用户名: 密码: 验证码:
酶催化两亲嵌段共聚物的合成及其纳米胶束的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可生物降解性的两亲嵌段共聚物因其独特的溶液自组装性能,使其作为生物医药材料在胶束、微球、载药膜等新型给药系统中表现出优异的特性和潜在的应用价值。然而,两亲嵌段共聚物的传统的制备方法是有机金属催化剂催化的活性离子聚合法,故产物中难免会残留有毒的有机金属催化剂。作为生物医药材料,微量的有毒催化剂都会带来严重的问题。因此,寻求制备两亲嵌段共聚物的高效无毒的催化剂或环境友好的新途径具有重要的理论和实际意义。采用安全、易除去的生物催化剂的合成途径是制备两亲嵌段共聚物的重要选择之一。
     本研究以脂肪酶Novozym 435为生物催化剂,分别以双端羟基的聚乙二醇(PEG,Mn=1 000, 2 000, 4 000, 6 000)和单端羟基的聚乙二醇单甲醚(MPEG,Mn=2 000, 5 000)为大分子引发剂,以甲苯为有机反应介质,在70℃下,引发ε-己内酯(ε-CL)的开环共聚合,制备三嵌段共聚物PCL-b-PEG-b-PCL和二嵌段共聚物MPEG-b-PCL。用凝胶渗透色谱法(GPC)、红外(FTIR)和核磁共振法(NMR)表征产物的分子量、分子量分布和结构;用DSC和WAXD对嵌段共聚物的热性能和结晶行为进行了表征。结果表明,制备的产物具有所设计的三嵌段和二嵌段结构;无论是PCL-b-PEG-b-PCL还是MPEG-b-PCL,共聚物的分子量都可以通过调节PEG和MPEG的分子量或反应体系中单体ε-CL和大分子底物的结构单元的摩尔比[ε-CL]/[EO]进行控制。在三嵌段共聚物的合成中,当[ε-CL]/[EO]值为2,PEG分子量从2 000增大到6 000时,PCL-b-PEG-b-PCL的分子量从11 900增加到19 000;当PEG分子量为2 000,[ε-CL]/[EO]值分别为2和4时,PCL-b-PEG-b-PCL的分子量分别为11 900和19 000;所合成的PEG分子量分别为2 000、4 000和6 000的PCL-b-PEG-b-PCL都只出现PCL链段的结晶熔融峰和结晶衍射峰,说明两端的PCL链段先结晶,PEG链段结晶受限制。在二嵌段共聚物的合成中,当[ε-CL]/[EO]值为2,MPEG分子量分别为2 000和5 000时,MPEG-b-PCL的分子量分别为10 000和11 000;当MPEG分子量为2 000,[ε-CL]/[EO]值分别为2和4时,MPEG-b-PCL的分子量分别为10 000和19 900;所合成的MPEG分子量为5 000的MPEG-b-PCL,当PCL链长小于MPEG链长时,同时出现两嵌段的结晶熔融峰和结晶衍射峰;当PCL链长大于MPEG链长时,只出现PCL链段的结晶熔融峰和衍射峰。
     在此基础上,尝试分别用自乳化溶剂蒸发法、纳米沉淀技术和透析法制备了二嵌段共聚物MPEG2000-PCL1的纳米胶束,通过对纳米胶束的粒径及其粒径分布的评价,确定透析法为较适宜的制备方法。采用透析法制备了不同结构和组成的嵌段共聚物的纳米胶束,进而用粒径分析仪测定了它们的粒径及其粒径分布,用TEM观察了胶束的形态结构,用芘荧光探针技术测定嵌段共聚物的临界聚集浓度(CAC),用紫外分光光度计法测定了嵌段共聚物的临界聚沉浓度(CFPT)。研究结果表明,两亲嵌段共聚物纳米胶束粒子具有明显的球形核壳结构,三嵌段共聚物和二嵌段共聚物纳米胶束的粒径分别在80~160 nm和45~90 nm之间,三嵌段共聚物纳米胶束粒径比二嵌段的明显增大,且随着嵌段共聚物分子量增大和疏水链段PCL增长,纳米胶束的粒径同时增大;嵌段共聚物的CAC值均很小,在1.62×10-3 g/L以内,且随着嵌段共聚物中亲水嵌段PEG和MPEG的质量分数下降到10.5%,CAC值减小到1.12×10-3 g/L,而嵌段共聚物的三嵌段或二嵌段结构对共聚物的CAC影响不大;随着嵌段共聚物中亲水嵌段PEG和MPEG的质量分数增大,两亲三嵌段和二嵌段共聚物的CFPT值增大,纳米胶束的稳定性增强。
Amphiphilic copolymers contain both hydrophilic and oleophilic chemical structures in their molecular chain segments, which provides their unique self-assembly behaviors in solutions and makes them especially suitable to be used as pharmaceutical carriers in micelles, microspheres, drug loaded membranes and other new-type drug delivery system. At present, block copolymers containing PCL and PEG chains are mainly prepared by active ionic polymerization using traditional chemical catalysts, some toxic organometallic compounds. As in biomedical materials, even a tiny quantity of catalyst remains can cause serious toxicity problems. Therefore, it is of vital importance to find some highly efficient and non-toxic catalysts. One of a possible ways to solve this problem is to use enzyme preparations instead of chemical catalysts.
     In this work, amphiphilic triblock biodegradable PCL-b-PEG-b-PCL and diblock copolymers MPEG-b-PCL prepared by the ring-opening polymerization ofε-caprolactone (ε-CL) in organic medium toluene, at 70℃, employing lipase Novozym 435 as catalyst with double-hydroxyl capped poly (ethylene glycol) (PEG, Mn=1 000, 2 000, 4 000, 6 000) or monomethoxy polyethylene glycol (MPEG, Mn=2 000, 5 000) as macromolecular initiator, respectively. The prepared copolymers were characterized by GPC, FTIR, 1H NMR, 13C NMR, DSC and WAXD. The results show that the production possessed the expected triblock or diblock structure containing both poly (ε-caprolactone) and poly (ethylene oxide) chains. Neither PCL-b-PEG-b-PCL or MPEG-b-PCL the molecular weight can be well controlled by adjusting the feeding molar ratio ofε-CL to EO ([ε-CL]/[EO]) and the molecular weight of the macromolecular initiators to PEG or MPEG. When [ε-CL]/[EO] holding with 2, the molecular weight of PEG got from 2 000 to 6 000, the molecular weight of the triblock copolymers PCL-b-PEG-b-PCL got from 11 900 to 19 000. But keeping the molecular weight of PEG with 2 000, [ε-CL]/[EO] with 2 and 4, the molecular weight of PCL-b-PEG-b-PCL were 11 900 and 19 000. When triblock copolymers PCL-b-PEG-b-PCL with the molecular weight of PEG got from 2 000 to 6 000, the crystallization and melting peaks and crystalline diffraction peaks which belong to PCL block, which indicated that PCL crystalized first and PEG was restricted. When [ε-CL]/[EO] holding with 2, the molecular weight of MPEG with 2 000 or 5 000, the molecular weight of MPEG-b-PCL were 10 000 and 11,000. But keeping the molecular weight of MPEG with 2 000, [ε-CL]/[EO] with 2 and 4, the molecular weight MPEG-b-PCL were 10 000 and 19 900. Diblock copolymers MPEG-b-PCL with the molecular weight of MPEG at 5 000, when MPEG was longer than PCL, the crystallization and melting peaks and crystalline diffraction peaks belong to MPEG and PCL, respectively. But PCL longer, the crystallization and melting peaks and crystalline diffraction peaks which belong to PCL block.
     On the basis, we prepared the diblock copolymer MPEG2000-PCL1 nano-micelles by the methods of self-emulsification diffusion method, nano meter precipitation method and dialysis method, according to micellar particle size and distribution, make sure dialysis method was the most suitable. Moreover, the different compositions of block copolymers were prepared by dialysis method. Empolying particle size analyzer to measurement micellars particle size and distribution, and TEM to study micellars morphological characteristics. The critical association concentrations (CACs) were determined by fluorescence technique using pyrene as probe, and the critical flocculation point (CFPTs) were determined by ultraviolet-visible pectrophotometer. The results showed that, nano-micelles possessed a core-shell structure, regularly spherical in shape. The nano-micelles made from triblock copolymers and diblock copolymers particle size were between 80~160 nm and 45~90 nm, respectively. The CAC were all less then 1.62×10-3 g/L, with lower mass fraction of PEG or MPEG to 10.5%, the CAC decreased to 1.12×10-3 g/L. With higher mass fraction of PEG or MPEG, the CFPTs of block copolymers were increased, improved the nano-micelles stability.
引文
[1] Hillmyer M A. Mieelles Madetoorder. Science [J], 2007, 317(5838): 604-605.
    [2] Won Y Y, Davis H T, Bates F S. Giant Wormlike Rubber Mieelles. Science [J], 1999, 283(5404): 960-963.
    [3] Florent M, Shvartzman R C, Goldfarb D, et al. Self-Assembly of Pluronic Block Copolymers in Aqueous Dispersions of Single-Wall Carbon Nanotubes as Observed by Spin Probe EPR [J]. Langmuir, 2008, 24: 3773-3779.
    [4] Deng W, Albouy P A, Lacaze E, et al. Azobenzene-Containing Liquid Crystal Triblock Copolymers:Synthesis, Characterization, and Self-Assembly Behavior [J]. Macromolecules, 2008, 41: 2459-2466.
    [5] Wang S G, Qiu B. Polycaprolactone-poly (ethylene glycol) block copolymer, I: synthesis and degradability in vitro [J]. Polymer for Advanced Technologies, 1993, 4(6): 363-366.
    [6] Shin I G, Kim S Y, Lee Y M, et al. Methoxy poly (ethylene glycol) epsilon caprolactone amphiphilic block copolymeric micelle containing indomethacin. I. Preparation and characterization [J]. J Control Rel, 1998, 51: 1-11.
    [7] Zaks A, Klibanov A M. Enzymatic Catalysis in organic media at 100℃[J]. Science, 1984, 224: 1249-1251
    [8] Klibanov A M. Improving enzymes by using themin organic solvents [J]. Nature, 2001, 409: 241-246.
    [9] Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery [J]. Colloids and Surfaces. B: Biointerfaces, 1999, 16(1-4): 3-27.
    [10] Deng Y, Young R N, Ryan A J, et al. Bulk morphology and micellization of Poly (diene)-poly (ethylene oxide) diblock copolymers in water [J]. Polymer, 2002, 43: 7155-7160.
    [11] Kim S Y, Lee Y M. Taxol-loaded block copolymer nanospheres composed of methoxy poly (ethylene glycol) and poly (ε-caprolactone) as novel anticancer drug carriers [J]. Biomaterials, 2001, 22: 1697-1704.
    [12] Szwarc M. Living Polymers. Their Discovery, Characterization, and Properties [J]. Journal of Polymer Science: Part A: Polymer Chemistry, 1998, 36: ix–xv.
    [13]袁建军,程时远,封麟先.嵌段共聚物自组装及其纳米材料制备中的应用[J].高分子通报, 2002, 1: 6-15.
    [14]梁玉增,李子臣,李福锦.两亲性含糖嵌段共聚物在水中分子聚集形态的转变[J].高等学校化学学报, 1999, 20(11): 1820-1822.
    [15] Stolnik T R, Heald C R, Xiong C D, et al. Physicochemical Evaluation of Nanoparticles Assembled from Poly(lactic acid)-Poly(ethylene glycol) (PLA-PEG) Block Copolymers as Drug Delivery Vehicles [J]. Langmuir, 2001, 17: 3168-3174.
    [16] Borchert U, Lipprandt U, Bilang M, et al. pH-Induced Release from P2VP-PEO Block Copolymer Vesicles [J]. Langmuir, 2006, 22: 5843-5847.
    [17] Sheihet L, Piotrowska K, Dubin R A, et al. Effect of Tyrosine-Derived Triblock Copolymer Compositions on Nanosphere Self-Assembly and Drug Delivery [J]. Biomacromolecules, 2007, 8: 998-1003.
    [18] Moffitt M, Eisenberg A. Scaling Relations and Size Control of Block Ionomer Microreactors Containing Different Metal Ions [J]. Macromolecules 1997, 30: 4363-4373.
    [19]江明.大分子自组装[M].北京:科学出版社, 2006: 3-5.
    [20] Hu W B. Crystallization-Induced Microdomain Coalescence in Lamellar Diblock Copolymers Studied by Dynamic Monte Carlo Simulations [J]. Macromolecules, 2005, 38: 3977-3983.
    [21] Hu W B. Molecular Segregation in Polymer Melt Crystallization: Simulation Evidence and Unified-Scheme Interpretation [J]. Macromolecules, 2005, 38: 8712-8718.
    [22] Soo P L, Eisenberg A. Preparation of block copolymer vesicles in solution [J]. J Polym Phys, 2004, 42: 923-938.
    [23] Fu J, Luan B, Pan C Y, et al. Early Stage Interplay of Microphase Separation and Crystallization in Crystalline-Coil Poly (L-lactic acid)-block-polystyrene Thin Films [J]. Macromolecules, 2005, 38: 5118-5127.
    [24] Zhang L F, Eisenberg A. Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions [J]. Macromolecules, 1996, 29: 8805-8815.
    [25] Zhang L F, Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic blocks copolymers in solution [J]. Polym Advan. Technol, 1998, 9(10-11): 677-699.
    [26]嵇培军,徐坚,叶美玲,等.嵌段聚合物胶束的研究进展[J].高分子通报, 1999, 4: 11-16.
    [27] Patten M K, Lioyd J B, Horpel G, et al. Micelle-forming block copolymers: Pinocytosis by macrophages and interaction with model membranes [J]. Macromol Chem, 1985, 186:725-733.
    [28] Harada A, Kataoka K. Novel Polyion Complex Micelles Entrapping Enzyme Molecules in the Core: Preparation of Narrowly-Distributed Micelles from Lysozyme and Poly (ethylene glycol)-Poly (aspartic acid) Block Copolymer in Aqueous Medium [J]. Macromolecules, 1998, 31: 288-294.
    [29] Yokoyama M. In Polymeric Materials Encyclopaedia. Ed By Salame J C, 1 CRC Press, 1996, 754-757.
    [30] Nagasaki Y, Okada T, Scholz C, et al. The Reactive Polymeric Micelle Based on An Aldehyde-Ended Poly (ethylene glycol)/Poly (lactide) Block Copolymer [J]. Macromolecules, 1998, 31: 1473-1479.
    [31] Minoura N, Higuchi M. Microphase-Separated Structure in Triblock Copolypeptide Membranes Composed of L-Glutamic Acid and L-Leucine [J]. Macromolecules, 1997, 30: 1023-1027.
    [32] Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance [J]. Advanced Drug Delivery Reviews, 2001, 47: 113-131.
    [33] Kabanov A V, Alakhov VY. In Polymeric Materials Encyclopaedia. Ed By Salame J C, 1 CRC Press, 1996, 757-760.
    [34] Pressly E D, Rossin R, Hagooly A, Fukukawa K, et al. Structural Effects on the Biodistribution and Positron Emission Tomography (PET) Imaging of Well-Defined 64Cu-Labeled Nanoparticles Comprised of Amphiphilic Block Graft Copolymers [J]. Biomacromolecules, 2007, 8, 3126-3134.
    [35] Mayer A B R. Colloidal Metal Nanoparticles Dispersed in Amphiphilic Polymers [J]. Polym Adv Technol, 2001, 12: 96-106.
    [36] Sohn B H, Yoo S, Seo B W, et al. Nanopatterns by Free-Standing Monolayer Films of Diblock Copolymer Micelles with in Situ Core-Corona Inversion [J]. J Am Chem Soc, 2001, 123: 12734-12735.
    [37] Aizawa M, Buriak J M. Block Copolymer-Templated Chemistry on Si, Ge, InP, and GaAs Surfaces [J]. J Am Chem Soc, 2005, 127: 8932-8933.
    [38] Zhao H Y, Douglas E P, Harrison B S, et al. Preparation of CdS Nanoparticles in Salt-Induced BlockCopolymer Micelles [J]. Langmuir, 2001, 17: 8428-8433.
    [39] Guo Y Y, Moffitt M G. Semiconductor Quantum Dots with Environmentally Responsive Mixed Polystyrene/Poly(methyl methacrylate) Brush Layers [J]. Macromolecules, 2007, 40: 5868-5878.
    [40] Schabas G, Yusuf H, Moffitt M G, et al. Controlled Self-Assembly of Quantum Dots and Block Copolymers in a Microfluidic Device [J]. Langmuir, 2008, 24: 637-643.
    [41] Weng C C, Wei K H. Selective Distribution of Surface-Modified TiO2 Nanoparticles in Polystyrene-b-poly (Methyl Methacrylate) Diblock Copolymer [J]. Chem Mater, 2003, 15: 2936-2941.
    [42] Yoo S, Sohn B H, Zin W C, et al. Self-assembled arrays of zinc oxide nanoparticles from monolayer films of diblock copolymer micelles [J]. Chem Commun, 2004: 2850-2851.
    [43] Weng C C, Hsu K F, Wei K H. Synthesis of Arrayed, TiO2 Needlelike Nanostructures via a Polystyrene-block-poly (4-vinylpyridine) Diblock Copolymer Template [J]. Chem Mater, 2004, 16: 4080-4086
    [44] Mountrichas G, Pispas S. Synthesis and pH Responsive Self-Assembly of New Double Hydrophilic Block Copolymers [J]. Macromolecules, 2006, 39: 4767-4774.
    [45] Szwarc M., Levy M., Mikovich R. J. Polymerization initiated by electron transfer to monomer. A new method of formation of block polymers [J]. J Am Chem Soc 1956, 78: 2656-2657.
    [46] Gref R, Minamitake Y, Peracchia M T, et al. Biodegrable long- circulating polymeric nanospheres [J]. Science, 1994, 263(5516): 1600-1603.
    [47] Patrickios C S, Forder C, Armes S P, et al. Synthesis and Characterization of Amphiphilic Diblock Copolymers of Methyl Tri (Ethy1ene Glycol) Vinyl Ether and lsobutyl Vinyl Ether [J]. J Polym Sci, Part A: Polym Chem, 1996, 34: 1529-1541.
    [48]王国建,夏平,刘琳.两亲性和双亲性嵌段共聚物的溶液性质研究[J].建筑材料学报, 2003, 6(4): 451-454.
    [49] Webster O, Hertler W, Sogah D. Group transfer polymerization: a new concept for addition polymerization with organosition initiators [J]. J Chem. Soc., 1983, 105(17): 5706-5708.
    [50] Baines F L, Armes S P, Billingham N C,Tuzar Z.. Micellization of Poly (2-(dimethylamino) ethyl methacrylate-blockmethyl methacrylate) Copolymers in Aqueous Solution [J]. Macromolecules, 1996, 29 (25): 8151-8159.
    [51] Okano T, Nishiyama S, Shinohara I, Akaike T, Sakurai Y, Kataoka K, Tsuruta T. Effect of hydrophilic and hydrophobic microdomains on mode of interaction between block polymer and blood platelets [J]. J Biomed Mater Res, 1981, 15(3): 393-402.
    [52] Otsu T, Yoshida M, Tazaki T, Makromol D. Chem Rapid Commun, 1982, 3: 133.
    [53] Georges M K, Veregin R P N, Kazmajer P M, Hamer G K. Narrow molecular weightresins by a free-radical polymerization process [J]. Macromolecules, 1993, 26: 2987-2988.
    [54] Le T P, Moad G., Rizzardo E., Thang S H. PCT Int.Appl.WO, 1998, 9801478.
    [55] Wang J S, Matyjaszewski K. Controlled/”living”radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes [J]. J Am Chem Soc, 1995, 117: 5614-5615.
    [56] Coessens V, Pintauer T, Matyjaszewski K. Functional polymers by atom transfer radical polymerization [J]. Prog Polym Sci, 2001, 26: 337-377.
    [57] Zhang X, Matyjaszewski K. Synthesis of well-defined amphiphilic block copolymers with 2-(dimethylamino) ethyl methacrylate by controlled radical polymerization [J]. Macromolecule, 1999, 32: 1763-1766.
    [58] Liu Y, Wang L X, Pan C Y. Synthesis of block copoly(styrene-b-p-nitrophenyl methacrylate) and its derivatives by atom transfer radical polymerization [J]. Macromolecules, 1999, 32: 8301-8305.
    [59]程时远,徐祖顺,袁建军. PS-b-PEO-b-PS三嵌段共聚物在选择性溶剂中的胶束化[J].化学学报, 2000, 58(3): 368-370.
    [60]袁金颖,魏高原,王延梅,潘才元. ABA型两亲嵌段共聚物的合成及表征[J].高分子学报, 2001, 5: 625-629.
    [61] Patten T E, Matyjaszewski K. Atom transfer radical polymerization and the synthesis of polymeric materials [J]. Adv Mater, 1998, 10: 901-914.
    [62] Gaynor S G, Matyjaszewski K. Step-growth polymers as macroinitiators for living radical polymerization: synthesis of ABA block copolymers [J]. Macromolecules, 1997, 30: 4241-4245.
    [63] Jankova K, Chen X, Kops J, Batsberg W. Synthesis of amphiphilic PS-b-PEG-b-PS by ATRP [J]. Macromolecules, 1998, 31: 538-541.
    [64] Destarac M, Boutevin B. Cu-catalyzed ATRP of styrene initiated by vinyl acetate telomers [J]. Polym Prepr, 1999, 40(1): 407-408.
    [65] Cai Y L, Armes S P. Synthesis of well-defined Y-shaped zwitterionic block copolymers via atom-transfer radical polymerization [J]. Macromolecules, 2005, 38: 271-279.
    [66] Coca S, Matyjaszewski K. Block copolymers by transformation of“living”carbocationic into“living”radical polymerization [J]. Macromolecules, 1997, 30: 2808-2810.
    [67] Coca S, Matyjaszewski K. Block copolymers by transformation of‘‘living’’carbocationic into‘‘living’’radical polymerization. II. ABA-Type block copolymers comprisingrubbery polyisobutene middle segment [J]. J Polym Sci, Part A: Polym Chem, 1997, 35: 3595-3601.
    [68] Coca S, Paik H J, Matyjaszewski K. Block copolymers by transformation of living ring-opening metathesis polymerization into controlled/“living”atom transfer radical polymerization [J]. Macromolecules, 1997, 30: 6513-6516.
    [69] Liu F, Ying S, Luo N, et al. The synthesis of block copolymer through the combination of living anionic polymerization and controlled radical polymerization [J]. Polym Prepr, 1999, 41(1): 1032-1033.
    [70] Liu Y, Ying S, Wan X. Synthesis of block copolymer via transformation of living free radical polymerization into living cationic ring-opening polymerization [J]. Polym Prepr, 1999, 41(1): 1053-10545.
    [71] Meyer U, Palmans A R A, Loontjens T, Heise A. Enzymatic ring-opening polymerization and atom transfer radical polymerization from a bifunctional initiator [J]. Macromolecules, 2002, 35: 2873-2875.
    [72] Peeters J, Palmans A R A, Veld M, Scheijen F, Heise A, Meijer E W. Cascade synthesis of chiral block copolymers combining lipase catalyzed ring opening polymerization and atom transfer radical polymerization [J]. Biomacromolecules, 2004, 5: 1862-1868.
    [73] Geus D M, Schormans L, Palmans A R A, Koning C E, Heise A. Block copolymers by chemoenzymatic cascade polymerization: a comparison of consecutive and simultaneous reactions [J]. J Polym Sci, Part A: Polym Chem, 2006, 44: 4290-4297.
    [74] Duxbury C J, Wang W, Geus D M, Heise A, Howdle S M. Can block copolymers be synthesized by a single-step chemoenzymatic route in supercritical carbon dioxide ? [J]. J Am Chem Soc, 2005, 127: 2384-2385.
    [75] Zhou J, Villarroya S, Wang W, Wyatt M F, Duxbury C J, Thurecht K J, Howdle S M. One-step chemoenzymatic synthesis of poly(ε-caprolactone-block-methyl methacrylate) in supercritical CO2 [J]. Macromolecules, 2006, 39: 5352-5358.
    [76] Karanam S, Goossens H, Klumperman B, Lemstra P.“Controlled”synthesis and characterization of high molecular weight methyl methacrylate/tert-butyl methacrylate diblock copolymers via ATRP [J]. Macromolecules, 2003, 36: 8304-8311.
    [77] Destarac M, Matyjaszewski K, Boutevin B. Polychloroalkane initiators in copper-catalyzed atom transfer radical polymerization of (meth) acrylates [J]. Macromol Chem. Phys, 2000, 201: 265-272.
    [78] Sha K, Li D S, Li Y P, Ai P, Wang W, Xu Y X, Liu X T, Wu M Z, Wang S W, Zhang B, Wang J Y. The chemoenzymatic synthesis of AB-type diblock copolymers from a novelbifunctional initiator [J]. Polymer, 2006, 47: 4292-4299.
    [79] Sha K, Li D S, Li Y P, Liu X T, Wang S W, Wang J Y. Chemoenzymatic synthesis of the novel amphiphilic diblock copolymer poly[caprolactone-block-(glycidyl methacrylate)] from a bifunctional initiator and its micellization behavior [J]. Polym Int, 2008, 57: 211-218.
    [80] Liu Y, Kiep V, Zdyrko B, Luzinov I. Polymer Grafting via ATRP Initiated from Macroinitiator Synthesized on Surface [J]. Langmuir, 2004, 20: 6710-6718.
    [81] Edmondson S, Huck W T S. Controlled growth and subsequent chemical modification of poly (glycidyl methacrylate) brushes on silicon wafers [J]. J Mater Chem, 2004, 14: 730-734.
    [82] Thurecht K J, Gregory A M, Villarroya S, Zhou J X, Heise A, Howdle S M. Simultaneous enzymatic ring opening polymerisation and RAFT mediated polymerisation in supercritical CO2 [J]. Chem Commun, 2006, 4383-4385.
    [83] Villarroya S, Zhou J, Duxbury C J, Heise A, Howdle S M. Synthesis of semifluorinated block copolymers containing poly(ε-caprolactone) by the combination of ATRP and enzymatic ROP in sc CO2 [J]. Macromolecules, 2006, 39: 633-640.
    [84] Sha K, Qin L, Li D S, Liu X T, Wang J Y. Synthesis and characterization of diblock and triblock copolymer by enzymatic ring-opening polymerization ofε-caprolactone and ATRP of styrene [J]. Polymer Bull, 2005, 54: 1-9.
    [85] Sha K, Li D S, Li Y P, Liu X T, Wang S W, Guan J Q, Wang J Y. Synthesis, Characterization, and micellization of an epoxy-based amphiphilic diblock copolymer ofε-caprolactone and glycidyl methacrylate by enzymatic ring-opening polymerization and atom transfer radical polymerization [J]. J Polym Sci, Part A: Polym Chem, 2007, 45: 5037-5049.
    [86]王思玲苏德森主编,胶体分散药物制剂[M].人民卫生出版社, 2006.
    [87] Sivalingam, G; Madras, G. Modeling of Lipase Catalyzed Ring-Opening Polymerization ofε-Caprolactone [J]. Biomacromolecules, 2004, 5: 603-609.
    [88] Ding R, Li G J, Chen Z G, et al. A New Route to Preparation of Esterified Konjac Glucomannan By A Lipase-Catalyzed Reaction in Organic Solvents [J]. Polym Prep, 2005, 46 (2): 683-684.
    [89] Kobayashi S. Enzymatic Polymerization: A New Method of Polymer Synthesis [J]. J Polym Sci, Part A: Polym Chem, 1999, 37: 3041-3056.
    [90] Chen Z G, Zong M H, Li G J. Lipase-Catalyzed Acylation of Konjac Glucomannan in Organic Media [J]. Process Biochemistry, 2006, 41(7): 1514-1520.
    [91] Geus M D, Peters R, Koning C E, et al. Insights into the Initiation Process of Enzymatic Ring-Opening Polymerization from Monofunctional Alcohols Using Liquid Chromatography under Critical Conditions [J]. Biomacromolecules, 2008, 9: 752-757.
    [92] ]He C L, Sun J R, Zhao T, et al. Formation of a Unique Crystal Morphology for the Poly (ethylene glycol)-Poly (ε-caprolactone) Diblock Copolymer [J]. Biomacromolecules, 2006, 7: 252-258.
    [93] Barakat I, Dubois Ph, Jerome R, et al. Living polymerization and selective end functionalization ofε-caprolactone using zinc alkoxides as initiators [J]. Macromolecules, 1991, 24: 6542-6545.
    [94] Harris J M. Introduction to biotechnical and biomedical applications of poly (ethylene glycol). In Poly (ethylene glycol) chemistry: biotechnical and biomedical applications; Harris, J. M., Ed.; Plenum Press, Inc.: New York, 1992.
    [95] Du Z X, Yang Y, Xu J T, et al. Effect of Molecular Weight on Spherulitic Growth Rate of Poly (ε-caprolactone) and Poly (ε-caprolactone)-b-poly(ethylene glycol) [J]. Journal of Applied Polymer Science, 2007, 104: 2986-2991.
    [96] Piao L H, Dai Z L, Deng M X, et al. Synthesis and characterization of PCL/PEG/PCL triblock copolymers by using calcium catalyst [J]. Polymer, 2003, 44: 2025-2031.
    [97] He C L, Sun J R, Deng C, et al. Study of the Synthesis, Crystallization, and Morphology of Poly (ethylene glycol)-Poly (ε-caprolactone) Diblock Copolymers [J]. Biomacromolecules, 2004, 5: 2042-2047.
    [98] Wilhelm M, Zhao C L, Wang Y C, et al. Poly (styrene-ethylene oxide) Block Copolymer Micelle Formation in Water: A Fluorescence Probe Study [J]. Macromolecules, 1991, 24: 1033-1040.
    [99] Jerome C, Lecomte P. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization [J]. Advanced Drug Delivery Reviews, 2008, 60: 1056-1076.
    [100] Xie W H, Zhu W P, Shen Z Q. Synthesis, isothermal crystallization and micellization of mPEG-PCL diblock copolymers catalyzed by yttrium complex [J]. Polymer, 2007, 48: 6791-6798.
    [101]王思玲,苏德森主编,胶体分散药物制剂[M],人民卫生出版社,2006.
    [102] Yoo H S, Park T G. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block coplomer [J]. J Control Release, 2001, 70(1/2): 63-70.
    [103] Yokoyama M, Satoh A, Sakurai Y, et al. Incorporation of water-insoluble anticancer drug into polymeric micelles and control of their particle size [J]. Journal of ControlledRelease, 1998, 55: 219-229.
    [104] Otsuka H, Nagasaki Y, Kataoka K. Self-assembly of poly?ethylene glycol/ -based block copolymers for biomedical applications [J]. Current Opinion in Colloid & Interface Science, 2001, 6: 3-10.
    [105] Kalyanasundaram K, Thomas J K. Environmental Effects on Vibronic Band Intensities in Pyrene Monomer Fluorescence and Their Application in Studies of Micellar Systems. J American Chem Soc, 1977, 99(7): 2039-2044.
    [106] Yekta A, Duhamel J, Brochsrd P, et al. A Fluorescent Probe Study of Micelle-like Cluster Formation in Aqueous Solutions of Hydrophobically Modified Poly(ethy1ene oxide) [J]. Macromolecules, 1993, 26: 1829-1836.
    [107] Tuzar Z. Polymer colloids [J]. Iranian J Polym Sci Tech, 1995, 41(1):34-39.
    [108] Foerster S, Zisenis M, Wenz E, et al. Micellization of strongly segregated block copolymers [J]. J Chem Phys, 1996, 104 (24): 9956-9970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700