用户名: 密码: 验证码:
钒、钨掺杂纳米NaTaO_3光催化剂的水热合成和电子结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有钙钛矿结构的新型催化剂NaTaO3在解决人类面临的资源和环境问题等方面具有广阔的应用前景。NaTaO3禁带宽度约为4.OeV,只能吸收紫外光,因此大大降低了太阳光的利用率。本论文应用水热合成法,制备了一系列钒、钨掺杂纳米NaTaO3光催化剂,对NaTaO3进行掺杂改性研究。采用XRD、SEM、UV-Vis-DIS、FTIR等表征手段研究了产物物相组成、结构形貌、谱学特征和光学性能。同时我们应用密度泛函方法,计算模拟得到钒、钨掺杂前后NaTaO3的能带结构、态密度和分态密度,从电子结构水平上探讨了掺杂改性对NaTaO3的能带结构的调控作用及形成机制。结论如下:
     1、用水热法合成了不同钒掺杂量的纳米NaTaO3样品。XRD分析表明,V掺杂后纳米NaTaO3衍射峰向低角度方向发生系统偏移,V可能以两种形式掺杂到NaTaO3中:V5+替换Ta5+或V掺杂到晶格间隙中。SEM电镜图像显示钒掺杂NaTaO3呈规则的大小相对均匀的立方形貌。通过UV-Vis漫反射光谱分析表明V掺杂可以显著的改善NaTaO3的光吸收性能。随着掺杂量的增加,吸收向可见光区移动,带隙能降低;紫外光降解罗丹明B的实验测试结果表明钒掺杂可提高NaTaO3的光催化活性。
     2、应用密度泛函方法对钒掺杂NaTaO3体系进行了能带结构和态密度的理论模拟。结果表明,NaTaO3中掺杂V掺杂可以在禁带中形成以V3d轨道为主的掺杂能级,降低电子跃迁时所需要的能量,从而产生可见光响应。
     3、用水热法合得到了不同钨掺杂量的纳米NaTaO3样品,XRD分析表明衍射峰的位置基本不变。UV-Vis漫反射测试结果,发现W掺杂未能显著改善NaTaO3光吸收。结合能带结构计算分析,钨掺杂后NaTaO3的能带位置整体下移,W5d能级在Ta5d的能级之上。导带底与价带顶的组成没有变化。
     4、以计算化学的相关原理和思想为指导,采用Client/Server结构模式,构建了计算机分子材料设计平台。并成功的移植了大型并行量子化学软件包NWChem和从头算分子动力学软件包CPMD。建立了两种软件的使用方法,为以后进一步应用计算机实现分子材料的设计和开发打下基础。
Nano-NaTaO3 of perovskite structure is a new photocatalysis, which has a great potential application in dissolving the energy insufficiency and environmental pollution nowadays. However, NaTaO3 is a wide band gap semiconductor with band gap of 4.0 eV and its application is significantly restricted because of its failure to use the green energy source of sunlight. In this thesis, a series of V or W doped NaTaO3 nanostructure were synthesized via the hydrothermal route. By systematic characterization using XRD, SEM, UV-vis-DRS, and FI-TR, phase structure, morphology, vibration property, and absorption properties of samples were studied in detail. Density functional theory was used to process a simulated calculation on the changes of band structure, DOS,PDOS, and to explain the mechanism of band structure modification and formation on NaTaO3 via V and W doping. The following results were achieved:
     1. XRD patterns of V doped NaTaO3 prepared by hydrothermal method illustrated that the diffraction peaks systematically shifted to lower angle, suggesting vanadium is introduced to NaTaO3 in two ways:V5+ replaced Ta5+ via ion exchange or V anchored into the lattice of NaTaO3. Universal cubic morphology were observed by SEM. UV-Vis-DRS spectra of samples showed the obvious red-shift of absorption peaks with increasing of V doping content, indicating the narrowed band gap.
     2. Density functional theory was applied to conduct simulated calculation of band gap structure and DOS. The results indicated that V doping could form an incorporation energy levels with 3 d orbital of vanadium, which mainly attributed to lower the energy needed in the electron jump, therein, extended the light absorption of NaTaO3.
     3. W doped NaTaO3 samples were prepared via hydrothermal method. The diffraction peaks of The XRD patterns of showed no shift with W doping, while no obvious changes were observed from the UV-Vis-DRS. The results of DFT calculation show that band position of NaTaO3 shift down after W doping and W 5d locate above the Ta 5d level. There were no changes at the bottom of conduction band and the top of valance band with W doping into NaTaO3.
     4. With instruction of computational chemistry related theory and methods, computational molecular material designing platform were constructed by using structural mode of Client/Server. And quantum chemistry software NWChem and molecular dynamic software CPMD were successfully introduced to the platform. Further, we construdcted tow different softeware applications, which is believed to be usfull to the future research.
引文
[1]IEA.《世界能源展望》.世界贸易组织动态与研究,2009.
    [2]《哥本哈根协议》.丹麦哥本哈根,2009.
    [3]杨朝飞.解析中国和平发展的环境与资源问题.中共中央党校学报[J],2005:9(1).
    [4]刘东国.中国面临的资源环境问题与和谐世界的建设[J].教学与研究,2007.11.
    [5]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J], Nature 1972,238,37.
    [6]Hoffman MR.,Martin ST,Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev.,1995,95:69-96.
    [7]Mor GK,Varghese OK, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays:Fabrication, material properties, and solar energy applications[J].SOLAR ENERGY MATERIALS AND SOLAR CELLS,2006,90(14):2011-2075.
    [8]A review of imperative technologies for wastewater treatment I:oxidation technologies at ambient conditions[J]. ADVANCES IN ENVIRONMENTAL RESEARCH,2004,8(3-4):501-551.
    [9]Pirkanniemi K, Sillanpaa M. Heterogeneous water phase catalysis as an environmental application:a review[J]. CHEMOSPHERE,2002,48(10):1047-1060.
    [10]Ravelli D,Dondi D, Fagnoni M, et al. Photocatalysis:A multi-faceted concept for green chemistry[J]. CHEMICAL SOCIETY REVIEWS,2009,38(7):1999-2011.
    [11]Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem Soc Rev, 2009,38(1):253-278.
    [12]刘守新,刘鸿.光催化及光电催化基础与应用[D].北京:化学工业出版社,2006.
    [13]胡春,王怡中.多相光催化氧化的理论与实践发展[J].环境科学进展,1995 01.
    [14]韩兆慧,赵化侨.半导体多相光催化应用研究进展[J].化学进展,1999 01.
    [15]裘晓辉,白春礼.中国纳米科技研究的进展[J].前沿科学,2007(1):6210.
    [16]Fujishima A, Zhang X, Tryk DA. TiO2 photocatalysis and related surface phenomena [J]. Surface Science Reports,2008,63(12):515-582.
    [17]Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):1-21.
    [18]Amy L,Linsebigler, Guangquan Lu,John T.Yates, Jr.Photocatalysis on TiO2 Surfaces:Principles,Mechanisms, and Selected Results[J] Chem. Rev.1995,95,735-758.
    [19]Serpone E, Pelizzetti E, Photocatalysis[D], Wiley, New York,1989.
    [20]Kudo A, Kato H. Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting[J]. Chem Phys Lett,2000,331(5-6):373-377.
    [21]Kato H, Kudo A. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO(3) (A= Li, Na, and K)[J]. J Phys Chem B,2001,105(19):4285-4292.
    [22]Choi W,Termin A,Hoffmann MR. The role of mental dopants in quantum sized TiO3 :correlation between photoreactivity and charge carrier recombination dynamics[J]. J. Phys.Chem.,1994,98: 13669-13679.
    [23]Kudo A, Kato H. Effect of lanthanide-doping into NaTaO3 photocatalysts for efficient water splitting[J]. Chem Phys Lett,2000,331(5-6):373-377.
    [24]Iwase A, Kato H, Okutomi H, et al. Formation of surface nano-step structures and improvement of photocatalytic activities of NaTaO3 by doping of alkaline earth metal ions[J]. Chem Lett,2004,33(10): 1260-1261.
    [25]Asahi R, Morikawa T, Ohwaki T, et al.Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. SCIENCE,2001:293(5528):269-271.
    [26]Fu HB, Zhang SC, Zhang LW, et al. Visible-light-driven NaTaO3-xNx catalyst prepared by a hydrothermal process[J]. Mater Res Bull,2008,43(4):864-872.
    [27]Wang XW, Liu G, Chen ZG, et al. Synthesis and Photoelectrochemical Behavior of Nitrogen-doped NaTaO3[J]. Chem Lett,2009,38(3):214-215.
    [28]Shangguan W, Yoshida A. Synthesis and photocatalytic properties of CdS-intercalated metal oxides[J]. Solar Energy Materials and Solar Cells,2001,69(2):189-194.
    [29]Datta A, Priyam A, Bhattacharyya, et al. Temperature tunability of size in CdS nanoparticles and size dependent photocatalytic degradation of nitroaromatics[J]. J. Colloid Interface Sci.,2008,322(1): 128-35.
    [30]Khaselev O, Turner JA. A monolithic photovoltaic-photoelectrochemicaldevice for hydrogen production via water splitting[J]. Science,1998,280:425-432.
    [31]Fox MA,Dulay MT. Acceleration of secondary dark reactions of intermediates derived from adsorbed dyes on irradiated TiO2 powders[J].J Photochem Photobio A,1996,98(1-2):91-101.
    [32]Chatterjee D; Dasgupta S. Visible light induced photocatalytic degradation of organic pollutants J. Photochem. Photobiol[J]. C-Photochem. Rev,2005,6(2-3):186-205.
    [33]Kudo A. Photocatalyst materials for water splitting[J]. Catal Surv Asia,2003,7(1):31-38.
    [34]Xu T, Zhao X, Zhu Y. Synthesis of Hexagonal BaTa2O6 Nanorods and Influence of Defects on the Photocatalytic Activity[J]. The Journal of Physical Chemistry B,2006,110(51):25825-25832.
    [35]Xu T-Q Zhang C, Shao X, et al. Monomolecular-Layer Ba5Ta4O15 Nanosheets:Synthesis and Investigation of Photocatalytic Properties [J]. Advanced Functional Materials,2006,16(12):1599-1607.
    [36]Zhang H, Chen G, Li X, et al. Electronic structure and water splitting under visible light irradiation of BiTa1-xCuxO4 (x=0.00-0.04) photocatalysts[J]. Int J Hydrogen Energ,2009,34(9):3631-3638.
    [37]Zhou C, Chen G, Li YX, et al. Photocatalytic activities of Sr2Ta2O7 nanosheets synthesized by a hydrothermal 1 method[J]. Int J Hydrogen Energ,2009,34(5):2113-2120.
    [38]Kudo A, Tanaka A. Photocatalytic Decomposition of Water over NiO-K4Nb6O17 [J].Catalyst J Catal, 1988,111:67-76.
    [39]Kudo A,Kato H. Energy structure and photocatalytic activity for water splitting of Sr2(Ta1-xNbx)2O7 solid solution[J].J Photochem Photobio A,2001,145:129-133.
    [40]Kudo A,Kato H.Photocatalytic decomposition of water into H2 and O2 over novel photocatalyst K3Ta3Si2O13 with pillared structure consisting of three TaO6 chains[J].Chem Lett,1997:867-868.
    [41]Kato H, Kudo A. New tantalate photocatalysts for water decomposition into H2 and O2[J]. Chem Phys Lett,1998,295(5-6):487-492.
    [42]Kato H, Kudo A. Highly efficient decomposition of pure water into H2 and O2 over NaTaO3 photocatalysts[J]. Catal Lett,1999,58(2-3):153-155.
    [43]Kato H, Asakura K, Kudo A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure[J]. J Am Chem Soc, 2003,125(10):3082-3089.
    [44]Yamakata A, Ishibashi T-a, Kato H, et al. Photodynamics of NaTaO3 Catalysts for Efficient Water Splitting[J]. The Journal of Physical Chemistry B,2003,107(51):14383-14387.
    [45]Maruyama M, Iwase A, Kato H, et al. Time-Resolved Infrared Absorption Study of NaTaO3 Photocatalysts Doped with Alkali Earth Metals[J]. J Phys Chem C,2009,113(31):13918-13923.
    [46]Iwase A, Saito K, Kudo A. Sensitization of NaMO3 (M:Nb and Ta) Photocatalysts with Wide Band Gaps to Visible Light by Ir Doping[J]. B Chem Soc Jpn,2009,82(4):514-518.
    [47]Yang M, Huang X, Yan S, et al. Improved hydrogen evolution activities under visible light irradiation over NaTaO3 codoped with lanthanum and chromium[J]. Mater Chem Phys,2010,121(3):506-510.
    [48]Fu HB, Zhang SC, Zhang LW; et al. Visible-light-driven NaTaO3-xNx catalyst prepared by a hydrothermal process[J]. Mater Res Bull,2008,43(4):864-872.
    [49]白红亮.铋掺杂纳米NaTaO3的结构和电子结构研究[D].内蒙古:内蒙古大学,2008.
    [50]韩培林.非金属掺杂纳米NaTaO3的水热合成及结构性能研究[D].内蒙古:内蒙古大学2009.
    [51]Wang XJ, Bai HL, Meng Y, et al. Synthesis and Optical Properties of Bi3+ Doped NaTaO3 Nano-Size Photocatalysts[J]. J Nanosci Nanotechnol,2010,10(3):1788-1793.
    [52]Hu C-C, Teng H. Influence of structural features on the photocatalytic activity of NaTaO3 powders from different synthesis methods[J]. Applied Catalysis A:General,2007,331:44-50.
    [53]K. Byrappa, M. Haber, Handbook of Hydrothermal Technology, William Andrew, NY,2001.
    [54]Kasuga T, Hiramatsu M, Hoson A, et al. Titania Nanotubes Prepared by Chemical Processing[J]. Adv Mater,1999,11(15):1307-1311.
    [55]Kasuga T, Hiramatsu M, Hoson A, et al. Formation of Titanium Oxide Nanotube[J]. Langmuir, 1998,14(12):3160-3163.
    [56]Lan Y, Gao XP, Zhu HY, et al. Titanate Nanotubes and Nanorods Prepared from Rutile Powder[J]. Advanced Functional Materials,2005,15(8):1310-1318.
    [57]He Y, Zhu YF, Wu NZ. Synthesis of nanosized NaTaO3 in low temperature and its photocatalytic performance[J]. J Solid State Chem,2004,177(11):3868-3872.
    [58]Lee Y, Watanabe T, Takata T, et al. Hydrothermal synthesis of fine NaTaO3 powder as a highly efficient photocatalyst for overall water splitting[J]. B Chem Soc Jpn,2007,80(2):423-428.
    [59]Li X, Zang JL. Facile Hydrothermal Synthesis of Sodium Tantalate (NaTaO3) Nanocubes and High Photocatalytic Properties[J]. J Phys Chem C,2009,113(45):19411-19418.
    [60]Hu CC, Tsai CC, Teng H. Structure Characterization and Tuning of Perovskite-Like NaTaO3 for Applications in Photoluminescence and Photocatalysis[J]. J Am Ceram Soc,2009,92(2):460-466.
    [61]Nelson JA, Wagner MJ. Synthesis of Sodium Tantalate Nanorods by Alkalide Reduction[J]. J. Am. Chem.Soc.,2003,125,332
    [62]Xu JS, Xue DF, Yan CL. Chemical synthesis of NaTaO3 powder at low-temperature[J]. Mater Lett, 2005,59(23):2920-2922.
    [63]Digamber G., Porob, Paul A. Maggard, et al. Flux synthesis of La-doped NaTaO3 and its photocatalytic activity[J].Journal of Solid State Chemistry,2006,179:172
    [64]Yi X, Li JL. Synthesis and optical property of NaTaO3 nanofibers prepared by electrospinning[J]. J Sol-Gel Sci Technol,2010,53(2):480-484.
    [65]Yan SC, Wang ZQ, Li ZS, et al. Photocatalytic activities for water splitting of La-doped-NaTaO3 fabricated by microwave synthesis[J]. Solid State Ionics,2009,180(32-35):1539-1542.
    [66]曾谨言.量子力学[M].北京:科学出版社,2000
    [67]徐光宪,黎乐民.量子化学——基本原理和从头计算法第二版[M].北京:科学出版社,2009.
    [68]林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004.
    [69]Thomas H, The calculation of atomic fields[J].Proc.Camb.Phil.Soc.1927,23:542-548.
    [70]Fermi E,Un metodo statistico par la determinazione di alcune proprieta dell'atome[J].Atti.Accad.Naz.Lincei,Cl.Sci.Fis.Mat.Natur.Rend.,1927,(6)6:602-607
    [71]Koch W, Holthausen MC.A Chemist's Guide to Density Functional Theory,2nd Ed[M]. Wiley-VCH, 2001
    [72]Parr RG., Yang W. Density-Functional Theory of Atoms and Molecules[M]. Oxford University Press, 1989.
    [73]熊志华,孙振辉,雷敏生.基于密度泛函理论的第一性原理赝势法[J].江西科学,2005 01.
    [74]帅志刚,邵久书.理论化学原理与应用[M].北京:科学出版社,2008.
    [75]Hohenberg.P,Kohn W. Inhomogeneous electron gas[J]. Phys. Rev,1964,136:B864-871
    [76]Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev., 1965,140:A1133-A1138
    [77]Perdew JP, Burke K.Comparison shopping for a gradient-corrected density functional[J].Int. J. Quant. Chem.,57:767-808,1996.
    [78]Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev B,1992,45:13244-13249.
    [79]Becke AD.Density functional exchange-energy approximation with correct asymptotic correlation energy[J]. Phys.Rev.A,1988,38:3098-3100.
    [80]Perdew JP, Tao JM, Staroverov VN, et al. Meta-generalized gradient approximation:Explanation of a realistic nonempirical density functional[J]. J Chem Phys,2004,120(15):6898-6911.
    [81]黄昆.固体物理学[M].北京:北京大学出版社,2009.
    [82]谢希德,陆栋.固体能带理论第二版[M].上海:复旦大学出版社,2007.
    [83]基泰尔著,项金钟,吴兴惠译.固体物理导论第8版[M].北京:化学工业出版社,2005.
    [84]Hamann D R, Schluter M, Chiang C. Norm-conserving Pseudopotentials[J]. Phys. Rev. Lett,1979, 43(12):1494.
    [85]Vanderbilt D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Phys. Rev. B,1990,43(11):7892.
    [86]Clark SJ, Segall MD, Piekard CJ, et al. First principles methods using CASTEP[J]. Zeitschrift fuer Kristallographie 2005220(5-6):567-570.
    [87]Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation:ideas, illustrations and the CASTEP code, Journal of Physics:Condensed Matter,2002,14:2717-2744
    [88]Materials Studio使用手册.
    [89]Kortum GReflectance Spectroscopy:Principles, Methods and Applications.New York:Springer-Verlag, 1969.
    [90]Shimura K, Kato S, Yoshida T, et al. Photocatalytic Steam Reforming of Methane over Sodium Tantalate[J]. The Journal of Physical Chemistry C,2010,114(8):3493-3503.
    [91]Torres-Martinez LM, Cruz-Lopez A, Juarez-Ramirez I, et al. Methylene blue degradation by NaTaO3 sol-gel doped with Sm and La[J]. J Hazard Mater,2009,165(1-3):774-779.
    [92]Kudo A. Photocatalyst materials for water splitting[J]. Catal Surv Asia,2003,7(1):31-38.
    [93]Kudo A, Kato H, Tsuji I. Strategies for the development of visible-light-driven photocatalysts for water splitting[J]. Chem Lett,2004,33(12):1534-1539.
    [94]徐同广.钽酸盐纳米光催化剂的可控制备及性能研究[D]北京清华大学2007
    [95]Xu T-G, Zhang C, Shao X, et al. Monomolecular-Layer Ba5Ta4O15 Nanosheets:Synthesis and Investigation of Photocatalytic Properties [J]. Advanced Functional Materials,2006,16(12):1599-1607.
    [96]Lange's Handbook of Chemistry(兰氏化学手册),70th Anniversary; 16th Edition
    [97]Lu L, Li L, Wang X, et al. Understanding of the Finite Size Effects on Lattice Vibrations and Electronic Transitions of Nano a-Fe2O3[J]. The Journal of Physical Chemistry B,2005,109(36):17151-17156.
    [98]Li G, Li L, Boerio-Goates J, et al. High Purity Anatase TiO2 Nanocrystals:Near Room-Temperature Synthesis, Grain Growth Kinetics, and Surface Hydration Chemistry[J]. J Am Chem Soc,2005,127(24): 8659-8666.
    [99]Tan S, Yue S, Zhang Y. Jahn-Teller distortion induced by Mg/Zn substitution on Mn sites in the perovskite manganites[J]. Phys Lett A,2003,319(5-6):530-538.
    [100]Horikoshi S, Hidaka H, Serpone N. Environmental remediation by an integrated microwave/UV-illumination method.1. Microwave-assisted degradation of rhodamine-B dye in aqueous TiO2 dispersions[J]. Environ Sci Technol, 2002,36(6):1357-1366.
    [101]Stampfl C, Van de Walle CG. Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation[J]. Phys Rev B,1999,59(8):5521.
    [102]Wang YX, Zhong WL, Wang CL, et al. First-principles study of the electronic structure of NaTaO3[J]. Solid State Commun,2001,120(4):137-140.
    [103]Li ZH, Chen G, Liu JW. Electron structure and optical absorption properties of cubic and orthorhombic NaTaO3 by density functional theory[J]. Solid State Commun,2007,143(6-7):295-299.
    [104]王佛松,王夔.展望21世纪的化学[M].北京:化学工业出版社,2000.
    [105]黎乐民.化学理论计算的现状及发展趋势.中国基础科学,2001,2.
    [106]David Young. Computational Chemistry:A Practical Guide for Applying Techniques to Real-World Problems[M]. John Wiley & Sons,2001.
    [107]范波涛,张瑞生,姚建华.Computer Chemistry and Molecular Design[M].北京:高等教育出版社,2009.
    [108]Gisbert Schneider,Karl-Heinz Baringhaus.Molecular Design (Concepts and Applications) [M]. Wiley-VCH:Weinheim,2008.
    [109]张跃,谷景华.计算材料学基础[M].北京:北京航空航天大学出版社,2007.
    [110]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].北京:化学工业出版社,2007.
    [111]陈敏伯.计算化学:从理论化学到分子模拟[M].北京:科学出版社,2009.
    [112]杨小震.分子模拟与高分子材料[M].北京:科学出版社,2002.
    [113]徐筱杰.计算机辅助药物分子设计[M].北京:化学工业出版社,2004.
    [114]Kendall RA, Apra E, Bernholdt DE, et al. High performance computational chemistry:An overview of NWChem a distributed parallel application[J]. Comput Phys Commun,2000,128(1-2):260-283.
    [115]Apra E, Bylaska EJ, Dean DJ, et al. NWChem for materials science[J]. Comp Mater Sci,2003,28(2): 209-221.
    [116]Windus TL, Bylaska EJ, Tsemekhman K, et al. Computational Nanoscience with NWChem[J]. Journal of Computational and Theoretical Nanoscience,2009,6(6):1297-1304.
    [117]M.F. Guesta, E. Apra.High-performance computing in chemistry NWChem[J].Future Generation Computer Systems,12 (1996) 273-289.
    [118]Jack Dongarra.并行计算综论[M].北京-电子工业出版社,2005.
    [119]王涛.量子化学计算程序包NWCHEM[J]高性能计算发展与应用,2006,2.
    [120]NWChem User Documentation,Release 5.1.
    [121]NWChem Programmer's Guide, Release 5.1.
    [122]Ecce Version 3.2.2 Users Manual.
    [123]CPMD. http://www.cpmd.org/.
    [124]R. Car and M. Parrinello Unied Approach For Molecular Dynamics and Density Functional Theory[J].Phys. Rev. Lett.198555 (22),2471.
    [125]赵宇军,姜明,曹培林.从头计算分子动力学[J].物理学进展,1998,18(1).
    [126]CPMD User manual.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700