用户名: 密码: 验证码:
α-MnO_2纳米颗粒的可控制备及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯、甲苯和二甲苯(BTX)是挥发性有机污染物(Volatile Organic Compounds,VOCs)的主要组成部分。它们主要来源于印刷、化工原料生产及汽车尾气的排放等,对大气环境和人体健康造成严重危害。将污染物转化为二氧化碳和水的深度催化氧化技术是目前消除VOCs的一种有效方法。因此,制备得到低温高活性的催化剂并用于BTX的深度催化氧化是非常有意义的研究课题。
     本论文首先采用不同的方法制备得到组成和晶型不同的锰氧化物催化剂,包括Mn3O4、Mn2O3和α-、β-、γ-、δ-MnO_2。并以邻二甲苯为目标污染物,考察了锰氧化物的组成和晶型对其催化活性的影响。随后,针对活性较好的α-MnO_2,以Na2S2O3和KMnO_4为原料,采用氧化还原沉淀法,可控制备了α-MnO_2纳米颗粒;以KMnO_4和二价锰盐为原料,采用水热氧化还原法,制备得到微晶态α-MnO_2纳米颗粒。考察了制备条件对催化剂微观结构和活性的影响,同时对微晶态α-MnO_2的催化机理进行了初探。采用比表面积测定仪(Brunauer-Emmett-Teller surface area measurement,BET)、X-射线衍射(X-ray diffraction, XRD)和场发射扫描电镜(Field emission scanning electron microscope, FESEM)等测试手段对所得α-MnO_2的微观结构进行了表征。具体研究内容如下:
     1、采用不同方法,制备得到了α,β,γ和δ四种晶型的MnO_2及Mn2O3和Mn3O4等几种锰氧化物。以邻二甲苯的转化率和二氧化碳的产率综合评价了上述锰氧化物的催化活性。结果发现,MnO_2的催化活性高于Mn2O3和Mn3O4,四种晶型MnO_2的活性顺序为δ-≈α-﹥γ-﹥β-MnO_2。其中,δ-MnO_2可在230 oC将0.06 vol.%的邻二甲苯完全分解为二氧化碳和水。
     2、用Na2S2O3还原KMnO_4,HNO3调节pH = 3~5,经过不同的焙烧温度可控制备了α-MnO_2纳米颗粒。研究发现,该α-MnO_2纳米颗粒的热稳定性和催化活性良好,在400 oC~700 oC保持晶型稳定,粒径在25 nm ~50 nm之间。其中,直径为25 nm的α-MnO_2纳米颗粒可于220 oC使0.06 vol.%的邻二甲苯完全转化为二氧化碳和水,并且其活性在连续60 h的测试中保持稳定。
     3、以KMnO_4和二价锰盐为原料,加碱调pH = 8,采用水热法合成微晶态的α-MnO_2纳米颗粒。通过调变水热反应时间、反应温度和起始反应物的浓度等条件,得到了粒径25 nm左右的微晶态α-MnO_2纳米颗粒。并将微晶态α-MnO_2用于邻二甲苯的深度催化氧化,发现该α-MnO_2催化剂可在200 oC实现0.06 vol.%邻二甲苯的完全催化氧化,并且其深度催化氧化邻二甲苯的反应中遵循吸附氧反应机理。该催化剂在连续60 h的活性测试中保持稳定并且可以循环使用三次以上。
Benzene, toluene, and xylene (BTX) are the major volatile organic compounds (VOCs). They are primarily released during printing, chemical production and mobile emission, and cause serious harm to environment and human health. Complete catalytic oxidation techniques that convert a contaminant into carbon dioxide (CO2) and water are an effective way to remove VOCs. Therefore, preparation of the catalysts with low temperature and high activity, and to be used in the complete catalytic oxidation of BTX is a very interesting research topic.
     In this paper, Mn_3O_4, Mn_2O_3 andα-,β-,γ-,δ-MnO_2 catalysts were prepared in different ways. Then they were used in complete catalytic oxidation of o-xylene. The effects of manganese oxides composition and crystal structure on catalytic behavior were examined. Subsequently, theα-MnO_2 nanoparticals with better catalytic activity were prepared via a redox-precipitation method with Na2S2O3 and KMnO_4 precursors, and hydrothemal redox method using KMnO_4 and divalent manganese salts as precursors. The results showed that preparation conditions affected the microstructures and activities of theα-MnO_2 catalysts. In addition, our researches studied the reaction mechanism ofα-MnO_2 on complete catalytic oxidation of o-xylene. The X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), Brunauer-Emmett-Teller (BET) surface area measurement were used to research the microstructure of the catalysts. The specific studies are as follows:
     1、α-,β-,γ- ,δ-MnO_2, Mn2O3 and Mn3O4 were prepared by different methods. Catalytic activities of these catalysts were evaluated in terms of both o-xylene conversion and CO2 yeild. MnO_2 exhibited much higher catalytic activities than Mn2O3 and Mn3O4. The catalytic activities of MnO_2 in a sequence is:δ-≈α-﹥γ-﹥β-MnO_2. At 230 oC,δ-MnO_2 can convert 0.06 vol.% o-xylene into carbon dioxide and water.
     2、α-MnO_2 nanoparticals with an diameter of 25~50 nm were prepared via a redox-precipitation method by using Na2S2O3 and KMnO_4 as precursors, HNO3 adjusting pH = 3~5 and calcined at 400~700 oC. Theα-MnO_2 nanoparticals showed good catalytic activity and thermal stability. Among them,α-MnO_2 nanoparticals of 25nm can convert 0.06 vol.% o-xylene into carbon dioxide and water at 220 oC. In a continuous 60 h activity test, the catalyst remained stable.
     3、The microcrystalα-MnO_2 nanoparticals were prepared via hydrothemal redox process using KMnO_4, divalent manganese salts and alkali modifier as the raw materials, and by changing the preparation time, reaction tempreture and concentrations of the initial reactants. Theα-MnO_2 nanoparticals were used for complete catalytic oxidation of o-xylene. The results showed that theα-MnO_2 catalyst of 25nm can achieve the complete catalytic oxidation of 0.06 vol.% o-xylene at 200 oC. The adsorbed oxygen reaction mechanism is performed overα-MnO_2 nanoparticals in complete catalytic oxidation of o-xylene. Moreover, the catalyst showed good stability after continuous 60h activity test and can be reused three times.
引文
[1] Y. Q. Chang, X. Y. Xu, X. H. Luo, et al. Synthesis and characterization of Mn3O4 nanoparticles [J]. J. Cryst. Growth, 2004, 264: 232-236.
    [2] Z. Y. Chang, T. Qiao, X. Y. Hu. Preparation of Mn3O4 nanocrystallites by low-temperature solvothermal treatment ofγ-MnOOH nanowires [J]. J. Solid State Chem., 2004, 177: 4093-4097.
    [3] E. Finocchio, G. Busca. Characterization and hydrocarbon oxidation activity of coprecipitated mixed oxides Mn3O4/Al2O3 [J]. Catal. Today, 2001, 70: 213-225.
    [4] Z. W. Chen, J. K. Lai, C. H. Shek. Shape-controlled synthesis and nanostructure evolution of single-crystal Mn3O4 nanocrystals [J]. Scr. Mater., 2006, 55: 735-738.
    [5] S. T. Myung, S. Komaba, N. Kumagai. Hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2 [J]. Electrochim. Acta., 2002, 47: 3287-3295.
    [6] E. J. Grootendorst, Y. Verbeek, V. Ponec. The Role of the Mars and Van Krevelen Mechanism in the Selective Oxidation of Nitrosobenzene and the Deoxygenation of Nitrobenzene on Oxidic Catalysts [J]. J. Catal., 1995, 157: 706-712.
    [7] E. R. Stobbe, B. A. Deboer, J. W. Geus. The reduction and oxidation behaviour of manganese oxides [J]. Catal. Today, 1999, 47: 161-167.
    [8] T. Yamashita, A. Vannice. NO Decomposition over Mn2O3 and Mn3O4 [J]. J. Catal., 1996, 163: 158-168.
    [9]谢高阳,俞练民,刘本耀.无机化学丛书[M].北京:科学出版社, 1996, 9: 37.
    [10] Y. F. Han, L. W. Chen, K. P. Ramesh, et al. Coral-like nanostructuredα-Mn2O3 nanocrystals for catalytic combustion of methane Part I. Preparation and characterization [J]. Catal. Today, 2008, 131: 35-41.
    [11] Y. Tatsuji , V. Albert. N2O Decomposition over Manganese Oxides [J]. J. Catal, 1996, 161(1): 254-262.
    [12] S. Turner, P. R. Buseck. Todorokites: a new family of naturally occurring manganese oxides [J]. Science, 1981, 212: 1024-1027.
    [13] [100]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(2) [J].电池,2005, 35: 27-30.
    [14] Z. Tian, Y. Yin, S. L. Suib, et al. Effect of Mg2+ ions on the formation of todorokite type manganese oxide octahedral molecular sieves [J]. Chem. Mater., 1997, 9: 1126-1133.
    [15] N. Kijima, Y. Sakata, Y. Takahashi, et al. Synthesis and lithium ion insertion/extraction properties of hollandite-type MnO2 prepared by acid digestion of Mn2O3 [J]. Solid State Ionics, 2009, 180: 616-620.
    [16] S. Tumer, P. R. Buseck. Defects in Nsutite(γ-MnO2) and dry-cell battery efficiency [J]. Nature, 1983, 304:143-146.
    [17] P. Strobel, J. C. Charenton, M. Lenglet. Structrura1 chemistry of phyllomanganates: experimental, evidence and structural models [J]. Rev. Chim. Miner., 1987, 24: 199-203.
    [18] O. Prieto, M. D. Arco, V. Rives. Structural evolution upon heating of sol-gel prepared birnessites [J]. Thermochim. Acta., 2003, 401: 95-109.
    [19] X. F. Shen, Y. S. Ding, J. Liu, et al. A magnetic route to measure the average oxidation state of mixed-valent manganese in manganese oxide octahedral molecular sieves(OMS)[J]. J. Am. Chem. Soc., 2005, 127: 6166-6167.
    [20] X. Wang, Y. Li. Hydrothermal reduction route to Mn(OH)2 and MnCO3 nanocrystals [J]. Materials Chemistry and Physics, 2003, 82: 419-422.
    [21] T. D. Xiao, P. R. Strutt, M. Benaissa, et al.Synthesis of high active-site density nanofibrous MnO2-base materials with enhanced permeabilities [J]. Nanostructured Materials, 1998, 10: 1051-1056.
    [22] B. B. Lakshmi, C. J. Patrissi, C. R. Martin. Sol-gel templates synthesis of semiconductor oxide micro-and nanostructures [J]. Chem. Mater., 1997, 9: 2544-2550.
    [23] Y. S. Ding, X. F. Shen, S. Sithambaram, et al. Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method [J]. Chem. Mater., 2005, 17: 5382-5389.
    [24] D. Zitoun, N. Pinna, N. Frolet, et al. Single crystal manganese oxide multipods by oriented attachment [J]. J. Am. Chem. Soc., 2005, 127: 15034-15035.
    [25] M. S. Wu, J. T. Lee, Y. Y. Wang, et al. Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrode position [J]. J. Phys. Chem. B, 2004, 108: 16331-16333.
    [26] J. C. Villegas, L. J. Garces, S. Gomez, et al. Particle size cryptomelane nanomaterials by use of H2O2: in acidic conditions [J]. Chem. Mater., 2005, 17: 1910-1918.
    [27] Q. Feng, Y. Miyai, H. Kanoh, et al. Li+ extraction/insertion with spinel-type lithium manganese oxides: characterization of redox-type and ion-exchange-type sites [J]. Langmuir, 1992, 8: 1861-1867.
    [28] [55] [103] J. P. Parant, R. Olazcuaga, M. Devalette, et al. Sur quelques nouvelles phase de formula NaxMnO2(x≤1) [J]. J. Solid state Chem., 1971, 3: l-11.
    [29] Y. Ma, J. Luo, S. L. Suib. Synthesis of birnessites using alcohols as reducing reagents: effects of synthesis parameters on the formation of birnessites [J]. Chem. Mater., 1999, 11: 1972-1979.
    [30] X. Wang, Y. Li. Rational synthesis ofα-MnO2 single-crystal nanorods [J]. Chem. Commun., 2002, 7: 764-765.
    [31] X. Wang, Y. Li. Selected-control hydrothermal synthesis ofα- andβ-MnO2 single crystal nanowires [J]. J. Am. Chem. Soc., 2002, 124: 2880-2881.
    [32] [40] J. K. Yuan, W. N. Li, S. Gomez, et al. Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostruetures [J]. J. Am. Chem. Soc., 2005, 127: 14184-14185.
    [33] C. Wu, Y. Xie, D Wang, et al. Selected-control hydrothermal synthesis ofγ-MnO2 3D nanostructures[J]. J. Phys. Chem. B, 2003, 107: 13583-13587.
    [34] Y. Liu, M. Zhang, J. H. Zhang, et al. A simple method of fabricating large-areaα-MnO2 nanowires and nanorods [J]. J. Solid State Chem., 2006, 179: 1757-1761.
    [35] Y. S. Ding, X. F. Shen, S. Gomez, et al. Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures [J]. Adv. Funct. Mater., 2006, 16: 549-555.
    [36] X. Wang, Y. Li. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods [J]. Chem. Eur. J., 2003, 9: 300-306.
    [37] B. Tang, G. Wang, L. Zhou, et al. Novel dandelion-likeβ-manganese dioxide microstructures and their magnetie properties [J]. Nanotechnology, 2006, 17: 947-951.
    [38] H. E. Wang, D. Qian. Synthesis and electrochemical properties ofα-MnO2 microspheres [J]. Materials Chemistry and Physics, 2008, 109: 399-403.
    [39] X. D. Sun, C. L. Ma, Y. D. Wang, et al. Preparation and characterization of MnOOH andβ-MnO2 whiskers [J]. Inorganic Chem. Commun., 2002, 5: 747-750.
    [41] W. N. Li, J. K. Yuan, X. F. Shen, S. Gomez, et al. Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral mocular sieve nanomaterials [J]. Adv. Funct. Mater., 2006, 16: 1247-1253.
    [42] W. N. Li, J. K. Yuan, S. Gomez, et al. Synthesis of single crystal manganese oxide octahedral molecular sieve(OMS) nanostructures with tunable tunnels and shapes [J]. J. Phys. Chem. B, 2006, 110: 3066-3070.
    [43] B. Yang, H. Hu, C. Li, et al. One-step route to single-crystal nanorods in alcohol-water system[J]. Chem. Lett., 2004, 33: 804-805.
    [44] G. Xi, Y. Peng, Y. Zhu, et al. Preparation ofβ-MnO2 nanorods throughγ-MnOOH precursor route [J]. Mater. Res. Bull., 2004, 39: 1641-1648.
    [45] Y. Gao, Z. Wang, J. Wan, et al. A facile route to synthesize uniform single-crystalline nanowires [J]. J. Cryst. Growth, 2005, 279: 415-419.
    [46] Y. Zhang, Y. Liu, F. Guo, et al. Single-crystal growth of MnOOH and beta-MnO2 microrods at lower temperatures [J]. Solid State Commun., 2005, 134: 523-527.
    [47] C. Zhang, T. Qiao, Y. Hu, et al. Simple hydrothermal preparation ofγ-MnOOH nanowires and their low-temperature thermal conversion toβ-MnO2 nanowires [J]. J. Cryst. Growth, 2005, 280: 652-657.
    [48] W. Zhang, Z. Yang, Y. Liu, et al. Controlled synthesis of Mn3O4 nanocrystallites and MnOOH nanorods by a solvothermal method [J]. J. Cryst. Growth, 2004, 263: 394-399.
    [49] S. Bach, M. Henry, N. Baqer, et al. Sol-gel synthesis of manganese oxides [J]. J. Solid State Chem, 1990, 88: 325-333.
    [50] [116] L. S. Gao, L. F. Fei, H. G. Zheng. Preparation ofα-MnO2 nanowires through aγ-MnOOH precursor route [J]. Mater. Lett., 2007, 61: 1785-1788.
    [51] [62] Z. H. Yang, Y. C. Zhang, W. X. Zhang, et al. Nanorods of manganese oxides: synthesis, characterization and catalytic application [J]. J. Solid State Chem., 2006, 179: 679-684.
    [52]李成韦,李龙泉,钱逸泰.γ-MnO2纳米晶的水热合成及表征[J].高等化学学报, 1997, 18(9): 1436-1438.
    [53]王晓慧,王子忱,李熙等.超微粒MnO2的合成[J].吉林大学自然科学学报, 1992(1): 99-102.
    [54] S. Bach, J. P. Pereira-Ramos, N. Baffier. A new MnO2 tunnel related phase as host lattice for Li intercalation [J]. Solid State Ionics, 1995, 80: 151-158.
    [56] F. Arena, G. Trunfio, J. Negro, et al. Basic evidence of the molecular dispersion of MnCeOx catalysts synthesized via a novel“Redox-Precipitation”route [J]. Chem. Mater., 2007, 19: 2269-2276.
    [57]马淳安,楼颖伟,赵峰鸣等.纳米MnO2的制备及电化学性能研究[J].中国有色金属学报, 2004, 14(10): 1736-1740.
    [58]王笃金,吴瑾光,徐光宪.反胶团或微乳液法制备超细颗粒的研究进展[J].化学通报, 1995, 9: 1-5.
    [59]刘玲,夏熙.纳米电极材科的制备及其电化学性能的研究-微乳液法中通氧气制备MnO2及其性能[J].电化学, 1998, 4(3): 328-333.
    [60]李清文.纳米MnO2粉末的固相合成及其电化学性能研究[J].应用科学学报, 1999, 17(2): 245-249.
    [61] W. X. Zhang, Z. H. Yang, X. Wang, et al. Large-scale synthesis ofβ-MnO2 nanorods and their rapid and efficient catalytic decomposition of methylene blue dye [J]. Catal. Commun., 2006, 7: 408-412.
    [63] Z. Yang, C. Zhou, W. Zhang, et al.β-MnO2 nanorods: a new and efficient catalyst for isoamyl acetate synthesis [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects., 2010, 01: 007-011.
    [64] L. Lamaita, M. A. Peluso, J. E. Sambeth, et al. Synthesis and characterization of manganese oxides employed in VOCs abatement [J]. Applied Catalysis B: Environmental, 2005, 61: 114-119.
    [65] C. Cellier, V. Ruaux, C. Lahousse, et al. Extent of the participation of lattice oxygen fromγ-MnO2 in VOCs total oxidation: Influence of the VOCs nature [J]. Catal. Today, 2006, 117: 350-355.
    [66] S. Todorova, H. Kolev, J. P. Holgado, et al. Complete n-hexane oxidation over supported Mn-Co catalysts [J]. Applied Catalysis B: Environmental, 2010, 94: 46-54.
    [67] J. A. Horsley. Catalytic Environmental Report No. E4, Catalytic Studies Division,Mountain View, CA, USA, 1993.
    [68] P. Wiederkehr, S. Vignerron, J. Hermia, et al. Emission reduction programmes for VOC in some OECD countries. In: Characterization and Control of Odors and VOC in the Process Industries [J]. Elsevier, Amsterdam, 1984, 13: 408-412.
    [69] E. Noordally, J. R. Richmond, S. F. Tahir. Destruction of volatile organic compounds by catalytic oxidation [J]. Catal. Today, 1993, 17: 359-366.
    [70] J. J. Spivey. Complete catalytic oxidation of volatile organics [J]. Ind. Eng. Chem. Res., 1987, 26: 2165-2171.
    [71] A. P. Jones. Indoor air quality and health [J]. Atmospheric Environment, 1999, 33: 4535-4564.
    [72] I. K. Faisal, K. G. Aloke. Removal of volatile organic compounds from polluted air [J]. Journal of Loss Frevention in the Process Industries, 2000, 13: 527-545.
    [73] P. W. Park, J. S. Ledford. The influence of surface structure on the catalytic activity of alumina supported copper oxide catalysts. Oxidation of carbon monoxide and methane [J]. Appl. Catal. B: Environ., 1998, 15: 221-231.
    [74] J. Pires, A. Carvalho, M. B. Carvalho. Adsorption of volatile organic compounds in Y zeolites and pillared clays [J]. Microporous and Mesoporous Materials, 2001, 43(3): 277-280.
    [75] J. Zhao, X. D. Yang. Photocatalytic oxidation for indoor air purification: A literature review [J]. Building and Environment, 2003, 38: 645-654.
    [76] V. S. Engleman. Updates on choices of appropriate technology for control of VOC emissions [J]. Metal finishing, 2000, 98(6): 433-450.
    [77] H. J. Kim, S. S. Nah, B. R. Min. A new technique for preparation of PDMS pervaporation membrane for VOC removal [J]. Advances in Environmental Research, 2002, 6(1): 255-264.
    [78] G. Vivekanand, S. Ashutosh, V. Nishith. Catalytic oxidation of toluene and m-xylene by activated carbon fiber impregnated with transition metals [J]. Carbon, 2005, 43: 3041-3053.
    [79]张前程,张凤宝,张国亮.苯在TiO2上的气相光催化氧化反应历程[J].催化学报, 2004, 25: 39-43.
    [80] H. T. Ma. Chemical kinetics of flue gas cleaning by irradiation with electrons [J]. Adv. Chem. Phys., 1991, 80: 315-402.
    [81] R. Atkinson, S. M. Aschmann, D. R. Fitz, et al. Rate constants for the gas-phase reactions of O3 with selected organics at 296 K [J]. Int. J. Chem. Kinet., 1982, 14: 13-18.
    [82]王艳芳,沙昊泪,於建明.低浓度VOCs废气处理技术进展[J].能源环境保护, 2007, 21(3): 8-12.
    [83] K. Okumura, T. Kobayashi, H. Tanaka, et al. Toluene combustion over palladium supported on various metal oxide supports [J]. Appl. Catal. B: Environ., 2003, 44: 325-331.
    [84] M. A. Centeno, I. M. Paul, M. Montes, et al. Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts [J]. Appl. Catal. A: Gen., 2002, 234: 65-78.
    [85] M. Zhang, B. Zhou, K. T. Chuang. Catalytic deep oxidation of volatile organic compounds over fluorinated carbon supported platinum catalysts at low temperatures [J]. Appl. Catal. B: Environ., 1997, 13: 123-130.
    [86] L. Xue, C. B. Zhang, H. He, et al. Promotion effect of residual K on the decomposion of N2O over cobalt-cerium mixed oxide catalysts [J]. Catal. Taday, 2007, 126: 449-455.
    [87] R. Spinicci, M. Faticanti, P. Marini, et al. Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion [J]. Journal of Molecular Catalysis A: Chemical, 2003, 197: 147-155.
    [88]应卫勇, I .E. Sungkono,龟山秀雄. MnCuOx /Al2O3催化剂上的催化燃烧及其动力学研究[J].华东理工大学学报, 1999, 6: 636-639.
    [89] O. Alexander, K. Jacek. Oxidation of volatile organic compounds on SBA-15 mesoporous molecular sieves modified with manganese [J]. Chemosphere, 2009, 74: 344-348.
    [90] Q. Zeynep, S. Gülin, S. Pozan, et al. Catalytic combustion of toluene over Mn, Fe and Co-exchanged clinoptilolite support [J]. Chemical Engineering Journal, 2009, 155: 94-100.
    [91] Q. H. Tang, X. N. Huang, C. M. Wu, et al. Structure and catalytic properties of K-doped manganese oxide supported on alumina [J]. Journal of Molecular Catalysis A: Chemical, 2009, 306: 48-53.
    [92] S. C. Kim. The catalytic oxidation of aromatic hydrocarbons over supported metal oxide [J]. Journal of Hazardous Materials B, 2002, 91: 285-299.
    [93] T. Ozkaya, A. Baykal, H. Kavas, etal. A novel synthetic route to Mn3O4 nanoparticlesand their magnetic evaluation [J]. Physical B, 2008, 403: 3760-3764.
    [94]李晓强.锰氧化物对甲苯液相氧化反应的催化作用研究[C]. [博士论文].中国科学院研究生院,2006.
    [95] [97] [101] S. H. Liang, F. Teng, G. Bulgan, et al. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation [J]. J. Phys. Chem. C, 2008, 112: 5307-5315.
    [96] J. S. Wiley, H. T. Knight. The electrical resistivity of pyrolytic beta MnO2 [J]. Journal of The Electrochemical Society, 1964, 111: 656-660.
    [98] A. C. Gaillot, D. Flot, etal. Structure of sythetic K-rich birnessite obtained by high-temperature decomposition of KMnO4. I. Two-layer polytype from 800 oC experiment [J]. Chem. Mater., 2003, 15: 4666-4678.
    [99] P. Papaefthimiou, T. Ioannides, X. E. Verykios. Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts [J]. Appl. Catal. B: Environ., 1997, 13: 175-184.
    [102] [105] S. G. Simcha, R. K. James, J. W. Snodgrass. Preparation, characterization and aging of δ-MnO2, for use in trace metal speciation studies [J]. Applied Geochemistry, 1987, 2: 217-226.
    [104] Y. S. Ding, X. F. Shen, S. Sithambaram, et al. Synthesis and catalytic activity of cryptolemane-type manganese dioxide nanomaterials produced by a novel solvent-free method [J]. Chem. Mater., 2005, 17: 5382-5389.
    [106]甄开吉,王国甲,华颖丽等.催化作用基础(第三版) [M].北京:科学出版社, 2005, 2: 284.
    [107]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能(4) [J].电池, 2005, 35: 199-203.
    [108] F. Leroux, D. Guyomard, Y. Piffard. The 2D Rancieite-type manganic acid and its alkali-exchanged derivatives: Part I-Chemical characterization and thermal behavior [J]. Solid State Ionics, 1995, 80: 299-306.
    [109]侯彦玲.水热法制备纳米MnO2的研究[C]. [硕士论文],北京化工大学.
    [110] J. G. Yu, G. H. Wang, B. Cheng, et al. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO2 powders [J].Applied Catalysis B: Environmental, 2007, 69: 171-180.
    [111] [113] [118]张熊.二氧化锰及其纳米复合材料的可控制备与性能研究[C]. [博士论文],北京化工大学应用化学系, 2008.
    [112]王训.过渡金属氧化物一维纳米结构液相合成、表征与性能研究[C]. [博士论文],北京:清华大学化学系, 2004.
    [114] L. Bonnefoi, P. Sioon, J. E. Fauvarque, et al. Multi electrode prismatic power prototypecarbon/carbon supercapacitors [J]. J. Power Sources., 1999, 83:162-169.
    [115] Y. Q. Gao, Z. H. Wang, J. X. Wan, et al. A facile route to synthesize uniform single-crystallineα-MnO2 nanowires [J]. Journal of Crystal Growth, 2005, 279: 415-419.
    [117] N. Kijima, H. Yasuda, T. Sato, et al. Preparation and characterization of open tunnel oxideα-MnO2 precipitated by ozone oxidation [J]. Journal of solid state chemistry, 2001, 159(1): 94-102.
    [119] H. C. Du, F. L. Yuan, S. L. Huang, et al. A new reaction to ZnO nanoparticles [J]. Chem. Lett., 2004, 33(6): 770-771.
    [120]刘敏.锰氧化物深度催化氧化邻二甲苯的研究[C]. [硕士论文].河北师范大学, 2009.
    [121] R. Morley, D. W. Eccleston, C. P. Douglas, et al. Xylene Poisoning: A Report on one fatal case and two cases of recovery after prolonged unconsciousness [J]. Br. Med. J., 1970, 3: 442-443.
    [122] C. R. Dias, M. F. Portela, G. C. Bond. Oxidation of o-xylene to Phthalic Anhydride over V2O5/TiO2 Catalysts III. Study of Organic Residue Formed on the Catalyst Surface [J]. Journal of catalysis, 1996, 162: 284-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700