用户名: 密码: 验证码:
空心微球光催化材料的制备与光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光催化技术在能源利用和环境净化方面有着广泛的应用前景。光催化剂的光催化活性往往与其形貌紧密相关,其中空心结构的光催化剂由于具有较大的比表面积,较低的密度,以及良好的光催化活性而引起了人们越来越多的重视。各种各样的光催化剂中,TiO2因其良好的氧化能力、无毒、化学稳定性等优点而广为关注,所以二氧化钛空心球已成为材料科学、化学和环境科学等领域的研究热点。但是TiO2有着较大的禁带宽度,仅能利用太阳光中的部分紫外光辐照产生光催化作用,这就严重阻碍了它的广泛应用。半导体光催化剂钒酸铋因为可以实现可见光下降解有机物而成为当前研究的一个新的热点。单斜相钒酸铋的空心结构在可见光光催化领域展现了广阔的应用前景。本文主要是围绕二氧化钛空心球和钒酸铋空心球的合成、表征和性能等方面开展了如下研究:
     以硫酸钛为钛源,在硫酸,水和三氟乙酸(TFA)的混合溶液中通过一步无模板的水热法制备出三氟乙酸改性的具有高活性的二氧化钛空心球。通过X射线衍射、X射线光电子能谱、N2吸附-脱附等温线、红外光谱、扫描电子显微镜和透射电子显微镜对所制备的样品进行了表征分析。在紫外灯照射下,二氧化钛表面产生的羟基自由基以对苯二甲酸为分子探针通过荧光技术进行了检测。二氧化钛的光催化活性是通过在紫外光照射下光催化氧化降解空气中的丙酮来检测的。三氟乙酸不仅诱导了空心球的形成,也促进了样品的晶化。三氟乙酸和硫酸钛的摩尔比对光催化活性有显著的影响。当摩尔比在0.5-5之间时,二氧化钛样品的活性都高于P25。在摩尔比等于2时,样品的活性达到最高,超出P25两倍多。这主要是由于空心结构和双峰介孔的球壳促进了光的吸收并加强了反应分子和产物分子的转移和输送。同时,表面吸附的三氟乙酸分子也减少了光生电子和空穴的复合。
     在无模板添加剂的情况下,通过在硝酸铋,钒酸铵和水的混合溶液中添加尿素一步无模板水热法制备出单斜相钒酸铋空心球。通过X射线衍射、紫外可见吸收光谱、红外光谱和扫描电子显微镜对所制备的样品进行了表征分析。结果发现,尿素的加入量对钒酸铋的空心球的形成起了关键的作用。所有的样品都是单斜相,并且只有在添加尿素的情况下才有空心球的产生。钒酸铋空心球的形成是基于化学诱导自转变机理。此外,具有较薄球壳的钒酸铋空心球具有最好的光催化活性,这是归因于空心结构的形成。羟基自由基未在反应系统中检测到,说明羟基自由基不是主要的反应活性分子,而是空穴直接氧化。
Semiconductor photocatalysis is a popular technique that has great potential in environmental protection and energy utilization. The photocatalytic activity of photocatalysts always correlates with the morphology of photocatalysts. The photocatalysts with hollow structure have been widely and intensively investigated due to large specific surface area, low density and excellent photocatalytic activity. Among various oxide semiconductors, TiO2 has been proved to be the most suitable photocatalyst for its strong oxidizing power, nontoxicity and long-term stability against photo and chemical corrosion. TiO2 hollow structure has become a hot research covering materials science, chemistry and environmental science. However, because it has large band gap, TiO2 is effective only under ultraviolet irradiation, which restricts its practical application. Semiconductor BiVO4 has received great interest due the photodegradation of organic pollutants under visible light irradiation. Monoclinic-phase BiVO4 hollow structure provides the commercial application. In this dissertation, valuable explorations have been carried out on the synthesis of TiO2 and BiVO4 hollow microspheres, and study of their properties. The main points could be summarized as follows:
     Trifluoroacetic acid (TFA) modified TiO2 (TFA-TiO2) hollow microspheres were prepared by one-pot hydrothermal treatment of Ti(SO4)2 in the presence of TFA at 180℃for 12 h. The prepared samples were characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy, N2 adsorption-desorption isotherms and fourier transform infrared. The production rates of·OH on the surface of UV-illuminated TiO2 were detected by a photoluminescence (PL) method using terephthalic acid (TA) as probe molecule. The photocatalytic activity was evaluated by the photocatalytic decomposition of acetone in air under UV light illumination. The results show that TFA not only induces the formation of hollow microspheres, but also enhance their crystallization. The molar ratios of TFA to Ti(SO4)2 (R) have a great influence on photocatalytic activity. When R is in the range of 0.5-5, the photocatalytic activity of the samples is higher than that of commercial Degussa P25 TiO2 powders (P25) and pure TiO2 samples. At R=2, the photocatalytic activity of the sample reaches the highest and exceeds that of P25 by a factor of more than two times. This is ascribed to the fact that the former has hollow interior and bimodal mesoporous shells enhancing harvesting of light and the transfer and transport of reactant and product molecules, also, the surface adsorbed TFA can reduce the recombination of photo-generated electrons and holes.
     Monoclinic-phase BiVO4 hollow microspheres have been successfully fabricated in a large scale by one-pot hydrothermal template-free route. X-ray diffraction, scanning electron microscopy, UV/Vis diffuse reflectance spectroscopy, Fourier transform infrared spectrometry, and photoluminescence were used to characterize the products. The results show that the amount of urea added in the hydrothermal reaction and hydrothermal time have been shown to play key roles in the formation of BiVO4 hollow microspheres. all the samples posses the monoclinic phase, and hollow microspheres appear in the presence of urea. Chemically induced self-transformation mechanism for the formation of the BiVO4 hollow spherical structure has been proposed in the observation of hydrothermal time. In addition, BiVO4 hollow microspheres with the thin shell exhibit the higher visible-light photocatalytic activity than other samples due to the formation of hollow structure. Hydroxyl radicals (·OH) were not detected on the surface of BiVO4 under visible-light irradiation by the photoluminescence technique, which indicates that·OH is not the dominant photo-oxidant and a photogenerated hole could instead directly participate in the photocatalytic reaction.
引文
[1]高洪涛,周晶,戴冬梅等.光催化氧化技术研究进展.山东化工,2007.36:14~18
    [2]Davide, V.; Claudio, M.; Valter. M.; et al. Degradation of phenol and benzoic acid in the presence of a TiO2-based heterogeneous photocatalyst. Applied catalysis B:Environmental, 2005.58:79~88
    [3]朱建.纳米晶Ti02的晶相、织构及光催化性能研究:[博士学位论文].上海:复旦大学,2006
    [4]Fujishima, A.; Honda, K. Electrochemical proteolysis of water at a semiconductor. Nature.1972. 37 (1):238~239
    [5]S.N. Frank, A.J. Bard. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J. Am. Chem. Soc.,1977,99:303~304
    [6]S.N. Frank, A.J. Bard. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem.,1977,81:1484~1488
    [7]M.R. Hoffman, S.T. Martin. Environmental applications of semiconductor photocatalysis, Chem. Rev.,1995,95:69~96
    [8]J.Y. Shi, J. Chen, Z.C. Feng, et al. photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J. Phys. Chem. C,2007, 111:693~699
    [9]K.C. Wang, A.M. Morris, J.D. Holmes. Preparation of mesoporous titania thin films with remarkably high thermal stability. Chem. Mater.,2005,17:1269~1271.
    [10]胡冬娜.可见光响应型光催化剂的制备及其降解有机污染物的研究:[硕士学位论文]北京:北京交通大学环境工程系,2007.
    [11]Anpo M, Aikawa N, Kodama S, et al. J. Phys. Chem.1984,88:2569~2572
    [12]Walden M, Lai X, Goodman D W. Science.1998,281:1647~1650
    [13]沈伟韧,赵文宽,贺飞,等.Ti02光催化反应及其在废水处理中的应用.化学进展,1998,10(4):349~361.
    [14]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001
    [15]刘守新,刘鸿.光催化及光电催化基础与应用.北京:化学工业出版社,2006.51~53.
    [16]陈恒.可见光响应型改性纳米光催化剂的制备及其光催化活性研究:[硕士学位论文]上海:上海交通大学环境工程系,2007
    [17]高远,徐安武,祝静艳等RE/TiO2用于NO2光催化氧化的研究.催化学报,2001.22(1):53~56
    [18]P. Salvador, M.L. Garciaconzalez, F. Munoz. Catalytic role of lattics in the photoassisted oxidation of water at (001) n-TiO2 rutile. Phys. Chem.,1992.96 (25):10349~10353
    [19]孙奉玉,吴鸣,李文钊等.二氧化钛的尺寸与光活性关系.催化学报,1998.19(3): 229~233
    [20]Y.M. Chen, H.Y. Jin, T.J. Li, et al. Study on photoelectric properties of a TiO2 nanoparticle. J. Vac. Sci. Technol.:B,1997.15(4):1442~1444
    [21]S. Monticone, R. Tufeu, A.V. Kanaev, et al. Quantum size effect in TiO2 nanoparticles:does it exist?, Appl. Surf. Sci.,2000.162:565~570
    [22]范能全,俞卫华,范永仙等.二氧化钛基光催化剂的开发与应用.浙江工业大学学报,2007.35(6):602~608.
    [23]B.Brinda, P. Lakshmi, K. Dorhout, et al. Sol-gel template synthesis of semiconductor nanostructures. Chem Mater,1997,9:857~862
    [24]H. Huang, E.E. Remsen, T. Kowalewski, et al. Nanocages derived from shell cross-linked micelle templates. J. Am. Chem. Soc.,1999,121(15):3805~3806
    [25]O.V. Makarova, A.E. Ostafin, H. Miyoshi, et al. Adsorption and encapsulation of fluorescent probes in nanoparticles. J. Phys. Chem. B,1999,103(43):9080~9084
    [26]A.E. Ostafin, M. Siegel, Q. Wang, et al. Fluorescence of cascade blue inside nano-sized porous shells of silicate. Microporous and Mesoporous Materials,2003,57(1):47~55
    [27]S.W. Kim, W.Y. Lee, T. Hyeon, et al. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J. Am. Chem. Soc.,2002,124(26):7642~7643
    [28]I. Gill, A. Ballesteros. Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers:An efficient and generic approach. J. Am. Chem. Soc.,1998,120(34):8587~8598
    [29]沈勇,邬泉周,李玉光等.溶胶凝胶法制备三维规则排列大孔Ti02材料.中山大学学报,2002,41(3):45~47
    [30]S.J. Fang, M.X. Xu, J.J. Hao, et al. Preparation and characterization of nanometer TiO2 hyfrolysis precipitation method. Transactions of Tianjin University,2002,8(2):79~82
    [31]赵改青,邱克辉,高晓明.化学沉淀法合成纳米Ti02粉体及其应用.材料导报,2003,17(11):47~49
    [32]D.S. Seo, H.C. Jung. Synthesis and characterization of TiO2 nanocrystalline powder prepared by homogeneous precipitation using urea, J. Mater. Res.,2003,18:571~577
    [33]G.L. Li, G.H. Wang. Synthesis of nanometer-sized TiO2 particles by a microemulsion method. Nanostru Mater.,1999,11(5):663~668
    [34]I. Kimura, T. Kase, Y. Taguchi, et al. Preparation of titania/silica composite microspheres by sol-gel process in reverse suspension. Mater. Res. Bull,2003,38(4):585~597
    [35]王虹,廖学红.空心微球结构材料的制备及应用.纳米材料与结构,2006,10:470~475
    [36]严春美,罗贻静,赵晓鹏.无机材料纳米空心球的制备方法研究进展.功能材料,2006,3:345-350
    [37]孙瑞雪,李木森,吕宇鹏.空心微球型材料的制备及应用进展.材料导报,2005,10: 19~22
    [38]K. Yoshihiko, H. Yoshikawa, A. Kunio, et al. Preparation, photocatalytic activities, and dye-sensitezed solar-cell performance of submicrion-scale TiO2 hollow spheres. Langmuir, 2008,24:547~550
    [39]X.J. Cheng, M. Chen, L.M. Wu, et al. Novel and facile method for the preparation of monodispersed titania hollow spheres. Langmuir,2006,22:3858~3863
    [40]M. Sauer, W. Meier. Responsive nanocapsules. Chem. Commun.,2001,55~56
    [41]宋彩霞,王德宝,古国华等.无机空心球材料的乳胶粒模板法制备及应用.材料导报,2003.17:32~34
    [42]匡毅,郭艳华.空心微球的制备及应用进展.胶体与聚合物,2007,25(3):41~43
    [43]刘桂霞,洪广言,王进等.无机中空球壳材料的制备方法.化学通报,2006,10:749~754
    [44]严春美,罗贻静,赵晓鹏.无机材料纳米空心球的制备方法研究进展.功能材料,2006,3(37):345~350
    [45]孙瑞雪,李木森,吕宇鹏.空心微球型材料的制备及应用进展.材料导报,2005,19(10):19~22
    [46]Y.R. Ma, L.M. Qi, J.M. Ma, et al. Facile synthesis of hollow ZnS nanospheres in block copolymer solutions. Langmuir,2003,19:4040~4042
    [47]Z.Q. Li, Y. Xie, Y.J. Xiong, et al. A novel non-template solution approach to fabricate ZnO hollow spheres with a coordination polymer as a reactanty. New J Chem,2003,27: 1518~1521
    [48]J.G. Yu, H.T. Guo, S.A. Davis, et al. Fabrication of hollow inorganic microspheres by chemically induced self-transformation. Adv. Funct. Mater.,2006,16:2035-2041
    [49]L.G Devi, N. Kottam, SG. Kumar, Stability Enhancement in Ni-Promoted Cu-Fe Spinel Catalysts for Dimethyl Ether Steam Reforming J. Phys. Chem. C 2009,113:15593~15601.
    [50]L.G Devi, B.N. Murthy, SG Kumar, Heterogeneous photo catalytic degradation of anionic and cationic dyes over TiO2 and TiO2 doped with Mo6+ ions under solar light:Correlation of dye structure and its adsorptive tendency on the degradation rate Chemosphere 2009,76: 1163~1166.
    [51]C. Trapalis, N.Todorova, M. Anastasescu, C. Anastasescu, M. Stoica M, M. Gartner, M. Zaharescu, T. Stoica,:Atomic force microscopy study of TiO2 sol-gel films thermally treated under NH3 atmosphere Thin Solid Films 2009,517:6243~6247.
    [52]L.S. Zhang, K.H. Wong, Z.G Chen, J.C. Yu, J.C. Zhao, C. Hu, C.Y. Chan, P.K. Wong, AgBr-Ag-Bi2WO6 nanojunction system:A novel and efficient photocatalyst with double visible-light active components Appl. Catal. A 2009,363:221~229.
    [53]J.G. Yu, Y.R. Su, B. Cheng, Template-Free Fabrication and Enhanced Photocatalytic Activity of Hierarchical Macro-/Mesoporous Titania Adv. Funct. Mater.2007,17:1984~1990.
    [54]X.X. Yu, J.G. Yu, B. Cheng, M. Jaroniec, Synthesis of Hierarchical Flower-like AlOOH and TiO2/AlOOH Superstructures and their Enhanced Photocatalytic Properties J. Phys. Chem. C 2009,113:17527~17535.
    [55]J.G. Yu, Q.J. Xiang, M.H. Zhou, Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures Appl. Catal. B 2009,90:595~602.
    [56]S.W. Liu, J.G. Yu, S. Mann, Synergetic Codoping in Fluorinated Til-xZrxO2 Hollow Microspheres J. Phys. Chem. C 2009,113:10712~10717.
    [57]Y.X. Li, G.X. Lu, S.B. Li, Photocatalytic transformation of rhodamine B and its effect on hydrogen evolution over Pt/TiO2 in the presence of electron donors J. Photoch. Photobio. A 2002,152:219-228.
    [58]J.H. Park, S. Kim, A.J. Bard, Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting Nano Lett.2006,6:24~28.
    [59]J.G Yu, H.G. Yu, B. Cheng, X.J. Zhao, J.C. Yu, W.K. Ho,:The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition J. Phys. Chem. B 2003,107:13871~13879.
    [60]M. Ksibi, S. Rossignol, J.M. Tatibouet, C. Trapalis, Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light Mater. Lett.2008, 62:4204~4206.
    [61]L.G. Devi, B.N. Murthy, SG. Kumar, Photocatalytic activity of V5+, Mo6+ and Th4+ doped polycrystalline TiO2 for the degradation of chlorpyrifos under UV/solar light J. Mol. Catal. A 2009,308:174-181.
    [62]H. Park, W. Choi, Effects of TiO2 Surface Fluorination on Photocatalytic Reactions and Photoelectrochemical Behaviors J. Phys. Chem. B 2004,108:4086-4093.
    [63]W. Choi. Pure and modified TiO2 photocatalysts and their environmental applications. Catalysis Surveys from Asia,2006,10(1):16~28.
    [64]P.V. Kamat. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chemical Reviews,1993,93(1):267~300
    [65]M.S. Vohra, S. Kim, W. Choi. Effects of surface fluorination of TiO2 on the photocatalytic degradation of tetramethylammonium. Journal of Photochemistry and Photobiology A,2003, 160(1):55~60.
    [66]S.N. Subbarao, Y.H. Yun, R. Kershaw et al. Electrical and optical properties of the system TiO2-xFx. Inorganic Chemistry,1979,18(2):488~492.
    [67]J.C. Yu, J.G Yu, W.K. Ho et al. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chemistry of Materials,2002,14(9): 3808~3816
    [68]J.G. Yu, J.C. Yu, B. Cheng et al. The effect of F--doping and temperature on the structural and textural evolution of mesoporous TiO2 powders. Journal of Solid State Chemistry,2003, 174(2):372~380
    [69]A. Hattori, M. Yamamoto, H. Tada et al. A promoting effect of NH4F addition on the photocatalytic activity of sol-gel TiO2 films. Chemistry Letters,1998,27(8):707~708
    [70]A. Hattori, K. Shimoda, H. Tada et al. Photoreactivity of sol-gel TiO2 films formed on soda-lime glass substrates:Effect of SiO2 underlayer containing fluorine. Langmuir,1999, 15(16):5422~5425
    [71]C.M. Wang, T.E. Mallouk. Photoelectrochemistry and interfacial energetics of titanium dioxide photoelectrodes in fluoride-containing solutions. Journal of Physical Chemistry,1990, 94(1):423~428
    [72]C. M. Wang, T. E. Mallouk. Wide-range tuning of the titanium dioxide flat-band potential by adsorption of fluoride and hydrofluoric acid. Journal of Physical Chemistry,1990,94(10): 4276~4280
    [73]J. C. Yu, W. K. Ho, J. G Yu et al. Effects of trifluoroacetic acid modification on the surface microstructures and photocatalytic activity of mesoporous TiO2 thin films. Langmuir,2003, 19(9):3889~3896
    [74]C. Minero, G. Mariella, V. Maurino et al. Photocatalytic transformation of organic compounds in the presence of inorganic anions.1. Hydroxyl-mediated and direct electron-transfer reactions of phenol on a titanium dioxide-fluoride system. Langmuir,2000,16(6):2632~2641
    [75]C. Minero, G Mariella, V. Maurino et al. Photocatalytic transformation of organic compounds in the presence of inorganic ions.2. Competitive reactions of phenol and alcohols on a titanium dioxide-fluoride system. Langmuir,2000,16(23):8964~8972
    [76]J.S. Park, W. Choi. Enhanced remote photocatalytic oxidation on surface-fluorinated TiO2. Langmuir,2004,20(26):11523~11527
    [77]M. Lewandowski, D.F. Ollis. Halide acid pretreatments of photocatalysts for oxidation of aromatic air contaminants:rate enhancement, rate inhibition, and a thermodynamic rationale. Journal of Catalysis,2003,217(1):38~46
    [78]H. Kim, W. Choi. Effects of surface fluorination of TiO2 on photocatalytic oxidation of gaseous acetaldehyde. Applied Catalysis B,2007,69(3):127~132.
    [79]J. Ryu, W. Choi. Effects of TiO2 surface modifications on photocatalytic oxidation of arsenite: The role of superoxides. Environmental Science & Technology,2004,38(10):2928~2933.
    [80]J.S. Park, W. Choi. Remote photocatalytic oxidation mediated by active oxygen species penetrating and diffusing through polymer membrane over surface fluorinated TiO2. Chemistry Letters,2005,34(12):1630~1631
    [81]Y.M. Xu, K.L. Lv, Z.G. Xiong et al. Rate enhancement and rate inhibition of phenol degradation over irradiated anatase and rutile TiO2 on the addition of NaF:New insight into the mechanism. The Journal of Physical Chemistry C,2007,111(51):19024~19032.
    [82]Jiaguo Yu, Wenguang Wang, Bei Cheng, and Bao-Lian Su. Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment. Journal of Physical Chemistry C,2009,113,6743~6750.
    [83]T.R.N. Kuttyl, M. Avudaithai. Photocatalytic activity of tin-substituted TiO2 in visible light. Chemical Physics Letters,1989,163(1):93~97
    [84]J.M. Macak, H. Tsuchiya, P. Schmuki, High-aspect-ratio TiO2 nanotubes by anodization of titanium Angew. Chem. Int. Ed.2005,44:2100~2102.
    [85]Y.W. Jun, M.F. Casula, J.H. Sim, S.Y. Kim, J.W. Cheon, A.P. Alivisatos, Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals J. Am. Chem. Soc.2003,125:15981~15985.
    [86]K. Kanie, T. Sugimoto, Shape control of anatase TiO2 nanoparticles by amino acids in a gel-sol system Chem. Commun.2004,14:1584~1585.
    [87]J.G Yu. W. Liu, H.G. Yu, A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity. Cryst. Growth Des.2008,8:930~934.
    [88]F. Caruso, R.A. Caruso, H. Mohwald, Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating Science 1998,282:1111~1114.
    [89]A. Imhof, Preparation and Characterization of Titania-Coated Polystyrene Spheres and Hollow Titania Shells Langmuir 2001,17; 3579~3585.
    [90]H.G Yang, H.C. Zeng, Preparation of hollow anatase TiO 2 nanospheres via Ostwald ripening. J. Phys. Chem. B 2004,108:3492~3495.
    [91]Y.D. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, GA. Somorjai, A.P. Alivisatos, Formation of Hollow Nanocrystals Through the Nanoscale Kirkendall Effect Science 2004,304: 711~714.
    [92]H.G Yang, H.C. Zeng, Self-construction of hollow SnO2 octahedra based on two-dimensional aggregation of nanocrystallites Angew. Chem. Int. Ed.2004,43:5930~5933.
    [93]J.G Yu, H.G Yu, H.T. Guo, M. Li, S. Mann, Spontaneous formation of a tungsten trioxide sphere-in-shell superstructure by chemically induced self-transformation Small 2008,4: 87~91.
    [94]J.G Yu, S.W. Liu, H.G Yu, Microstructures and photoactivity of mesoporous anatase hollow microspheres fabricated by fluoride-mediated self-transformation J. Catal.2007,249:59~66.
    [95]D.Y. Zhang, D. Yang, H.J. Zhang, C.H. Lu, L.M. Qi, Synthesis and photocatalytic properties of hollow microparticles of titania and titania/carbon composites templated by Sephadex G-100 Chem. Mater.2006,18:3477~3485.
    [96]Z.Y. Liu, D.D. Sun, P. Guo, J.O. Leckie, One-step fabrication and high photocatalytic activity of porous TiO2 hollow aggregates by using a low-temperature hydrothermal method without templates Chem. Eur. J.2007,13; 1851~1855.
    [97]X.W. Lou, L.A. Archer, Z.C. Yang, Hollow Micro-/Nanostructures:Synthesis and Applications Adv. Mater.2008,20:3987~4019.
    [98]K.S.W. Sing, D.H. Everett, R.A.W. Haul et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry,1985,57(4):603~619
    [99]K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique Electrochem. Commun.2000,2:207-210.
    [100]Q. Xiao, Z.C. Si, J. Zhang et al. Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. Journal of Hazardous Materials,2008,150(1):62~67
    [101]J.G. Yu, GH. Wang, B. Cheng, M. Zhou, Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders Appl. Catal. B 2007,69:171~180.
    [102]J.G Yu, J.C. Yu, M.K.P. Leung et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania. Journal of Catalysis, 2003,217(1):69~78
    [103]Q. Peng, S. Xu, Z. Zhuang, X. Wang, Y. Li, A general chemical conversion method to various semiconductor hollow structures Small 2005,1:216~221.
    [104]S. Nishimura, N. Abrams, B.A. Lewis, L.I. Halaoui, T.E. Mallouk, K.D. Benkstein, J. van de Lagemaat, A.J. Frank, Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals J. Am. Chem. Soc.2003,125:6306~6310.
    [105]S.W. Liu, J.G. Yu, S. Mann, Spontaneous construction of photoactive hollow TiO2 microspheres and chains Nanotechnology 2009,20:325606~325613.
    [106]X.X. Yu, J.G. Yu, B. Cheng, B.B. Huang, One-Pot Template-Free Synthesis of Monodisperse Zinc Sulfide Hollow Spheres and Their Photocatalytic Properties Chem. Eur. J.2009,15: 6731~6739.
    [107]J.G Yu, X.J. Zhao, Q.N. Zhao. Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method. Thin Solid Films,2000,379(1):7~14
    [108]J.G. Yu, X.J. Zhao, Q.N. Zhao, Photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method Mater. Chem. Phys.69 (2001) 25~29.
    [109]C. Trapalis, V. Kozhukharov, B. Samuneva, P. Stefanov, Sol-gel processing of titanium-containing thin coatings J. Mater. Sci.1993,28:1276~1282.
    [110]J.G Yu, Y.R. Su, B. Cheng, M.H. Zhou, Effects of pH on the microstructures and photocatalytic activity of mesoporous nanocrystalline titania powders prepared via hydrothermal method J. Mol. Catal. A 2006,258:104~112.
    [111]J.G. Yu, Q.J. Xiang, J.R. Ran, S. Mann, One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets Cryst EngComm 2010,12:872~879.
    [112]B. Cheng, Y. Le, J.G. Yu, Preparation and enhanced photocatalytic activity of Ag@TiO2 core-shell nanocomposite nanowires J. Hazard. Mater.2010,177:971~977.
    [113]J.G. Yu, X.X. Yu, Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres Environ. Sci. Technol.2008,42:4902~4907.
    [114]X.W. Lou, L.A. Archer. A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles. Advanced Materials,2008,20(10):1853~+
    [115]H.X. Li, Z.F. Bian, J. Zhu et al. Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. Journal Of The American Chemical Society,2007, 129(27):8406~+
    [116]M. Yang, J. Ma, C.L. Zhang et al. General synthetic route toward functional hollow spheres with double-shelled structures. Angewandte Chemie-international Edition,2005,44(41): 6727~6730
    [117]H.P. Liang, H.M. Zhang, J.S. Hu et al. Pt hollow nanospheres:Facile synthesis and enhanced electrocatalysts. Angewandte Chemie-international Edition,2004,43(12):1540~1543
    [118]J.H. Gao, B. Zhang, X.X. Zhang et al. Magnetic-dipolar-interaction-induced self-assembly affords wires of hollow nanocrystals of cobalt selenide. Angewandte Chemie-international Edition,2006,45(8):1220~1223
    [119]C.I. Zoldesi, A. Imhof. Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating. Advanced Materials,2005,17(7):924~+
    [120]D. Walsh, B. Lebeau, S. Mann. Morphosynthesis of Calcium Carbonate (Vaterite) Microsponges. Advanced Materials,1999,11(4):324~328
    [121]K.N. Tu, U. Gosele. Hollow nanostructures based on the Kirkendall effect:Design and stability considerations. Applied Physics Letters,2005,86(9)
    [122]H.C. Zeng. Synthetic architecture of interior space for inorganic nanostructures. Journal of Materials Chemistry,2006,16(7):649~662
    [123]J.G. Yu, S.W. Liu, M.H. Zhou. Enhanced photocalytic activity of hollow anatase microspheres by Sn4+ incorporation. Journal of Physical Chemistry C,2008,112(6): 2050~2057
    [124]H.G Yu, J.G. Yu, S.W. Liu et al. Template-free hydrothermal synthesis of CuO/Cu2O composite hollow microspheres. Chemistry of Materials,2007,19(17):4327~4334
    [125]S. Kohtani, S. Makino, A. Kudo et al. Photocatalytic degradation of 4-n-nonylphenol under irradiation from solar simulator:Comparison between BiVO4 and TiO2 photocatalysts. Chemistry Letters,2002, (7):660~661
    [126]M. Long, W.M. Cai, J. Cai et al. Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. Journal of Physical Chemistry B,2006, 110(41):20211~20216
    [127]H.Q. Jiang, H. Endo, H. Natori et al. Fabrication and efficient photocatalytic degradation of methylene blue over CuO/BiVO4 composite under visible-light irradiation. Materials Research Bulletin,2009,44(3):700~706
    [128]L. Zhang, D.R. Chen, X.L. Jiao. Monoclinic structured BiVO4 nanosheets:Hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. Journal of Physical Chemistry B,2006,110(6):2668~2673
    [129]L. Zhou, W.Z. Wang, S.W. Liu et al. A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst. Journal of Molecular Catalysis A-chemical,2006,252(1-2): 120~124
    [130]K. Sayama, A. Nomura, T. Arai et al. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. Journal of Physical Chemistry B,2006,110(23):11352~11360
    [131]A. Kudo, K. Ueda, H. Kato, I. Mikami, Catal. Lett.53 (1998) 229.
    [132]S. Kohtani, J. Hiro, N. Yamamoto et al. Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation. Catalysis Communications,2005,6(3):185~189
    [133]A. Kudo, K. Omori, H. Kato. A Novel Aqueous Process for Preparation of Crystal Form-Controlled and Highly Crystalline BiVO4 Powder from Layered Vanadates at Room Temperature and Its Photocatalytic and Photophysical Properties. Journal of The American Chemical Society,1999,121(49):11459~11467
    [134]S. Tokunaga, H. Kato, A. Kudo. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chemistry of Materials,2001, 13(12):4624~4628
    [135]H.M. Smith, High Performance Pigments; Wiley-VCH Verlag-GmbH:Weinheim, Germany, 2002;
    [136]P.B. Avakyan, M.D. Nersesyan, A.G. Merzhanov, Am. Ceram. Soc. Bull.75 (1996) 50.
    [137]P. Shuk, H.D. Wiemhofer, U. Guth et al. Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ion,1996,89:179~196
    [138]K. Shantha, K.B.R. Varma, Mater. Sci. Eng., B 60 (1999) 66.
    [139]J.D. Bierlein, A.W. Sleight. Ferroelasticity in BiVO4. Solid State Commun.1975,16(1): 69~70
    [140]L. Hoffart, U. Heider, R.A. Huggins et al. Crystal growth and conductivity investigations on BiVO4 single crystals. Ionics,1996,2(1):34~38
    [141]L. Zhou, W.Z. Wang, L. Zhang et al. Single-crystalline BiVO4 microtubes with square cross-sections:Microstructure, growth mechanism, and photocatalytic property. Journal of Physical Chemistry C,2007,111(37):13659~13664
    [142]W.Z. Yin, W.Z. Wang, M. Shang et al. BiVO4 Hollow Nanospheres:Anchoring Synthesis, Growth Mechanism, and Their Application in Photocatalysis. European Journal of Inorganic Chemistry,2009, (29-30):4379~4384
    [143]G.S. Li, D.Q. Zhang, J.C. Yu. Ordered mesoporous BiVO4 through nanocasting:A superior visible light-driven photocatalyst. Chemistry of Materials,2008,20(12):3983~3992
    [144]D.N. Ke, T.Y. Peng, L. Ma et al. Effects of Hydrothermal Temperature on the Microstructures of BiVO4 and Its Photocatalytic O2 Evolution Activity under Visible Light. Inorganic Chemistry,2009,48(11):4685~4691
    [145]X. Zhang, Z.H. Ai, F.L. Jia et al. Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases. Materials Chemistry and Physics,2007,103(1): 162~167
    [146]J. Q. Yu, A. Kudo. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Advanced Functional Materials,2006,16(16):2163~2169
    [147]M.W. Stoltzfus, P. M. Woodward, R. Seshadri et al. Structure and bonding in SnW04, PbWO4, and BiVO4:Lone pairs vs inert pairs. Inorganic Chemistry,2007,46(10):3839~3850
    [148]G Q. Zhu, P. Liu. Low-temperature urea-assisted hydrothermal synthesis of Bi2S3 nanostructures with different morphologies. Crystal Research and Technology,2009,44(7): 713~720
    [149]M. Oshikiri, M. Boero, J. Ye, Z. Zou, G. Kido, Electronic structures of promising photocatalysts InM04 (M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region J. Chem. Phys.2002,117:7313.
    [150]E. M. Patterson, C. E. Shelden, B. H. Stockton. Kubelka-Munk optical properties of a barium sulfate white reflectance standard. Applied Optics,1977,16(3):729~732
    [151]M. Oshikiri, M. Boero, J.H. Ye et al. Electronic structures of promising photocatalysts InM04 (M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. Journal of Chemical Physics,2002,117(15):7313~7318
    [152]M. Gotic, S. Music, M. Ivanda et al. Synthesis and characterisation of bismuth(III) vanadate. Journal of Molecular Structure,2005,744:535-540
    [153]W. Q. Cai, J. G. Yu, S. Mann. Template-free hydrothermal fabrication of hierarchically organized gamma-AlOOH hollow microspheres. Microporous and Mesoporous Materials, 2009,122(1-3):42~47
    [154]A. P. Zhang, J. Z. Zhang, N.Y. Cui et al. Effects of pH on hydrothermal synthesis and characterization of visible-light-driven BiVO4 photocatalyst. Journal of Molecular Catalysis A-chemical,2009,304(1-2):28~32
    [155]S.S. Dunkle, R.J. Helmich, K.S. Suslick. BiVO4 as a Visible-Light Photocatalyst Prepared by Ultrasonic Spray Pyrolysis. Journal of Physical Chemistry C,2009,113(28):11980~11983
    [156]C. Zhang, Y. F. Zhu. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chemistry of Materials,2005,17(13):3537~3545
    [157]F. R. F. Fan, P. Leempoel, A. J. Bard, J. Electrochem. Soc.130 (1983) 1866.
    [158]S. Kohtani, M. Koshiko, A. Kudo et al. Photodegradation of 4-alkylphenols using BiVO4 photocatalyst under irradiation with visible light from a solar simulator. Applied Catalysis B-environmental,2003,46(3):573~586

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700