用户名: 密码: 验证码:
空间相机主次镜间支撑结构技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天遥感是获取地面图像信息的主要来源之一,已成为现代军事侦察的重要手段。空间相机是航天遥感的主要设备,随着用户需求的不断提高,尤其是军事应用需求的牵引,空间相机向着高分辨力、轻型化和集成化的方向发展。目前,世界各国主要军事强国都在大力发展空间相机相关技术,而我国在此领域与美国等一些发达国家相比还有很大差距。
     随着人类对空间相机分辨率的要求越来越高,空间相机逐步向长焦距、大口径的方向发展,这就要求必须采用更大的主反射镜口径和更大的主次镜放大比。无论是何种型式的三反射系统,在主反射镜前方都不可避免的有一块次镜,次镜与主镜间相对位置的变动对相机的成像质量具有很大的影响。对于大口径空间相机来说,次镜是非常敏感的光学元件,由于次镜与主镜之间距离较远,导致次镜连接结构刚性较差。因此,合理地设计主次镜间的支撑结构,使其既能够满足光学设计的要求又能够适应空间相机严酷的力学环境是一个重要的研究课题。本文在分析国内外空间相机及其主次镜间支撑结构研究现状的基础上,重点研究了空间相机主次镜间的支撑结构,主要进行以下几个方面的研究工作。
     (1)介绍了国内外空间相机主次镜间支撑结构的形式,论述了主次镜间支撑结构的分析与优化方法和试验研究情况。
     (2)根据相机光学系统,通过支撑结构的对比,选择了主次镜间采用连接筒和支撑杆的组合支撑方式。研究了基于有限元法的空间相机结构优化设计方法,对主次镜间殷钢材料支撑结构进行了优化设计,确定了支撑结构主要结构件的尺寸参数;详细设计了主次镜间的支撑结构;对主次镜间殷钢材料支撑结构进行了详尽的工程分析。
     (3)对主次镜间碳纤维复合材料支撑结构进行了设计和研究,通过静力学和动力学分析,表明碳纤维复合材料支撑结构满足相机的要求,同时具有较好的动力学特性。
     (4)对两种材料支撑结构进行了动力学环境试验;采用光学测量方法定量地验证了两种材料支撑结构的结构稳定性;通过严酷的湿热试验,表明殷钢材料支撑结构要明显优于碳纤维复合材料支撑结构。综合各方面的考虑,主次镜间的支撑结构最终选择殷钢材料的支撑结构。
     通过分析、试验和采用光学测量方法验证了本文所设计的主次镜间支撑结构具有较好的结构稳定性和动力学特性,可以满足相机的使用要求。
Space remote sensing is one of the main resources for the acquisition of ground information,and has become an important means of modern military reconnaissance. Space camera are main equipments of space remote sensing. In the military applications,space cameras should have high spatial resolution;at the same time it should be minimized and integrated. Therefore,lots of countries spare no effort to improve the characteristics of space camera. Compared with foreign counties,the development of space camera of China is relatively backward.
     With the constant improvement of space camera resolution,space camera having long focal length,large diameter was developed,and space camera having larger diameter primary mirror and ratio of a larger primary and secondary mirror magnification was adopted. No matter what type of three-reflector system,secondary mirror was inevitably located in the front of primary mirror,the variation of relative position between primary mirror and secondary mirror has a great impact on the camera's image quality. For large diameter space camera,secondary mirror is a very sensitive optical components,because the distance between primary mirror and secondary mirror is far,it will result in poor rigidity for sub-mirror connection structure. Therefore,in order to meet the requirements of the optical design and the adaptation of harsh mechanical environment on the space camera,it is necessary to study the supporting structure between primary mirror and secondary mirror. Based on the analysis of research and development situations of space camera and its structure,the supporting structure between primary mirror and secondary mirror was emphasized in this paper and and several research works were done in this dissertation:
     (1)The form of the supporting structure between primary mirror and secondary mirror of space camera was introduced,the analysis,optimization methods and experimental study of the supporting structure were explained.
     (2)According to the camera optical system,the combination means of the connecting cylinder and the support bar between primary mirror and secondary mirror were chosed,the structure optimization methods based on the finite element were studied,the invar supporting structure was optimized,the size parameters of the main structure parts were defined,and the invar supporting structure between primary mirror and secondary mirror was designed and analyzed detailedly.
     (3) The carbon fiber composites supporting structure was designed and studied,statics and dynamics analyses show that the carbon fiber composites supporting structure has better dynamics characteristics,having reached to the camera requirement.
     (4)The supporting structure stability of the two materials was validated by the crescent mechanic test and optical measurement method;harsh damp heat test show that invar support structure is much better than the carbon fiber composites support structure. Taking all considerations,invar supporting structure between primary mirror and secondary mirror was chosed.
     Analyses,experiment and optical measurement method adopted show that supporting structure between primary mirror and secondary mirror has better structure stability and dynamics characteristics,having reached to the camera requirement.
引文
[1]姜景山,王文魁,都亨.空间科学与应用[M].北京:科学出版社. 2001
    [2]闵桂荣,郭舜.航天器热控制[M].北京:科学出版社,1998
    [3]闵桂荣.卫星热控技术[M].北京:宇航出版社,1991
    [4]李积慧等.空间相机的热分析与热控制技术[J].光学精密工程.1999,7(6): 36-41
    [5]李国强等.影响CCD相机温度分布的因素.中国空间科技技术.2001,5:62-70
    [6]吴清文等.空间光学遥感器热分析[J].光学精密工程.2002,10(2):205-208
    [7]陈恩涛,卢锷.空间光学遥感器的热控制技术[J].光机电信息.2000,17(12): 12-16
    [8]牛晓明.空间光学遥感器的热响应分析及热控[J].光学精密程.1998,6(6): 74-78
    [9]牛晓明等.空间光学系统的热分析[J].光学精密工程.1996,4(6):54-60
    [10] R.L.Edeson,B.M.Shaughnessy, M.S.Whalley,K.Burke, J.Lucas. The mechanical and thermal design and analysis of the VISTA infrared camera [J]. Proc.SPIE. 2004, Vol.5497: 508-519
    [11]吴玉石.高分辨力传输型侦察卫星技术的发展[J].航天器工程. 2003.12(1):64-73
    [12] John W. Figoski. The QuickBird telescope:the reality of large,high-quality, commercial space optics, SPIE.1999,3779,22-30
    [13]刘琳.长焦距反射式望远镜设计研究[D].苏州大学.2002.5
    [14] BICKNELL.W.E,DIGENIS C J,FORMAN S E.EO-1 Advanced land imager [J]. SPIE,1999,Vol.3750:80-88.
    [15] SHIMODA H.Japanese earth observation programs[J].SPIE,1 999,Vol.3870:37-48.
    [16]王金堂,乌崇德.国外几种星载光学遥感器的发展情况简介[J],航天返回与遥感,2002,vol.23(4):15-20
    [17]金光,南寿.立体测绘小卫星有效载荷—传输型三线阵CCD摄影测量相机[J],遥感技术与应用,1999,14(3):34-37
    [18] Gilles Moury, Christophe Latry. In-orbit commissioning of SPOT5 image compression function. SPIE Vol.5151:540-551
    [19] F. Gueguen, A. Bettes, Y. Toulemont, J. Costeraste, A. Rosak. SPOT series camera improvement for HRG, very high resolution instrument of SPOT 5. SPIE Vol.3737:301-311
    [20] Otto Hofmann. Combined Point Determination Using Digital Data of Three Line Scanner System, IDSPRS Symposimu. 1992
    [21] Guerci J, Jaska E. ISAT-innovative space-based-radar antenna technology [C]. Phased Array Systems and Technology, IEEE International Symposium, 2003:45-51
    [22]吴清文.空间相机中主镜的轻量化技术及其应用[J],光学精密工程,1997;Vol.5,No.6:69-81
    [23]陈晓丽,傅丹鹰.大口径甚高分辨率空间光学遥感器技术途径探讨[J],航天返回与遥感,2003;Vol.24,No.4:19-24
    [24]吴清文.空间相机主镜的力学、温度场特性和轻量化研究[D].长春:长春光机所博士学位毕业论文,1998
    [25]郭喜庆,王悦勇.大口径反射镜几种轻量化孔结构形式的分析[J].光学精密工程,2000,8(6):518-521
    [26]张毅,李英才,王虎.航天TDI-CCD亚像元相机的MTF研究[J],光子学报,2005,34(10):9-11
    [27]刘新平,王虎,汶德胜.亚像元线阵CCD焦平面的光学拼接[J],光子学报,2003,31(6):781-784
    [28]刘新平.亚像元成像技术研究[D],北京理工大学博士学位论文,2001
    [29]王孝坤,张学军,王丽辉,郑立功.环形子孔径拼接干涉检测非球面的数学模型和仿真研究[J],光学精密工程,2006,14(4):527-532
    [30] HOU X,WU F.Annular subaperture interferometric testing technique for large aspheric surfaces[J].SPIE,2005,Vol.5638:992-997.
    [31]张志伟,马骏.微小型自适应光学系统及其在星载光学遥感器上的应用[J],红外与激光工程,2000,29(1):49-52
    [32]常军.大视场、长焦距空间光学系统设计.兵工学报,2003
    [33]伍和云.离轴反射式光学系统设计.光电工程,2006
    [34] Jay Pearlman, Carol Segal, Lushalan Liao, Steve Carman, Mark Folkman. Development and Operations of the EO-1 Hyperion Imaging Spectrometer[J], SPIE, 4135, 2004: 243-252
    [35] Steven E. Forman. EO-1 Advanced Land Imager (ALI) Technology Transfer Forum[R], 2001.9
    [36] Bronowicki A J. Dual-stage vibration isolation for optical interferometer missions [J]. SPIE, 2002
    [37] Li Chao-Ming, Pan Jun-Hua. Research on the influence of secondary mirror shadow coefficient upon Pan-Cassegrain system[J], SPIE,2006.6034:031-6
    [38] Ii Kweon Moon, InWoo Han. Design Study of a KAO Telescope with a 1-rn Double Arch Prirnary Mirror[J], SPIE,1995.2542:154-166
    [39] Myung Cho. Design Study of the GNIRS Bracket Structure[R].2000.2
    [40] Dennis Gallagher, Jim Bergstrom, Joe Day. Overview of the Optical Design and Performance of the High Resolution Science Imaging Experiment (HIRISE) [J], SPIE,2005
    [41] Nella J. JWST observatory architecture and performance [A]. SPIE, 2004
    [42]陈志平.空间太阳望远镜的结构分析与主桁架试验研究[D].中国科学院国家天文台博士论文2004.3
    [43]胡企千,刘梅.空间太阳望远镜镜筒桁架的优化[J].光学精密工程,2003.11(2): 151~156
    [44]陈志平,陈志远,杨世模.空间太阳望远镜主桁架的模态分析与试验[J].光电工程,2004.31(12):1-3
    [45]陈世平.空间相机设计与试验[M].北京:宇航出版社,2003.12
    [46]孙宝玉.轻型大视场遥感器动态特性研究[D].中国科学院长春光学精密机械与物理研究所博士学位论文2004.6
    [47]金光,张雷.小凹成像光学系统技术原理样机方案报告[R].中国科学院长春光学精密机械与物理研究所
    [48]袁家军.卫星结构设计与分析[M].北京:宇航出版社,2003.12
    [49]高明辉.空间光学遥感器超薄反射镜与支撑结构设计方法研究[D].中国科学院长春光学精密机械与物理研究所博士学位论文2004.6
    [50]吴清文.高精度轻型长条形反射镜多点支撑方案[J].光学精密工程,1999.7(3):61-65
    [51]谢祚水.结构优化设计概论[M],北京:国防工业出版社,1997.5
    [52]孙靖民.结构优化设计[M],北京:机械工业出版社,2005
    [53]陈建军,车建文等.结构动力优化设计述评与展望[J].力学进展,2001,31(2):181-19
    [54] Keith B. Doyle, Design of Optical Structures for Maximum Fundamental Frequency [J], SPIE, 1993, 1998: 50~59
    [55]王延风,卢锷,宋文荣等.空间相机的结构动力学分析[J] .光学精密工程,2003,11(4): 50-55
    [56]单宝忠,武克用,卢锷.结合有限元法的空间相机优化设计[J].光学精密工程,2002.10(1):116-120
    [57] Richard Wade, Barry Fell, Structural analysis and active flexure compensation of the high resolution optical spectrograph for the Gemini South Telescope[J], SPIE, 1998, 3355: 307-314
    [58] Ciro Del Vecchio. Optimization of the elevation structure of the Large Binocular Telescope[J], SPIE,1995.2871:159-168
    [59]马兴瑞,于登云,韩增尧,邹元杰.星箭力学环境分析与试验技术研究进展[J].宇航学报,2006,27(3):323-331
    [60]金恂叔.航天器研制中的环境试验及其发展趋势[J].环境技术,2001 (5):6-18
    [61]陈昌亚,宋汉文.卫星结构振动试验中的力控技术[J].上海航天,2005,22 (5):47 -49
    [62]夏益霖,吴家驹.航天发射的低频振动环境及其模拟[J].强度与环境,1998(1):1-8
    [63]酒井善治,唐升棣.振动冲击试验的展望和问题一从实际试验的立场出发[J].环境技术,1995(4):37-43
    [64] Chen zhiping, Yang Shimo, Hu gigian. Structural analysis and thermal influence of Space Solar Telescope [J], SPIE, 2002. 4853:648-657
    [65]胡金刚.中国航天器热控制技术进展[J].航天器工程,2001. 10(1):14-29
    [66]李积慧,韩双丽,王家骐等.空间相机的热分析与热控制技术[J].光学精密工程,1999. 7(6):36-41
    [67]李积慧,韩双丽.空间遥感相机热控设计中的热分析与热试验技术的探讨[J].光学精密工程,1999.7(2):116-120
    [68]张洪武,关振群,李云鹏等著.有限元分析与CAE技术基础[M].清华大学出版社,2004
    [69]王勋成,邵敏.有限单元法基本原理和数值方法[M],北京:清华大学出版社,1997.
    [70]张雷.空间相机桁架式镜头支撑结构研究[D].中国科学院长春光学精密机械与物理研究所博士学位论文,2008.5
    [71]胡海昌.弹性力学的变分原理[M] .北京:科学出版社,1981.5
    [72]杨剑,张璞,陈火红.MD.Nastran有限元实例教程[M] .北京:机械工业出版社,2007.10
    [73]管迪华.模态分析技术[M].北京:清华大学出版社,1996.5
    [74]庄茁,张帆,岑松等编著.ABAQUS非线性有限元分析与实例[M],北京:科学出版社,2005
    [75]庄茁译.连续体和结构的非线性有限元[M],北京:清华大学出版社,2002
    [76]孔祥安,江晓禹,金学松.固体接触力学[M],北京:中国铁道出版社,1999
    [77]孙林松.弹性接触问题的常刚度迭代方法及其加速[J],应用力学学报,2002, (04) : 58-63
    [78]郭小明,赵惠麟.工程结构接触问题的研究及进展[J],东南大学学报,2003,33(5):577-582
    [79]孙林松.接触问题有限元分析方法综述[J],水利水电科技进展,2001, (3) : 18-23
    [80] Moore Gregory J Ph D. Msc/ Nastran Design Sensitivity and Optimization. Msc/ Nastran User’s Guide [Z]. 2000.10
    [81] Guoping Li, Dehua Yang. Preliminary Structure Design and Analysis of the Chinese Future Giant Telescope[J], SPIE,2004.5495:204-215
    [82]牛晓明.CAE技术在空间相机光机结构设计中的应用[J].光学精密工程,1999.7(4):23 -29
    [83]郭喜庆.长焦距相机镜头结构轻量化分析[D].中国科学院硕士学位研究生学位论文1999.2
    [84]董旭刚.桁架结构的有限元分析与优化设计研究[D].西安理工大学,2005.3
    [85]单宝忠.空间相机光学系统光机热集成分析及优化设计[D].中科院长春光学精密机械与物理研究所博士论文,1999.3
    [86]李丽,武克用,卢锷.空间遥感器相机支架结构的动态特性分析与优化[J],光学精密工程,1996.4(5):121-126
    [87]李丽.对影响空间光学仪器动力学特性的支撑方式的探讨[J],光学精密工程,1996.4(6):65-70
    [88]韩增尧,曲广吉.卫星强迫随机振动响应分析.2001年MSC用户论文集.2001. 10
    [89]陈立新,杨洋.副翼操纵拉杆的强迫振动频率响应分析.2001年MSC用户论文集. 2001. 10
    [90]王俊,卢锷,王家骐.遥感相机对空间动力学干扰源的响应分析[J].光学精密工程,1999.7(3): 42-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700