用户名: 密码: 验证码:
聚双烯烃和聚吡咯共聚物导电高分子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的研究工作主要包括两个部分:第一部分聚双烯烃导电材料的研究和第二部分聚吡咯共聚物导电高分子合成和性能的研究。在第一部分中,首先研究了高反式聚丁二烯的合成。采用稀土三元催化体系(环烷酸镧-正丁基镁-四氢呋喃:La(naph)_3-(n-Bu)_2Mg-THF)成功地制备了高反式聚丁二烯,所得聚合物的反式1,4-含量可达96%,粘均分子量为5000~15000,分子量分布为1.2,熔点为80℃。对催化剂组成和聚合反应条件的研究表明,La(naph)_3-(n-Bu)_2Mg-THF催化体系的最佳比例是1:10:12,聚合反应的最佳条件是50℃,烷烃溶剂,反应8小时。
     通过研究聚双烯烃的掺杂导电性能,发现稀土催化合成的高反式聚丁二烯经碘充分掺杂后,电导率可达10~(-3)S/cm,这一数值比文献报道的值高2个数量级。研究碘掺杂聚双烯烃的电导率和温度的关系表明,在聚双烯烃内部,载流子的传输符合三维跃迁机理。分子量和电导率关系的研究表明,两者没有明显的依赖关系。红外以及紫外/可见光谱的研究表明,在碘掺杂过程中,聚双烯烃链上形成了长度不等的共轭链段。
     首次研究了碘掺杂聚双烯烃的电化学性质,结果表明它们有良好的电化学活性。在1 M NaCl水溶液中,0~1 V电位范围内,循环伏安研究发现碘掺杂聚双烯烃有两对氧化还原峰,分别对应Cl~-离子的掺杂-去掺杂和碘的氧化还原。交流阻抗的研究表明:Cl~-离子的掺杂-去掺杂过程受电极表面到溶液的扩散过程所控制,而碘的氧化还原则为动力学过程所控制。除此之外,还用交流阻抗方法测定了双电层电容、电荷转移电阻(C_(dl)、R_(ct))等相关物理参数。
     在本论文的第二部分中,主要研究了一系列聚吡咯共聚物的合成条件及其性质。首次用电化学方法合成了吡咯(Py)和乙烯基正丁基醚(VBE)的共聚物。共聚物中乙烯基正丁基醚(VBE)的比率最高可达40%(摩尔百分数)。对聚合电位的研究表明,高电位有利于合成吡咯含量高的共聚物,低电位有利于合成乙烯基正丁基醚(VBE)含量高的共聚物。对薄膜电化学性能的研究表明,共聚物没有可逆的电化学活性。
     首次用电化学聚合的方法直接合成吡咯(Py)和环氧丙烷(PO)的共聚物,所得共聚物中的环氧丙烷(PO)的含量根据条件不同,可以在0~60%(摩尔百分数)范围内变化。对电化学聚合反应条件研究表明,用导电玻
    
     浙江大学博士学位论文:聚双烯烃和聚吮咯共聚物导电高分子的研冗
    璃 (IT)为工作电极比铂片(Pt)电极更有利于共聚反应的进行,共聚反
    应在极性较强,亲核性较弱的溶剂如1二-H氯乙烷、硝基甲烷中更容易进行。
    研究毗咯(Py)和环氧丙烷(PO )共聚物的电化学行为表明,共聚物有可
    逆的、良好的电化学活性。在 0刀5 M BU。NBFJ硝基甲烷溶液中,刁-15 V
    电位范问内,循环伏安研究表明,P卜PO共聚物有一对氧化还原峰,代表
    了BFI-离于对共聚物的掺杂-去掺杂过程。交流阻抗的研究表明,共聚物在
    未掺杂时的阻抗行为表现为动力学控制。而在掺杂忐时,其阻抗行为表现
    为聚合物膜内的扩散控制,计算表明BF。-离于在共聚物内的扩散系数为
    92扒10\m’~。运用交流阻抗方法还计算了双电层电容、电荷转移电阻(C。。
    R-;)等有关物理参数,
     首次用电化学聚合的方法直接合成毗咯(Py)和。己内酯*-CL)的共
    聚物。根据条件不同,可以得到2-己内酯(S-CL)含量从 0~40%)擎尔百
    分数)的共聚物。共聚物电导率的研究表明,当。-己内酯的含量达4O%时,
    共聚物的电导率依旧保持在较高水平,可达0.6 S/Clll,这意味共聚物可能具
    有接枝或嵌段结构。对共聚物电化学行为的研究发现,其也具有可逆的电
    化学活性。
     首次用电化学聚合的方法,在 卜二-二氯甲烷溶液中,直接合成了毗咯
    (巳+)和八甲基环四硅氧烷(D/的共聚物,避兔了合成复杂l-I-l问体的反
    亡小骤。所得共聚物聚硅氧炕的重量百分数最高可达4Z%,同时电导率可
    达Z.OS/c;。。。初少探讨了毗I。各电化学共聚反应的可能历程,推测共聚反【的
    引匕舌性中心为口 咯或其低 聚物 的卜禹了自山基HP灯/,囚*其他上 丫
    是按]泊岛于聚合方式进厅的。简要解释了溶剂。电极材料等因素对共聚反
    应的影啊。
This work is composed of two parts: the first is about doping and conductive properties of polydienes and the second is about synthesis and property studies of polypyrrole's copolymer. In the first part, the high trans-1,4-polybutadienes were prepared by lanthanum naphthenate, dibutyl magnesium and THF catalytic system (La(naph)3-(n-Bu)2Mg-THF). The polymer's trans-1,4-content is over 96 %, the molecular weight is about 5000-15000, the distribution of molecular weight is 1.2 and the melt point is 80癈. When La(naph),:(n-Bu):Mg:THF is 1:10:12, temperature is 50癈 and solvent is hydrocarbon, the activity of polymerization is the best.
    The conductivity of trans-1,4-polybutadiene prepared by rare earth catalyst can be enhanced about 10 orders of magnitude via doped with iodine and reaches 10" S.cm"1. This value is 2 orders of magnitude more than the values reported |311. The relationship between conductivity and temperature indicates that the transport of charge in polydiene is fit on three-dimension variable-range hopping. Moreover, the studies showed that molecular weight of polydiene has no effect on conductivity. According to the FTIR and ultraviolet/ visible spectrum, the conjugated sequence formed in chain of polydiene during I2-doping.
    The electrochemical properties of I2-doped polydienes were studied for the first time and the results showed they have good and reversible electrochemical activities. When the range of potential is from 0 to 1 V in 1 M NaCl aqueous solution, the cyclic voltammetry indicates that there are two groups of redox peaks, which represent doping-undoping process of Cl~ and iodine's redox respectively. The doping-undoping process of Cl~ is controlled by polymer electrode/solution diffusion and iodine's redox is controlled by kinetics, according to AC impedance measurement. Some physical parameters (Cdl -. Rcl) and general impedance behaviors were discussed too.
    In the second part, the studies focused on syntheses and properties of polypyrrole's copolymer. The pyrrole (Py) and vinyl n-butyl ether (VBE) copolymer is prepared by electrochemical polymerization for the first time and the content of VBE in copolymer can reach 40 % (molar percent). The higher
    
    
    potential of synthesis is, the copolymer contains more pyrrole units and vice versa. Moreover, the cyclic voltammetry shows that the copolymer has no reversible electrochemical activity.
    The pyrrole (Py) and propylcne oxide (PO) copolymer is prepared by electrochemical polymerization for the first time. The composition of copolymer varies from 0 to 60 % (molar percent) at different synthesis conditions. The ITO working electrode is better than Pt electrode for preparing higher PO content copolymer. The polar and weakly nucleophilic solvents, such as Nitromethane, 1.2-dichloroethane, are in favor of Py and PO copolymerization. At potential range from -1 V to 1.5 V, in nitromethane containing 0.05 M Bu4NBF_,. the cyclic voltammetry of Py-PO copolymer indicates that there is a pair of redox peak, which represents doping-undoping process of BF4~ in copolymer. With the technology of impedance measurement, charge transfer resistance (RJ, double layer capacitance (Cdl) and general impedance behavior of Py-PO copolymer were also discussed.
    Copolymer of pyrrole-(e-caprolactone) were synthesized by electrochemical methods for the first time. The molar percent of s-caprolactone in copolymer varies from 0 to 40 % under different reaction conditions. When the content of e-caprolactone reaches 40 %, the conductivity of copolymer is 0.6 S/cm. This result implies that the copolymer may have graft or block structure. The cyclic voltammetry indicates that the copolymer has reversible electrochemical activity, which is similar to that of Py-PO copolymer.
    Copolymer of pyrrole-siloxane has been synthesised for the first time, using direct electrochemical methods. When the content of polysiloxane reaches 42 %\\t. the conductivity is 2.0 S/cm. Moreover, the mechanism of pyrrole copolymerization and the effect of solvent and electrode materials were d
引文
[1]. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Synthesis of Electrically Conducting Organic Polymer Halogen Derivatives of Polyacetylene, J. Chem. Soc. Chem. Commun. (1977) 578
    [2]. C.K. Chiang, C. F. Fincher Jr, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, Electrical Conductivty, in Doped Polyaeetylene, Phy. Rev. Lett. 39 (1977)1098
    [3]. A.J. Heeger, Semiconducting and Metallic Polymers: the Fourth Generation of Polymeric Materials, Current Applied Physics 1(2001)247
    [4]. W. P. Su, J. R. Schrieffer, A. J. Heeger, Solitons in Polyacetylene, Phy. Rev. Lett. 42(1979)1698
    [5]. A.G. MacDiarmid, "Synthetic Metals": a Novel Role for Organic Polymer, Current Applied Physics 1(2001)269
    [6]. P. J. Nigrey, A. G. MacDiarmid, A. J. Heeger, Electrochemistry of polyacetylene, (CH)_x: Electrochemical Doping of (CH)_x Film to Metallic State, J. Chem. Soc. Chem. Commun. (1979) 594
    [7]. W. R. Salaneck, l. Lundstrom, W. S. Haung, A. G. MacDiarmid, Two- Dimensional-Smrface 'State Diagram'for polyaniline, Synth. Met. 13(1986)291
    [8]. A. G. MacDiarmid, A. J. Epstein, Opportunities in Electronics, Optical Electronics And Molecular Electronics. Kluwer Academic Publishers, Dordrecht, 1990
    [9]. A. G. MacDiarmid, A. J. Heeger, P. J. Nigrey, Batteries Having Conjugated polymer electrode, U S patent 442, 187, 1984-04-10
    [10]. R. S. Sethi, M. T. Goosey, Special Polymers for Elevtronics and Optoelectronics, Chapman & Hall Press 1995
    [11]. T. Kita, Prctical Lithium Batteries. Cleveland: JEC Press 1988
    [12]. T. Enomoto, D. P. Allen, Bridgestone News Release, 1987, 9
    [13]. D. W. Deberry, Modification of The Electrochemical and Corrosion Behavior of Stainless Steels With An Electroactive Coating, J. Electrochem. Soc. 132(1985)1022
    [14]. K.G. Thompson, E.M. Crisman, Thermographic, Inspection of Solid-Fuel Rocket Booster Field Joint Components, Materials Evaluation 48(1990)1096
    [15]. M.A. Philips, New Sci, 144(1994)24
    [16]. B. Wessling, Passivotion of Metals by Coating with Polyaniline: Corrosion Pate,rial Shtift and Morphological Changes, Adv. Mater. 6 (1994) 226
    [17]. P. J. Kinlen, D. C. Silverman, C. R. Jeffery, Corrosion Protection Using Polyaniline Coating Formulations, Synth. Met. 85 (1997)1327
    
    
    [18]. J.H. Burroughes, D. D. C. Bradly, A. R. Brown, et al., Light-Emining Diodes Based on Conjugated Polymers, Nature, 347(1990)539
    [19]. D. Braun, A. J. Heeger, H. Kroemer, Improved Efficiency in Semiconducting Polymer Light-Emitting Diodes, Journal of Electronic Materials, 20(1991)945
    [20]. K. Gurunathan, A. V. Murugan. R. Marimuthu, U. P. Mulik, D. P. Amalnerkar, Electrochemically, Synthesised Conducting Polymeric Materials for Applications Towards Technology in Electronic, Optoelectronics and Energy Storage Devices, Mater. Chem. & Phys. 61(1999)173
    [21]. G.J. Collins, L. J. Buckley, Conductive Polymer-Coated Fabrics for Chemical Sensing, Synth. Met. 78(1996)93
    [22]. M.R. Anderson, B. R. Mattes, H. Reiss, et al., Conjugated Polymer Films for Gas Separations, Science, 252(1991)1412
    [23]. L. Rebattet, M. Escoubes, et al., Sorption and Interactions of Gases In Polyaniline Powders Of Different Doping Levels, J. Appl. Polym. Sci. 57 (1995) 1595
    [24]. L.D. Couves, S. J. Porter, Polypyrrole as A Potentiometric Glucose Sensor, Synth. Met. 28(1989)C761
    [25]. E.M. Genies, Marchesiello, Conducling Polymers for Biosensors, Application to New Ghwose Sensors GOD Entrapped into Polypyrrole, GOD Adsorbed on Poly (3-Methylthiophene), Synth. Met. 57(1), (1993)3677
    [26]. S. Dogan, U. Akbulut, et al., Conducting Polymers of Aniline Ⅱ. A Composite as A Gas Sensor, Synth. Met. 60(1993)37
    [27]. M. Thakur, A class of Conducting Polymers Having Nonconjugated Backbones, Macromolecules, 21(1988)661
    [28]. P.Calvert, Conducting Rubber Bounces Back, Nature 333(1988)296
    [29]. A. L. Cholli, M. Thakur. Structural Investigation of A Nonconjugated Conducting Polymer by Solid Stale ~(13)C Nuclear Magnelic Spectroscopy, J. Chem. Phys. 91(1989)7912
    [30]. M. Thakur, B. S. Elman, Optical antimagnetic Properties of A Nonconjugated Conducting Polymer, J. Chem. Phys. 90(1989)2042
    [31]. Q. Y. Shang, S. Pramanick, B. Hudson, Chemical Nature of Conduetion in Indine-Doped trans-1.4-Poly(Buta-l.3-Diene) and Some of Its Derivatives: The Presence of I_3~- and The Effect of Double-Bond Configuration, Macromolecules, 23(1990)1886
    [32]. Z. Shuai, J. L. Bredas, Electronic Structure of Conducting Polymers with Nonconjugated Backbones. 1.4-Polybutadiene and l.4-Polyisoprene, Macromolecules, 24(1991)3723
    [33]. K.P.J. William, D. L. Gerrard, Evidence for the Conduction Mechanism in Iodine-Doped Cis-Polyisoprene Rubber Using Resonance Raman spectroscopy, Polymer 31(1990)290
    [34]. L. Dai, J. W. White, Soluble Conducting Polymers from Polyisoprene. Polymer 32(1991)2120
    
    
    [35]. L. Dai, Charge Transfer Complexes between Polyacetrlene-Type Polymers and Iodine in Solution, J. Chem. Phys. 96(1992)6469
    [36]. L. Dai, A. W. H. Mau, H. J. Griesser, D. A. Winkler, Conducting Polymers from Polybutadiene: Molecular Configuration Effects on the Iodine-Induced Conjugation Reactions, Macromolecules, 27(1994)6728
    [37]. L. Dai, H. J. Griesser, X.-Y. Hong, A. W. Mau, T. H. Spurling, Y.-Y. Yang, J. W. White, Photochemical Generation of Conducting Patterns in Polybutadiene Films, Macromolecules, 29(1996)282
    [38]. L. Dai, A. W. H. Mau, Conjugation of Polydienes by Oxidants Other Than Iodine, Synth. Met, 86(1997)1893
    [39]. G. Yu, M. Thakur, Electrical Conduction in A Nonconjugated Polymer Doped with Sncl_4 And Sbcl_5, J. Polym. Sci. Part B 32(1994)2099
    [40]. Z. Shen, M. Yang, Y. Cai, M. Shi, Stereospecific Polymerizatiotn of Acetylene By Rare-Earth Coordination Catalysts, Scientia Sinica B, ⅩⅩⅥ(1983)19
    [41]. Y. Qiao, Y. Zhang, L. Yu, M. Yang, Z. Shen, Electrochemistry of Rare Earth Polyacetylene, Seientia Sinica B, ⅩⅩⅩ(1987)150
    [42].欧阳均,沈之荃等.中国科学院长春应用化学研究所第四研究室,稀土合成橡胶文集,科学出版社,1980
    [43]. D.B. Malpass, L. W. Fannin, Organomagnesium-Organoaluminum Complexes, J of Organometallie Chem, 93(1975)1
    [44]. Chenjun Shi, Yifeng Zhang, Zhiquan Shen, Synthesis of Trans-Polybutadiene by Lanthanum Naphthenate Catalytic System, Acta Polymerica Sinica, 3(2001)333
    [45]. Sandstron Paul Harry. Eur Pat, 505904. 1992-5-18, and 538700. 1992-10-12
    [46]. Shen Zhiquan(沈之荃), Gong Zhongyuan(龚仲元), Zhong Chongqi(仲崇祺), Ouyang Jun(欧阳均), Catalytic Activity of Rare Earth Compound in Stereospecific Polymerization of Butadiene, Scientia Sinica, 13(1964)1339
    [47]. J.H. Yang, M. Tsutsui, Z. Chen, D. E. Bergbreiter, New Binary Lanthanide Calalysts for Stereospecific Diene Polymerization, Marcomolecules 15(1982)
    [48].沈之荃,龚仲元,仲崇祺,欧阳均,稀土化合分物在定向聚合中的催化活性,科学通报,1964,335
    [49]. D.K. Jenkins, Butadiene Polymerization with A Rare Earth Compound Using A Magnesiwn Alkyl Cocatalyst: 1, Polymer, 26 (1985) 147
    [50]. R.S. Silas, J. Yates, V. Thornton, Determination of Unsaturation Distribution in Polybutadienes by Infrared Spectrolneny, Anal. Chem, 31 (1959) 529
    [51]. F S. Dainton, D. M. Evans, F. E. Hore, T. P. Melia, Part V cis- and trans-1,4-Polybutadiene, Polymer, 3 (1962) 297
    [52].孟令芝,何永炳,有机波潽分析,武汉大学出版社,1997
    [53].L.I.纳斯,聚氯乙烯大全,化学工业出版社,1983
    [54]. T.A. Skotheim, Ed, Handbook of Conducting Polyner; Marcel Dekker. New York 1986
    
    
    [55]. K.J. Hanson, C. W. Tobias, Electrochemistry of Iodine In Propylene Carbonate, J. Eleetrochem. Soc. 134(1987) 2204
    [56]. A.F. Diaz, K. K. Kanazawa. G. P. Gardini, Electrochemical Polymerzation Pyrrole, J. Chem. Soc. Chem. Commun. (1979), 635
    [57]. T.X. Bi, X. Y. Yao, M. X. Wan, et al., Studies on Electrochemically Prepared Oxidized Polypyrrole Salt Film, Markromol. Chem. 186(1985) 1101
    [58]. K.M. Cheung, D. Bloor, G. C. Stevens, The Influence of Unusual Counterions on the Eleetrochemistry, and Physical Properties of Polypyrrole, J. Mater. Sci., 25(1990)3814
    [59]. M. Salmon, A. F. Diaz, A. J. Logan, et al., Chemical Modification of Conducting polypyrrole Films, Mol. Cryst. Liq. Cryst., 83(1981)265
    [60]. R.Y. Qian, J. J. Qiu. Electrochemically, Prepared Polypyrroles from Aqueous Solutions. Polym. J. 19(1986)157
    [61]. L.F. Warren, D. P. Anderson, Polypyrrole Films.from Aqueous Electrolytes. The Effect of Anions Upon Order, J. Eleetrochem. Soc., 134(1987)101
    [62]. S. Kuwabata, J. Nakamura, H. Toneyama, The Basicity of Dopant, Anion on Conductivity of Polypyrrole Film, J, Chem. Soc. Chem. Commun.., (1988)779
    [63]. M. Satoh, K. Kaneto, K. Yoshino, Dependence of Electrical and Mechanical Properties of Conducting Polypyrrole Films on Conditions of Electrochemical Polymerization in An Aqueous Medium, Synth. Met. 14(1986)289
    [64]. Y.Q. Shen, J. J. Qiu, R. Y. Qian, et al., Structure and Amounts of Counter Ions in Polypyrrole Films Prepared from Aqueous Solution of Sodium Tosylate,, Markromol. Chem., 188(1987)2041
    [65]. Y.F. Li, J. Yang, Effect of Electrolyte Concentratio, on The Properties of The Electropolymerized Polypyrrole Films, J. Appl. Polym. Sci., 65(1997)2739
    [66]. K. lmanishi. M. Stoh, Y. Yasuda, et al., Solvent Effect on Electrochemical Polymerization Of Aromatic Compounds, J. Electroanal. Chem., 242(1988)203
    [67]. J.Y. Ouyang, Y. F. Li, Effect of Electrolyte Solvent On The Conductivity, and Structure of As-Prepared Polypyrrole Films, Polymer 38(1997)1971
    [68]. J. Y. Ouyang, Y. F. Li, Preparation, and Characterization of Flexible Polypyrrole Nitrate Films. Synth. Met. 79(1996)121
    [69]. W. Wernet, M. Monkenbush, G. Wegner, On Structure and Properties of Polypyrrole Alkyl-Sulfate, Mol. Cryst. Liq. Cryst., 118(1985)193
    [70]. R.Y. Qian, Q. B. Pei, Z. T. Huang, the Role Of H Ion in The Electrochemical Polymerization Of Pyrrole, Markromol. Chem., 192(1991)1263
    [71]. D.S. Park, Y. B. Shim. S. M. Park, Degradation Kinetics of Polypyrrole Films, J. Electrochem. Soc., 140(1993)2749
    [72].贝建中,钱人元,在水溶液中用电化学反应制备大面积聚吡咯薄膜,功能高分子学报,4(1991)320
    [73]. R. John, M. J. John, G. G. Wallace, et al., Electrochemistry, in Colloids and Dispersions, New York, VCH, 1992
    
    
    [74]. M. Fukuyama, N. Nanai, T. Kojima, et al., Effects of Mono-Substituted Phenol Additives on The Electrical and Mechanical Properties of Electrochemicallyl Synthesized Polypyrrole, Synth. Met. 58(1993)367
    [75]. J.Y. Ouyang, Y. F. Li, Great lmprovement of Polypyrrole Fihns Prepared Electrochemically from Aqueous Solution, by Adding Nonaphenol Polyethyleneoxy (1O) Ether, Polymer 38(1997)3997
    [76]. D.A. Kaplin, S. Qutubuddin, Electrochemically Synthesized Polypyrrole Films. Effects of Polymerization Potential and Electrolyte Type, Polymer 36 (1995)1275
    [77]. B.F. Cvetko, M. P. Brungs, R. P. Burford, et al., Structure, Strength and Electrical Performance of Conducting Polypyrroles,J. Mater. Sci., 23(1988)2102
    [78]. M. Liang, J. Lei, C. R. Martin, Effecl of Synthesis Temperature on The Structure, Doping Level and Charge-Transport Properties of Polypyrrole, Synth. Met., 52(1992)227
    [79]. Y.F. Li, g. G. He, Effect of Preparation Conditions on the Two Doping Structures of polypyrrole, Synth. Met., 94(1998)127
    [80]. J. Yang, Y. F. Li, Effect of Ultrasonic Wave on The Electropolymerization of Pyrrole, Chinese J, Polym. Sci., 14(1996)270
    [81]. J.Y. Lee, D. Y. Kim, C. Y. Kim, Synthesis of Soluble Polypyrrole of The Doped State in Organic Solvents, Synth. Met., 74(1995)103
    [82]. C.Y. Kim, D. Y. Kim, J, Y. Lee, Polymer and Organic Solids., Beijing, Science Press, 1997
    [83]. R.Y. Qian, Y. F. Li, B. Z. Yan et al., Electrochemical Aspects of Polypyrrole, Synth. Met., 28(1989)51
    [84]. R.Y. Qian, Conjugated Polymers and Related Materials: the Interconnection of Chemical and Electronic Structure., Oxford: Oxford University Press, 1993
    [85]. J.S. Shapiro, W. T. Smith, Morphological Study of Polypyrrole Fihns Grown on Indium-Tin Oxide Conductive Glass, Polymer 38(1997)5505
    [86]. Y.F. Li, K. Imaeda, H. Inokuchi, Conductivity Characteristics and Vis-NlR Absorption Spectra of Pol.ypyrrole Fihns At Higher Temperatures, Polym. J. 28(1996)559
    [87]. Y.F. Li, R. Y. Qian, Effect of Anion and Solution Ph on The Electrochemical Behavior of Polypyrrole in Aqueous Solution, Synth. Met., 28(1989)127
    [88]. Y.F. Li, R. Y. Qian, Studies on The Chemical Compensation of Conducting Polypyrrole by Naoh Solution, Synth. Met., 26(1988)139
    [89]. R. Kostic, D. Rakovic, S. A. Stepanyan, et al., Vibrational Spectroscopy of Polypyrrole, Theoretical Study, J. Chem. Phys. 102(1995)3104
    [90].郭可珍,李永舫,钱人元,导电聚吡咯对阴离子分布的 XPS 研穷,化学学报,48(1990)92
    [91]. H.L. Ge, G. J. Qi, E. T. Kang, et al., Study of Overoxidized Polypyrrole Using X-Ray Phoioelectron Spectroscopy, Polymer, 35(1994)504
    [92]. K.G. Neoh, T. T. Young, E. T. Kang, Structural and Mechanical Degradation
    
    of polypyrrole Films Due to Aqueous Media and Heat Treatment and The Subsequent Redoping Characteristics, J. Appl, Polym. Sci., 64 (1997) 519
    [93]. M, Kurosu, M. Kikuchi, I. Ando, Structural Characterization of Polypyrrvle in The Solid Stare by High Resolution (15)~N NMR Spectroscopy [Ⅱ], J. Polym. Sci. Part B, 33 (1995) 769
    [94]. M. Forsyth, V. T. Truong, Study of Acid/Base Treatments of Polypyrrole Films Using (13)~C N.M.R. Spectroscopy, Polymer, 36 (1995) 725
    [95]. Y.F. Li. R. Y. Qian, K. lmaeda, et al., Behavior of The High Temperature Conchtctivity of Polypyrole Nitrate Films, Polym. J., 26 (1994) 535
    [96]. Y.F. Li, J. Y. Ouyang, J. Yang, Two Doping Structures and Structural. Anisotropy Revealed by The Mass Loss and Shrinkage of Polypyrrole Filmts on.Alkali Treatment. Synth. Met.. 74 (1995) 49
    [97]. T. Shimidzu, A. Ohtani, T, lyoda, et al., Charge-Controllable polypyrrole/Polyelectrolyte Composite Membranes, J. Electrochem. Soc., 224 (1987) 123
    [98]. E.W. Tsai, G. W. Jiang. K. Rajeshwar, Proton Transport Accompanies Redox Switching of Pyrrole: A Spectroelectroehemical Study, J. Chem, Soc. Chem. Commun. (1987) 1776
    [99]. Y.F. Li, R. Y. Qian, Studies on The Electrode Kinetics of Polypyrole in Aqueous Solution By A.C. Impedance Measurement, Synth. Met., 64 (1994)241
    [100]. E.M. Genies, J. M. Pernaut. Characterization of The Radical Cation and The Dication Species of Polypyrrole by Spectroelectrochemistry. Kinetics, Redox Properties, and Structural Changes upon Electrochemical Cycling, J Electroanal Chem.. 191 (1985) 111
    [101]. M. Biswas. A. Roy, Thermal Stability, morphological, Dielectric, and Conductivity Characteristics of Pyrrole Modified Poly-N-Vinyl Carbazole, J. Appl. Polym, Sci., 49 (1993) 2189
    [102]. M. Sacak, U. Akbulut, D.N. Batchelarer, Characterization of Electrochemically Produced, Two-Component Films of Conducting Polymers by Raman Microscopy, Polymer 39 (1998) 4735
    [103]. E. Ruckenstein, J.S. Park, New Method for The Preparation of Thick Conducting Polymwer Composites. J. Appl. Polym, Sci. 42 (1991) 925.
    [104]. M. Makhlouki, M. Morsli. A. Bonnet, A. Conan, S. Lefrant, Transport Properties in Polypyrrole-PVA Composites. Evidence.for Hopping Conduction, J. Appl. Polym. Sci. 44 (1992) 443.
    [104]. R.S. Campomanes, E. Bittencourt, J.S.G. Gampos, Study of Conductivity of Polypyrrol-Poly(Vinyl Alcohol) Composites Obtained Photochemically, Synth. Met. 102 (1999) 1230.
    [106]. Z. Chen, A. Okimoto. T. Kiyonaga, T. Nagaoka. Preparation of Soluble Polypyrrole Composites and Their Uptake Properties for Anionic Compounds, Anal. Chem. 71 (9) (1999) 1834.
    [107]. H.L.Wang, J.E. Fernandez, Conducting Polymer Blends: Polypyrrole and
    
    Poly(Vinyl Methyl Ketone), Macromolecules 25 (1992) 6179.
    [108].Z. Kuc,ukyavuz, S. Kuc, ukyavuz, M. Ozyalc.m, Synthesis and Characterization of Conducting Polpyrrole-Poly(N-Vinylimidazole) Composites, Synth. Met. 101 (1999) 64.
    [109].S. Marchant, F.R. Jones, T.P.C. Wong, P.V. Wright, Free-Space Microwave Characteristics of Polypyrrole Coated Glass Fibre, Synth. Met. 96 (1998) 35.
    [110].M. Chakraborty, D.C. Mukherjee, B.M. Mandal, Interpenetrating Polymer Network Composites of Polypyrrole and Poly(Vinyl Acetate), Synth. Met. 98 (1998) 193.
    [111].M. Bleha, V. Kudela, E.Y. Rosova, G.A. Polotskaya, A.G. Kozlov, G.K. Elyashevich, Synthesis and Characterization of Thin Polypyrrole Layers on polyethylene Microporous Films, Eur. Polym. J. 35 (4) (1999) 613.
    [112].B. Tieke, W. Gabriel, Conducting Polypyrrole-Polyimide Composite Films, Polymer 31 (1990) 20.
    [113].C. Arribas, D. Rueda, Preparation of Conductive Polypyrrole-Polystyrene Sulfonate by Chemical Polymerization, Synth. Met. 79 (1996) 23.
    [114].D. Rueda, C. Arribas, F.J. Balta-Calleja, F.L.G. Fierro, J.M. Palacios, Growth of Polypyrrole at The Swface of Sulphonated Polyethylene, Synth. Met. 28 (1989) C77.
    [115].E. Kalaycioglu, U. Akbulut, L. Toppare, Conducting Composites of Polypyrrole with Polytetramethylbisphenol A Carbonate, J. Appl. Polym. Sci. 61 (1996) 1067.
    [116].J.A. Pomposo, J. Rodriguez, H. Grande, Polypyrrole-Based Conducting Hot Melt Adhesives for EMI Shielding Applications, Synth. Met. 104 (1999) 107.
    [117].Al. Nazzal, G.B. Street, Pyrrole-Styrene Graft Copolymer, J. Chem. Soc. Chem. Commun. (1985) 375.
    [118].Y.H. Park, H. C. Shin, Y. K. Lee, Y. K. Son, D. H. Baik, Electrochemical Preparation of Polypyrrole Copolymer Films from PSPMS Precursor, Macromolecules 32 (1999) 4615
    [119].S. Jin, X. R. Liu, W. Zhang, Y. Lu, G. Xue, Electrochemical Copolymerization of Pyrrole and Styrene, Macromolecules 33 (2000) 4805
    [120].D. Stanke, M.L. Hallensleben, L. Toppare, Graft copolymers and composites of poly(methyl methacrylate) and polypyrrole part I, Synth. Met. 72 (1995) 89.
    [121].V.W.L. Lim, E. T. Kang, K. G. Neoh. Surface Modification of Polypyrrole Films via Grafting of Poly(Ethylene Glycol) for Improved Biocompatibility, Synth. Met. 119 (2001)261
    [122].E. Kalaycioglu, L. Toppare, Y. Yagci, V. Harabagiu, M. Pintela, R. Ardelean, B. C. Simionescu, Synthesis of Conducting H-Type Polysiloxane-Polypyrrole Block Copolymers, Synth. Met. 97 (1998) 7
    [123].M.C. De Jesus, Y. Fu, R. A. Weiss, Conductive Polymer Blends Prepared by In Situ Polymerization of Pyrrle:A Review, Polym. Eng. Sci. 37 (1997) 1936
    [124].D. Stanke, M. L. Hallensleben, L. Tappare, Electrically Conductive Poly(Methyl Methacrylate-G-Pyrrole) via Chemical Oxidative Polymerization, Synth. Met.
    
    55-57 (1993) 1108
    [125]. M.L. Hallensleben, D. Stanke, Graft Copolymers and Composites of Poly(Methyl Methacrylate) and Polypyrrole Part Ⅱ, Synth. Met. 73 (1995) 261.
    [126]. B.K. Garg, R. A. V. Raft, R. V. Subramanian, Electro-polymerization of Monomers On Metal Electrodes, J. Appl. Polym. Sci. 22 (1978) 65
    [127].朱吕民,聚氨酯合成材料,江苏科学技术出版社,2002
    [128]. U. Akbulut, L. Toppare, A. Usanmaz, A.(?)nal, Electroinitiated Cationic' Polymerization of Some Epoxicles by' Direct Electron transfer, Macromol. Chem. Rapid Commum. 4 (1983) 259
    [129]. J. Weu, Z. Q. Shen, New Catalyst Systems of Rare Earth Acetylacetonate / ,AlEt_3-1/2H_2O For Polymerization Of Propylene Oxide, J. Polym. Sci., Part A, 28 (1990) 1995
    [130]. Marco M. Musiani, Characterization of Electroactive Polymer Layers by Electrochemical Impedance Spectroscopy (Eis), Electrochimica Acta, 35 (1990) 1665
    [131]. E.W. Tsai, T. Pajkossy, K. Rajeshwar, J. R. Reynolds, Anion-Exchange Behavior of Polypyrrole Membranes, J. Phys. Chem. 92 (1988) 3560
    [132]. H. Tsuji, Y. Ikada, Properties And Morphology of Poly(L-Lactide)4. Effects of Structural Parameters on Long-Term Hydrolysis of Poly(L-Laetide) In
    Phosphate-Buffered Solution, Polym. Degrad. Stab. 67 (2000) 179
    Macromolecules 29 (1996) 8289
    [133]. Y.Q.Shen,Z.Q.Shen.Y.F.Zhang,K.M.Yao,Novel Rare Earth Cataylysts for The Living Polymerization and Block Copolymerization Of ε-Caprolactone,Macromolecules 29(1996)8289
    [134]. Y.Q. Shen, Z. Q. Shen, J. L. Shen, Y. F. Zhang, K. M. Yao, Characteristics and Mechanism of E-Caprolaclone Polymerization with Rare Earth Halide
    Systems, Macromolecules 29 (1996) 3441
    [135]. M. Satoh, K. hnanishi, K. Yoshino, Characterization of Electrochemical.Anodic Polymerization of Aromalic Compounds in Aprotic Solvents, J Electroanal Chem. 317 (1991) 139
    [136]. M. Takakubo. Molecular Orbital Study of The Initial Processes in The Electrochemical Polymerization of Pyrrole, Thiophene and Furan, J Electroanal Chem.. 258 (1989) 303
    [137]. S. Sadki. P. Schottland, N. Brodie, G. Sabouraud, The Mechanisms of Pyrrole Electro-polymerization, Chem. Soc. Rev. 29 (2000) 283
    [138].潘祖仁,高分子化学,化学工业出版社,1986
    [139]. H. H(?)cker, H. Keul, Ring-Opening Polymerization and Ring-Closing Depolymerization, Adv. Mater. 6 (1994) 21
    [140]. S. Penczek, S. Slomkowski, Comprehensive Polymer Science, Pergamon, Oxford, 1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700