN/Akt. And the expression of activation of Akt plays a more important role.
     5. Hyperexpressive PTEN in Ad-PTEN transfected PASMCs can obviously inhibit the transcription of Akt1,2,3. that maybe the molecular basis of Ad-PTEN inhibit the proliferation and imgration of PASMCs under hypoxia condition.
引文
1. Li J,Yen C,Liaw D,et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science,1997,275(5,308):1943-1947
    2. Schwartzbauer G, Robbins J. The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival. J Biol Chem,2001,276(38):35786-35793
    3. Abdul HM,Butterfiedl DA. Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-L-carnitine and a-lipoic acid against HNE-mediated oxidative stress and neurotoxicity:Implications for Alzheimer,s disease. Free Radical Biology & Medicine,2007,42:371-374
    4. Gottschalk AR,Doan A,Nakamura JL,etal. Inhibition of phosphatidylinositol-3-kinase causes increased sensitivity to radiation through a PKB-dependent mechanism.International Journal of Radiation Oncology*Biology*Physics,2005,63(4): 1221-1227
    5. Furutani M,Tsujita K,Itoh Toshiki,etal. Application of phosphoinositide-binding domains for the detection and quantification of specific phosphoinositides. Analytical Biochemistry, 2006,355(1):8-18
    6. Crackower MA,Oudit GY,Kozieradzki I,et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways.cell,2002,110(6):737-749
    7. Huang J,Niu XL,Rippen AM,et al. Adenovirus-mediated intraarterial delivery of PTNE inhibits neoinitimal hyperplasia. Arterioscler Thromb Vasc Biol,2005,25(2): 354-358
    8. Wang X,Bhattacharyya D,Dennewitz MB,et al. Rapid hepatocyte nuclear translocation of the Forkhead BOX MI B(Fox MI B) transcription factor caused a transient increase in size of regenerating transgenic hepacytes.Gene Expr,2003,11(3/4):149-162.
    9. Sulis ML,Parsons R. PTEN: from pathology to biology.Trends Cell Biol,2003,13(9): 478- 483
    10. Backman SA,Stambolic V,Mak T.PTEN function in mammalian cell size regulation. Curr Opin Neurobiol,2002,12(5):516-522
    11. 白莉,余祖滨,钱桂生等. SOCS3 基因转染对低氧条件下大鼠肺动脉平滑肌细胞增殖的影响.第三军医大学学报,2004,26(20): 1802-1805.
    12. 陆俊羽,张珍祥,徐永健等.全反式维甲酸对人肺动脉平滑肌细胞表型和迁移的影响及可能机制.中华结核与呼吸杂志,2006,29(1):26-30
    13. Gericke A,Munson M,Ross AH. Regulation of the PTEN phosphatase.Gene,2006, 347:1-9
    14. Zhang QG,Wu DN,Han D,etal. Critical role of PTEN in the coupling between PI3K/Akt and JNK1/2 signaling in ischemic brain injury.FEBS Letters,2007,581(3): 495-505
    15. Smith JS,Tachibana I,Passe SM,et al.PTEN mutation,EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst,2001,93(16):1246-1256
    16. Butler M,McKay RA,Propoff IJ,et al.Specific inhibition of PTEN expression reverses hyperglycemia in diabetic mice.Diabete,2002,51(4):1028-1034
    17. Liang-ping W,Jessica LB,Charis E. PTEN blocks insulin-Mediate EST-2 Phosphorylation through Map kinase, independent of the phosphoinositide 3-kinase way.Hum Mol genet,2002,11(15):1687
    18. Michael R,Milam,Joseph C,etal. Reduced progression of endometrial hyperplasia with oral mTOR inhibition in the PTEN heterozygote murine model.American Journal of Obstetrics and Gynecology,2007,196(3):247e1-247e5
    19. Liang-ping W,Jessica LB,Charis E. PTEN induces apoptosis and cell cycle arrest through phosphoinositol-3-kinase/Akt-dependent and independent pathways.Hum mol genet,2001,10(3):237
    20. Lijima M,Huang YE,Lou HR,etal. Novel mechanism of PTEN regulation by its phosphatidylinositol 4,5-bisphosphate binding motif is critical for chemotaxis.J Biol Chem,2004,279(16):16606-16613
    21. 陆俊羽,张珍祥,徐永健等.体外转染 JWA 核酶反转录病毒载体对人肺动脉平滑肌细胞表型及迁移的影响.中国临床康复,2005,9(43):66-69
    22. Sasaki H,Zlatescu MC,Betensky RA. PTEN is a target of chromosome 10q loss in anaplastic oligodendrogliomas and PTEN alterations are associated with poor prognosis. Am J Pathol,2001,159(1):359-367
    23. Wen S,Stolarov J,Myers MP,et al. PTEN controls tumor-induced angiogenesis. ProcNatl Acad Sci USA,2001,98(8):4622-4627
    24. Raftpoulou M,Etienne-Manneville S,Self A,et al. Regulation of cell migration by the C2 domain of the tumor suppressor PTEN.Science,2004,303(5661):1179
    25. Rosefeld MA,Yoshimura K,Trapnell,et al. In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium.Cell,1992,68(1): 143-155
    26. Cai XM,Tao BB,Wang LY,etal. Protein phosphatase activity of PTEN inhibited the invasion of glioma cells with epidermal growth factor receptor mutation type III expression. Int J Cancer,2005,117(6):905-912
    27. Shan W,Shannon G,PhilipG,et al. Improved vascular gene ransfer with ahelper-dependent adenoviral vector.Circula tion,2004,110(11):1484-1491.
    28. Huang H,Chen SH.Kosai K,et al. Gene the r apy for hepatocellular carcinoma long-term remission of primary and metastatic tumor sinmice by interleukin-2 gene the rapy in vivo Gene Ther,1996,3(11):980-987
    29. Bratmon JL,Hitt M,Addison CL,et al. Direct intratumoral injection of an adenovirus expressing intedeukin-12 induces regression and long-lasting immunity that is associated with highly localized expression of Interleukin-12 Hum Gene Ther ,1996,7(16):1995- 2002
    30. Dessureault S,Graham F Gallingers S.B7-1 gene transfer into human cancer cells by infection with anadenoviru-B7(Ad-B7) expression vector.Ann Surg Oncol 1996,3(3): 317- 324
    31. Li P,Oparil S,Sun JZ,etal.Fibroblast growth factor mediates hypoxia-induced endothelin: a receptor expression in lung artery smooth muscle cells. J Appl Physiol,2003,95(2): 643-651
    32. Barman SA,Zhu S,Han G,White RE. cAMP activates BKCa channels in pulmonary arterial smooth muscle via cGMP-dependent protein kinase. Am J Physiol Lung Cell Mol Physiol,2003,284(6):L1004-10011
    33. Suzuki YJ,Day RM,Tan CC,etal. Activation of GATA-4 by serotonin in pulmonary artery smooth muscle cells. J Biol Chem,2003,278(19):17525-17531
    34. Zhang WM,Yip KP,Lin MJ,etal. ET-1 activates Ca2+ sparks in PASMC:local Ca2+ signaling between inositol trisphosphate and ryanodine receptors. Am J PhysiolLung Cell Mol Physiol,2005,285(3):L680-690
    35. Patel L,Pass I,Coxon P,et al. Tumor suppressor and anti-inflammatory action of PPARγ agonists are mediated via upregluation of PTEN. Curr Biol,2001,11:764-768
    36. Riley DJ,Thakker VS,Wilson FJ, etal. Role of proteolysis and apoptosis in regression of pulmonary vascular remodeling. Physiol Res,2000,49:577-585
    37. Maename T,Dixon JE,The tumor suppressor,PTEN/MMAC1,dephosphorylates the lipid second messenger,phosphatidylinositol3,4,5-trisphosphate. J Biol Chem,1998, 273(22): 13375-13378
    38. Hemmings BA. Ptdlns(3,4,5) P3 gets its message across. Science.1997,277(5325):534
    39. Datta SR,Brunet A,Greenberg ME. Celllar survival: a play in three Akts. Genes Dev,2001,13:2905-2927
    40. Cantley LC,Neel BG. New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-Kinase/AKT pathway. Proc Nat Arad SCI USA,1999,96(8):4240-4245
    41. Li DM,Sun H. PTEN/MMACI/Th1 suppresses the tumorigenicity and induces G1 cell cycle arrest in humor rioblastoma cells.Proc Natl Acad Sci USA,1998,95(26): 15406-15411
    42. Li DM,Sun H. PTEN/MMACI/Th1 suppresses the tumorigenicity and induces G1 cell cycle arrest in humor rioblastoma cells.Proc Natl Acad Sci USA,1998,95(26): 15406-15411
    43. Riccardo R,Nicola M,Federica C,etal.Role of PTEN in gastrointestinal stromal tumor progression[J].Arch Patho Lab Med,2004,128(4):4215
    44. Oviler G,Tania Attie-Bitach,Jacqueline A,etal. Expression of PTEN tumor suppressor Protein during human development.Hum Mol Genet,2000,9(11):1633
    45. Joelle D,Jean PR,Moshe S,etal. PTEN over expression suppresses proliferation and differentiation and enhances apoptosis of the mouse mammary epithelium.J Clin Invest,2002,110(6):81511
    46. Josef M,Peninger James Woodgett. PTEN-coupling tumor suppression to stem cells.Science,2001,7(294):2116.
    47. Schondorf T,Becker M,Gohring,etal.Interaction of Cisplatin, Paclitaxel and Adriamycin with the tumo suppressor Pten.Anti-cancerDrug,2001,12(10):797.
    48. Jianhua H,Christopher DK. Inhibition of vascular smooth muscle cell proliferation, migration, ands urvival by the tumor suppresso rprotein PTEN.Arterioscl Throm Vas,2002,22(5):7457.
    49. Willis AI,Piorre-Paul D,Sumpio BE,et a1 . Vascular smooth muscle cell migration:current research and clinical implications.Vase Endovascular Surg 2004, 38(1):11-23.
    50. Lauffenburger DA,Horwitz AF.Cell migration:a physically integrated molecular process.Cell,l996,84(3):359-369.
    51. Gerthoffer W T,Gunst SJ.Invited review:Focal adhesion and small heat shock proteins in the regulation of actin remodeling and on tractility in smooth muscle.J Appl Physiol,2001,9 l(2):963-972.
    52. Newhy AC,Zaltsman AB. Molecular mechanisms in intimal hyperplasia. J Pathol,2000, 190(3):300-309.
    53. Carlin SM,Resink TJ,Tamm M,et a1. Urokinase signal transduction and its role in cell migration.FASEB J.2005,19(2)119-202.
    54. 王关嵩,钱桂生,黄桂君等.外源性 CO 对大鼠肺动脉平滑肌细胞迁移的影响.中国应用生理学杂志,2000,16(2):169-171
    55. 石琳,杜军保,曾和平.一氧化碳/薛鸿素养和酶系统对缺氧性肺动脉高压肺血管结构重建的作用机制.实用儿科临床杂志,2003,18(2):135-136
    56. Hofmann F.The biology of cyclic GMP-dependent protein kinase. J Biol Chem,2005,280:1~4
    57. Schlossmann J,Feil R,Hofmann F. Insights into cGMP signaling derived from cGMP kinase knockout mice.Front Biosci,2005,10:1279-1289
    58. Jeremy PTW,Greg AK,Vladimir AS,etal. Protein kinase in vascular smooth muscle tone-role in the pulmonary vasculature and hypoxic pulmonary vasoconstircion. Pharmacology and Therapeutics,2004,104(3):207-231
    59. Dzau VJ,Gibbons GH. Vascular remodeling: mechanisms and implications.J Cardiovascular Pharmacol,1993,21(suppl1.1):s1-s5
    60. Kourembanas S,Bernfiedl M.Hypoxia and endothelial-smooth muscle cell interactions in the lung. Am J Respir Cell Mol Biol,1994,11:373-374
    61. Guan-Song Wang,Gui-Sheng Qian,De-Shan Zhou,etal. JAK–STAT signaling pathwayin pulmonary arterial smooth muscle cells is activated by hypoxia. Cell Biology International,2005,29(7):598-603
    62. Li Bai,Zubin Yu,Guisheng Qian,etal.SOCS3 was induced by hypoxia and suppressed STAT3 phosphorylation in pulmonary arterial smooth muscle cells. Respiratory Physiology and Neurobiology,2006,152(1):83-91
    63. Valiente M,Andres-Pons A,Gomar B,etal. Regulation of cell migration by the C2 domain of the tumor suppressor PTEN.Science,2004,303(5661):1179-1181
    64. Watt SA,Kimber WA,Fleming IN,etal. Detection of novel intracellular agonist responsive pools of phosphatidylinositol 3,4-bisphosphate using the TAPP1 pleckstrin homology domain in immunoelectron microscopy. Bilchem J,2004,377:653-663
    65. Gupta RS. Adenosine-AMP exchange activlty is an integral part of the mammalian adenosine kinase. Biochem Mo1 Biol Int,1996,39(3):493-502
    66. Liu JL,Sheng X,Hortobagyi ZK,etal. Nuclear PTEN-mediated growth suppression is independent of Akt down-regulation. Mol Cell Biol,2005,25(14):6211-6224
    67. Sanchez T,Thangada S,Wu MT,etal. PTEN as an effector in the signaling of antimigratory G protein-coupled receptor. Proc Natl Acad Sci USA,2005,102(12):4312-4317
    68. The phosphatidylinositol 3-kinase/Akt Pathway regulates the HCCR-1 oncogene expression. Gene,2006,384:18-26
    69. Lionel MLC,Suzanne JB.PTEN function in normal and neoplastic growth.Cancer Letters,2006,241(2):184-196
    70. Mi Ran Yun,Lee Ji Young,Han Seong Park,etal. Oleic acid enhances vascular smooth muscle cell proliferation via phosphatidylinositol 3-kinase/Akt signaling pathway. Pharmacological Research,2006,54(2):97-102
    71. Cook AM,Haynes JM. Phosphorylation of the PKG substrate,vasodilator- stimulated phosprotein(VASP), in human cultured prostatic stromal cells.Nitric Oxide,2007,16(1): 10-17
    72. Azusa NK,Makoto N,Hirokazu M,etal. Camp-responsive element binding protein mediates a cGMP/protein kinase G-dependent anti-apoptotic signal induced by nitric oxide in retinal neuron-gial progenitor cells.Experimental Eys Research,2007, 84(1):152-162
    73. Jean CH,Denis S. Protein Phosphatase modulation of the intercellular junctional communication: Importance in cardiac myocytes. Progress in Biophysics and Molecular Biology,2006,90(1-3):225-248.
    74. Hofmann F.The biology of cyclic GMP-dependent protein kinase. J Biol Chem,2005, 280:1~4
    75. 陆俊羽,张珍祥,徐永健等.整合素和粘着斑激酶在 JWA 基因抑制诱导的人肺动脉平滑肌细胞迁移调控中的作用.华中科技大学学报.( 医学版),2005,34(5): 513-516
    76. Bai L, Yu Z, Qian G, etal. SOCS3 was induced by hypoxia and suppressed STAT3 phosphorylation in pulmonary arterial smooth muscle cells. Respir Physiol Neurobiol. 2006, 152(1):83-91.
    77. 白莉,余祖滨,钱频等. SOCS 3 基因对缺氧肺动脉平滑肌细胞增殖及原癌基因mRNA 表达的影响. 中华内科杂志,2005; 44(1): 42-45.
    78. Moon SK,Kim HM,Kim C.PTEN induced G1 cell cycle arrest and inhibits MMP-9 expression via the regulation of NF-kB and AP-1 in vascular smooth muscle cells.Archives of Biochemistry and Biophysics,2004,421(2):267-276
    79. 白莉,钱桂生,林科雄等.脂多糖在复合培养时对肺微血管内皮细胞和肺动脉平滑肌细胞生长周期的影响.解放军医学杂志, 2003;28(2):98-99.
    80. Okamura H,Yoshida K,Sasaki E,etal. Expression of PTEN and Akt phosphorylation in lipopolysaccharide-treated NIH3T3 cells.Cell Biology International,2007,31(2): 119-125
    81. Sharrard RM,Maitland. Regulation of Protein Kinase B activity by PTEN and SHIP2 in human prostate-derived cell lines. Cellular signaling,2006,19(1):129-138
    82. Kerr F,Rickle A,Nayeem N,etal. PTEN,a negative regulator of PI3 kinase signaling,alters tau phosphorylation in cells by mechanisms independent of GSK-3.FEBS Letters,2006, 580(13):3121-3128
    1. Datta SR,Brunet A,Greenberg ME,etal. Cellular survival:a play in three Akts. Genes Dev,1999,13(22):2905-2927.
    2. LeGood JA,Ziegler WH,Parekh DB,etal. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science,1998,281 (5385):2042-2045.
    3. Dutil EM,Toker A,Newton AC.Regulation of conventional protein kinase C isozymes by phosphoinositide-de-pendent kinase1(PDK-1).CurrBiol,1998,8(25):1366-1375.
    4. Parent CA,Blacklock BJ,Froehlich WM,etal. G protein signaling events are activated at the leading edge of chemotactic cells.Cell,1998,95(1):81-91.
    5. Maehama T,Dixon JE. The tumor suppressor,PTEN/MMAC1,dephosphorylat es the lipid second messenger, phosphatidylinositol3,4,52trisphosphate. J Biol Chem,1998, 273(22):13375-13378.
    6. Myers MP,Pass I,Batty IH,etal. The lipid phosphatase activity of PTEN is critical for its tumor suppress or function.Proc Natl Acad Sci USA,1998,95(23):13513-13518.
    7. Wu X,Senechal K,Neshat MS,etal. The PTEN/MMAC1 tumor suppress or phosphatase functions as an egative regulator of the phosphoinositide3-kinase/Aktpathway. Proc Natl Acad Sci USA,1998,95(26):15587215591.
    8. Haas Kogan D,Shalev N,Wong M,etal.Protein kinaseB(PKB/Akt) activity is elevated in glioblastoma cells due to mutations of the tumor suppressor PTEN/MMAC1. Curr Biol,1998,8(21):1195-1198.
    9. Liu Q,Sasaki T,Kozieradzki I,etal.SHIP is an egative regulator of growth factor receptor mediated PKB/Akt activation and myeloid cells survival. Genes Dev,1999, 13(7):786-791.
    10. 向国胜,孙方臻.转录因子NF-κB/IκB(综述).细胞生物学杂志,2001,23(2):712771
    11. Pianetti S,Arsura M,Romieu Mourez R,etal.Her22/neu overexpression induces NF-kappaB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IkappaB-alpha that can be inhibited by the tumor suppressor PTEN. Oncogene,2001, 20(11):1287-1299.
    12. Koul D,Yao Y,Abbruzzese JL,etal.Tumor suppressor MMAC1/PTEN inhibits cytokine induced NFkappaB activation without interfering with the IkappaB degradationpathway. J Biol Chem,2001,276(14):11402-11408.
    13. Delcommenne M,Tan C,Gray V,etal. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase3 and protein kinase B/AKT by the integrin- linked kinase.Proc Natl Acad Sci USA,1998,95(19):11211-11216.
    14. Hannigan GE,Leung Hagesteijn C,Fitz Gibbon L,etal. Regulation of cell adhesion and an chorage-dependent growth by a new beta 1-integrin-linked protein kinase. Nature,1996,379(6560):91296.
    15. Wu C,Keightley SY,Leung Hagesteijn C,etal.Integrin-linked protein kinase regulates fibronectin matrixas-sembly,E-cadherin expression, and tumorigenicity.J Biol Chem,1998,273(1):528-536.
    16. Radeva G,Petrocelli T,Behrend E,etal.Overexpression of the integrin-linked kinase promotes an chorgae-independent cell cycle progression. J Biol Chem,1997,272(21): 13937-13944.
    17. Yoganathan TN,Costello P,Chen X,etal.Integrin-linked kinase (ILK):a “ hot ”therapeutic target.Bio chem. Pharmacol,2000,60(8):1115-1119.
    18. Tamura M,Gu J,Takino T,etal.Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: differentialin volvement offocal adhesion kinase and p130Cas .Cancer Res,1999,59(2):442-449.
    19. Weng LP,Smith WM,Brown JL,etal.PTEN inhibits insulin-stimulated MEK/MAPK activation and cell growth by blocking IRS-1 phosphorylation and IRS21/Grb22/Sos complex formation in a breast cancer model.Hum Mol Genet,2001,10(6):605-616.
    20. Gu J,Tamura M,Yamada KM.Tumor suppressor PTEN inhibits integrin and growth factor-mediated mitogen-activated protein(MAP) kinase signaling pathway. J Cell Biol,1998,143(5):1375-1383.
    21. Tolkacheva T,Chan AM.Inhibition of H2 Rastrans formation by the PTEN/MMAC1/TEP1 tumor suppressor gene.Oncogene,2000,19(5):680-689.
    22. Rodrigues GA,Falasca M,Zhang Z,etal.A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling. Mol Cell Biol,2000,20(14):1448-1459.
    23. Yu K,Toral Barza L,Discafan iC,etal.mTOR, an ovel target in breast cancer:the effect of CCI2779,an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer,2001,8(3):249-258.
    24. Podsypanina K,Lee PT,Politis C,etal.An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/-mice. Proc Natl Acad Sci USA,2001,98(18):10320-10325.
    25. Neshat MS,Mellinghoff IK,Tran C,etal. Enhanced sensitivity of PTEN deficient tumor to inhibition of FRAP/mTOR.Proc Natl Acad Sci USA,2001,98(18):10314-10319.
    26. Scharenberg AM,Kinet JP.PtdIns23,4,52P3: a regulatory nexus between tyrosine kinases and sustained calcium signals.Cell,1998,94(1):528.
    27. Turner T,EppsFung MV,Kassis J,etal.Molecular inhibition of phospholipase cgamma signaling abrogates DU2145 prostate tumor cell invasion. Clin Cancer Res,1997,3(12Pt1):2275-2282.
    28. Khoshyomn S,Penar PL,Rossi J,etal.Inhibition of phospholipase C2 gamma1 activation blocks glioma cell motility and invasion of fetal rat brain aggregates. Neurosurgery, 1999,33(3):568-578.
    29. Vassbotn FS,Ostman A,Langeland N,etal. Activated platelet-derived growth factor autocrine pathway drives the transformed phenotype of a human glioblastoma cellline.J Cell Physiol,1994,158(2):381-389.
    30. Shan X,Czar MJ,Bunnell SC,etal.Dificiency of PTEN in Jurk at T cells causes constitutive localization of Itk to the plasma membrane and hyperresponsiveness to CD3 stimulation.Mol ell Biol,2000,20(18):6945-6957.
    31. Nakashima N,Sharma PM,Imamura T,etal.The tumor suppressor PTEN negatively regulates insulin signaling in 3T3-L1 adipocytes.J Biol Chem,2000,275(17): 12889-12895.
    32. Simpson L,Li J,Liaw D,etal.PTEN expression causes feedback upregulation of insulin receptor substrate .Mol Cell Biol,2001,21(12):3947-3958.
    33. Gingras AC,Kennedy SG,O.Leary MA,etal.4E-BP1,a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev,1998,12(4):502-513.
    34. Wu X,Senechal K,Neshat MS,etal.The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide3-kinase/Akt pathway.Proc Natl Acad Sci USA,1998,95(26):15587-15591.
    1. Davies PF, Tripathi SC. Mechanical stress mechanisms and the cell. An endothelial paradigm. Circ Res, 1993; 72(2):239-245.
    2. Kinsella JP, Neish SR, Shaffer E, et al. Low-dose inhalation nitric oxide in persistent pulmonary hypertension of the newborn. Lancet, 1992; 340(8823):819-820.
    3. Guan-Song Wang,Gui-Sheng Qian,De-Shan Zhou,etal. JAK–STAT signaling pathway in pulmonary arterial smooth muscle cells is activated by hypoxia. Cell Biology International,2005,29(7):598-603
    4. Li Bai,Zubin Yu,Guisheng Qian,etal.SOCS3 was induced by hypoxia and suppressed STAT3 phosphorylation in pulmonary arterial smooth muscle cells. Respiratory Physiology and Neurobiology,2006,152(1):83-91
    5. Feng Y, Yang JH, Huang H, et al. Transcriptional profile of mechanically induced genes a) in human vascular smooth muscle cells. Circ Res, 1999; 85:1118–1123.
    6. Fath KA, Alexander RW, Delafontaine P. Abdominal coarctation increases insulin-like growth factor I mRNA levels in rat aorta.Circ Res, 1993; 72:271–277.
    7. Hirata Y, Takagi Y, Fukuda Y, et al. Endothelin is a potent mitogen for rat vascular smooth muscle cells. Atherosclerosis, 1989; 78:225–228.
    8. Negoro N, Kanayama Y, Haraguchi M. Blood pressure regulates platelet-derived growth factor A-chain gene expression in vascular smooth muscle cells in vivo,An autocrine mechanism promoting hypertensive vascular hypertrophy. J Clin Invest, 1995; 95: 1140–1150.
    9. Brothertom AFA,Loark JC.Protacyclin biosynthesis in cultured vascular endothelium and tissure vascular resistance in hypertension. J Clin Invest, 1983; 72: 1255.
    10. Khachigian LM,Anderson KR,Halnon NJ,et al. Egr-1 is activated in endothelial cells exposed to fluid shear stress and interacts with a novel shear-stress-response element in the PDGF A-chain promoter. Arterioscler Thromb Vasc Biol, 1997; 17(10):2280-2286.
    11. Tozzi CA, Poiani GJ, Harangozo AM, et al.Pressure-induced connective tissue synthesis in pulmonary artery segments is dependent on intact endothelium. J Clin Invest, 1989; 84(3):1005-1012.
    12. Sadoshima JI, Takahashi T, Jahn L, et al. Roles of mechanosensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci, 1992; 89: 9905-9909.
    13. Voelkel NF, Tuder RM, Bridges J, et al. Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline.Am J Respir Cell Mol Biol, 1994; 11(6):664-75.
    14. Ueba H, Kawakami M, Yaginuma T. Shear stress as an inhibitor of vascular smooth muscle cell proliferation. Role of transforming growth factor-beta 1 and tissue-type plasminogen activator. Arterioscler Thromb Vasc Biol, 1997; 17:1512–1516.
    15. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol, 1992; 12:5447-5454.
    16. Stes SD, Stoler DL, Anderson GR. Anoxic induction of a sarcoma virus-related VL30 retrotransposon is mediated by a cis-acting element which binds hypoxia-inducible factor Ⅰand an anoxia inducible factor. J Virol, 1995; 69:6335-6441.
    17. Tamm M, Bihl M, Eickelberg O, et al. Hypoxia-induced interleukin-6 and interleukin-8 production is mediated by platelet-activating factor and platelet-derived growth factor in primary human lung cells. Am J Respir Cell Mol Biol , 1998; 19(4):653-661.
    18. 李丰,车东缓,袁永辉. 低氧对肺动脉内皮细胞 PDGF-B 链释放及平滑肌细胞生长的影响. 中国应用生理学杂志, 1997; 13(3):216-219.
    19. 冯晓东,蔡英年. 内皮衍生因子(ET/NO)与低氧性肺动脉高压. 基础医学与临床, 1996; 16:6-10.
    20. Hassoun PM,Thappa V,Landman MJ et al. Endothelin 1: mitogenic activity on pulmonary artery smooth muscle cells and release from hypoxic endothelial cells. Proc Soc Exp Biol Med, 1992; 199(2):165-170.
    21. Benitz WE,Coulson JD,Lessler DS,et al.Hypoxia inhibits proliferation of fetal pulmonary arterial smooth muscle cells in vitro. Pediatr Res, 1986; 20(10):966-972.
    22. 刘健,罗德成,王培勇, 等. 低氧对体外培养的肺动脉平滑肌细胞形态及增殖的影响. 中国应用生理学杂志, 1997; 13(2):110-113.
    23. Chaouat A, Weitzenblum E, Higenbottam T. The role of thrombosis in severepulmonary hypertension.Eur Respir J. 1996;9(2):356-63.
    24. Berk BC, Brock TA, Webb RC, et al. Epidermal growth factor, a vascular smooth muscle mitogen, induces rat aortic contraction. J Clin Invest, 1985; 75:1083–1086.
    25. Berk BC, Corson MA. Autocrine and paracrine growth mechanisms in vascular smooth muscle. Curr Opin Cardio,1992; l 7:739–744.
    26. Berk BC, Rao GN. Angiotensin II-induced vascular smooth muscle cell hypertrophy: PDGF A-chain mediates the increase in cell size. J Cell Physiol,1993; 154:368–380.
    27. Berk BC, Taubman MB, Griendling KK, et al.Thrombin-stimulated events in cultured vascular smooth-muscle cells. Biochem J, 1991; 274:799–805.
    28. Masaki T. Endothelin in vascular biology. Ann NY Acad Sci, 1994; 714:101–108.
    29. Raines EW, Dower SK, Ross R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science, 1989; 243:393–396.
    30. Yamada H, Tsushima T, Murakami H, et al. Potentiation of mitogenic activity of platelet-derived growth factor by physiological concentrations of insulin via the MAP kinase cascade in rat A10 vascular smooth muscle cells. Int J Exp Diabetes Res, 2002; 3(2):131-144.
    31. Pan SL, Huang YW, Guh JH,et al. Esculetin inhibits Ras-mediated cell proliferation and attenuates vascular restenosis following angioplasty in rats. Biochem Pharmacol, 2003; 65(11):1897-1905.
    32. Duan C. The chemotactic and mitogenic responses of vascular smooth muscle cells to insulin-like growth factor-I require the activation of ERK1/2. Mol Cell Endocrinol, 2003; 206(1-2):75-83.
    33. Yamauchi-Takihara K, Kishimoto T. A novel role for STAT3 in cardiac remodeling. Trends Cardiovasc Med, 2000; 10(7):298-303.
    34. Seki Y, Kai H, Shibata R, et al. Role of the JAK/STAT pathway in rat carotid artery remodeling after vascular injury. Circ Res, 2000; 87(1):12-8.
    35. Madamanchi NR, Li S, Patterson C, et al. Thrombin regulates vascular smooth muscle cell growth and heat shock proteins via the JAK-STAT pathway. J Biol Chem, 2001; 276(22):18915-24.
    36. Yellaturu CR, Rao GN. Cytosolic phospholipase A2 is an effector of Jak/STAT signaling and is involved in platelet-derived growth factor BB-induced growth invascular smooth muscle cells. J Biol Chem, 2003; 278(11):9986-92.
    37. Marrero MB, Schiefferi B, Li B. Role of Janus Kinase/Signal Transducer and Activator of Transcription and Mitogen-activated Protein Kinase cascades in Angiotensin II- and Platelet-derived Growth Factor-induced vascular smooth muscle cell proliferation. J Bio Chem, 1997; 272(39):24684–24690.
    38. Dempsey EC, McMutry IF, O'Brien RF. Protein kinase C activation allows pulmonary artery smooth muscle cells to proliferate to hypoxia. Am J Physiol, 1991; 260: L136-L145.
    39. Neuser D,Stasch JP,Knorr A,et al.Inhibition by aterial natriuretic petide of endothelin-1 stimulated proliferation of vascular smooth muscle cells. J Cardiovasc Pahrmacol, 1993; 22(suppl 8):S257-261.
    40. Majesky MW, Lindner V, Twardzic DR, et al. Production of transforming growth factor beta 1 during repair of arterial injury. J Clin Invest, 1991; 88:904–910.
    41. Agrotis A, Bray PJ, Saltis J, et al. Vascular smooth muscle cell proliferation in SHR and WKY rats: evidence for specific differences in growth inhibitory regulatory mechanisms. Clin Exp Pharmacol Physiol, 1993; 20(5):327-330.
    42. Goodman LV, Majack RA. Vascular smooth muscle cells express distinct transforming growth factor-beta receptor phenotypes as a function of cell density in culture. J Biol Chem, 1989; 264(9):5241-5244.
    43. Battegay EJ, Raines EW, Seifert RA,et al.TGF-beta induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell, 1990; 63(3):515-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700