用户名: 密码: 验证码:
非饱和土壤渗透特性及饱和入渗机理试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非饱和渗透系数的确定与土中水—气运动规律是非饱和土壤水分入渗问题研究的关键。由于非饱和土中水的渗透性难以测定,许多学者提出的渗透性函数形式又极为不统一,使得目前还没有一种仪器或函数形式得以推广,也无法满足非饱和土理论研究以及工程实践的要求。土壤积水入渗过程中土中气体压力的变化规律及对入渗过程的影响对节水灌溉和水土保持等的实施具有重要的指导意义。
     本文试图通过试验研究、理论推导两个方面,对非饱和渗透系数的确定及积水入渗过程中土中水—气运动规律进行较为全面、深入地研究。主要研究成果如下:
     (1)本文从非饱和土渗透特性研究的需要出发,针对目前研制的非饱和土渗透仪的不足,根据非饱和土稳态渗流试验装置量测非饱和渗透系数的主要特点及存在的问题,提出了新型非饱和土稳态渗流试验装置研制开发的整体思路,完成了重要内容的研制。采用稳态水压力发生器作为水压力控制系统,实现了压力的稳定控制和渗透水量的精确测定。针对新型稳态渗流试验装置工作原理,总结出了一套行之有效的操作方法。通过对试验结果的拟合分析,明确了土壤非饱和渗透系数随土壤饱和度的变化关系。
     (2)运用邵龙潭相介质的相互作用原理并结合水力学中层流阻力中渗透流速的概念重新推导了饱和与非饱和土壤水分的运动方程,给出了单一均质饱和与非饱和土壤渗透系数的理论表达式。根据饱和土渗透系数方程,考察了土水相互作用力系数的物理基础。由稳态渗流方法量测非饱和渗透系数的水力条件,分析了非饱和渗透系数理论表达式的应用。
     (3)通过理论分析了非饱和土积水入渗条件下,土中气体压力对入渗区土体平衡的影响,并建立了理想状态下土体平衡的临界条件。通过试验验证了土体平衡状态的存在形式。试验结果表明,入渗土体孔隙率和初始含水量决定着入渗初始阶段土中气体的运动形态和入渗过程。土体的孔隙率越大、初始含水量越小,入渗初期作用水层对土中气体的封闭作用越弱,气体越容易逸出,逸出过程中对土表附近土体的扰动程度和范围越大,土中气体压力的波动幅度和频率越大,并导致入渗率出现阶梯状变化;反之,入渗初期作用水层对土中气体的封闭作用越强,气体越难逸出,入渗土体内越易出现裂缝,且气体逸出时只对裂缝以上土体有扰动,而裂缝以下土体则几乎不受扰动,气体压力波动的幅度和频率也越小,入渗率显著减小,并可能造成入渗过程的停止。
     (4)通过试验发现,入渗土体内存在两个明显的分界面,将湿润锋以外的另一锋面给出了定义,将其定义为饱和锋,通过对破坏土体的平衡分析说明了定义的合理性。试验结果表明,饱和锋的位置与入渗过程有关。对于结构较疏松的土体,饱和锋的位置随着土体扰动深度的增加而增加。对于结构较牢固的土体,饱和锋的位置随着裂缝深度的增加而增加。从饱和锋的位置出发,研究了土体结构出现整体破坏的过程,并将土体破坏分为三个阶段,对应三种不同的状态:临界状态、过渡状态和稳定平衡状态。
     (5)对于不同类型的土,当入渗土柱内出现裂缝时,裂缝的形状不同。对于具有一定粘性的土(硅微粉),土体出现裂缝时,因为土颗粒之间存在粘性,裂缝面多不规则。对于砂性土(粉煤灰、细砂),裂缝面则多是规则的。对于颗粒比重不同的土,裂缝的发展情况不同,颗粒比重较小的土(粉煤灰),气体逸出时对土体的扰动会使裂缝很快消失;颗粒比重较大的土(硅微粉和细砂),气体逸出造成的扰动并不会使裂缝消失,且会随着气体压力的波动而频繁重现。
     (6)试验结果表明,入渗水流进入到土层后,在向下运动的同时,也在不断地向两侧运动,土表处土体饱和度逐渐增加,随着入渗的不断进行,其饱和的范围也不断地延伸。
It is important for the unsaturated infiltration of the determination of unsaturated permeability coefficient and water-air flow in soil. The testing technique and experiment methods of unsaturated soils are the important means and tools to investigate the mechanic behavior of unsaturated soil. Due to it's difficult to measure the unsaturated permeability coefficient, many researchers put forward various forms of permeability functions. However, neither any apparatus or function forms are popularized nor any of them can satisfy the request of the theory of unsaturated soil and the engineering. The air pressure changes and its influence under ponding infiltration are important to guide water saving irrigation and soil water conservation.
     This paper conducts comprehensive and in-depth research on the determination of unsaturated permeability coefficient and water-air flow during ponding infiltration by experiment research and theory research. The research is reduced as the following:
     (1) In this paper, in terms of the shortage of the current apparatus of water permeability for unsaturated soils, the new unsaturated steady seepage apparatus for measurements of unsaturated permeability coefficient has been developed based on improvement and amendment on original apparatus. Water pressure controller is used to control water pressure and measure the volume of water inflow. The efficient operating specifications were summarized according to the working theory of the apparatus. The relationship between the unsaturated permeability coefficient and the degree of saturation by experiment and regression estimation was founded.
     (2) The interaction principle of equilibrium analysis of multiphase media was putted forward by Shao Longtan. The kinematic equations for saturated and unsaturated soil are deduced again based on the principle and the conception of laminar flow velocity in hydraulics. In this way, the formula expressing of saturated and unsaturated permeability coefficient is also derived. The physical meaning of the interaction coefficient between soil and water for saturated soil is explained. Some permeability testing results in steady hydraulic gradient are presented to analysis the problem in application of the formula.
     (3) The critical equilibrium condition for the soil of infiltration zone with the operation of air pressure is founded by equilibrium anlysis.The experiment results indicate that the poresity and the antecedent water content affect the moving state of air at earlier infitration, and then affect the change of soil structure and the infiltraion procedure. The greater soil porosity and the smaller antecedent water content, the close role of water to air is greater at initial infiltration , the gas escape is easier, the distubance of soil is greater in extent and range, the fluctuations and frequency of gas pressure is greater, and led to a ladder change of infiltration; Instead, the surface water have a stronger close role to air at initial infiltration, the gas escape more difficult, the saturated layer of soil near the surface lift and form a crack at the wetting front for the effect of air pressure, soil above crack is distrubbed, soil under crack is almost free from soil disturbance, the fluctuations and frequency of air pressure is smaller, the soil infiltration id significantly reduced, and lead to stop the infiltration process.
     (4) Soil tests found there are two clear interfaces in infiltration soil, and defined another interface besides wetting front as saturation front. The definition is poved reasonable through the equilibrium analysis of soil above crack. The test results indicate that the position of saturation front is related to infiltration procedure. For more loose structure of the soil, the position of saturation front increases with the increase of soil disturbance depth. For more solid structure of the soil, the position of saturation front increase with the increase of cracks depth. The destrution procedure is studied from the move of saturation front. The results show that the destruction procedure occure in three phases, and corresponding to three different statuses: critical state, the transitional state and steady equilibrium state.
     (5) Different types of soil, the cracks in different shapes. For the caly (siliceous powder), the destruction of soil is more irregular because of viscosity of among soil particles. For the sandy soil (fly ash, fine sand), the crack is more regular. The gaps in the soil layer have defferent development with different specific gravity of soil grain. For the soil with small specific gravity, the gaps disappear quickly with the soil disturbance by air break. For the soil with great specific gravity, the gaps can not disappear. The gaps will high frequency with the fluctuation of air pressure.
     (6) Experiment results indicate that the infiltration procedure of unsaturated soil actually is the procedure of the increasing of saturation area. After infiltraion into the soil of water, water move toward downward and side in the soil. With infiltration, the soil saturation and scope for surface soil gradually increase.
引文
[1]雷志栋,杨诗秀,谢森传.土壤水动力学.北京:清华大学出版社,1988.
    [2]杨文治,邵明安.黄土高原土壤水分研究.北京:科学出版社,2000.
    [3]杨培岭.土壤与水资源学基础.北京:中国水利水电出版社,2005.
    [4]Hillel,D.,Soil and Water,Physical Principles and Processes.New York,London:Academic Press,1971.
    [5]费雷德隆德D G,H拉哈尔佐著.非饱和土土力学.陈仲颐等译.北京:中国建筑工业出版社,1997.
    [6]Fredlund D G,Xing A.Equations for the soil-water characteristic curve.Canadian Geotechnical Journal,1994,31(3):521-532.
    [7]Brooks R H,Corey A T.Hydraulic properties of porous medium.Hydrology Paper No.3,Colorado State University,Fort Collins,Colo.,1964:27.
    [8]White N F,Duke H R,Sunada D K.Physics of desaturation in porous materials.Journal of Irrigation and Drainage Engineering,1970,(96)2:165-191.
    [9]Corey A T.Mechanics of heterogeneous fluids in porous media.Water Resources Publications,Fort Collins,CO,1994:259.
    [10]Croney D,Coleman J D.Pore.pressure and suctions for some soil hydraulic properties.In Moisture equilibria and moisture changes in soils beneath covered areas.Edited by G D Aithison.Butterworth & Co.Ltd.,Sydney,Australia,1965:39-46.
    [11]Fredlund D G.Comparison of soil suction and one-dimensional consolidation characteristics of a highly plastic clay:M.Sc.Thesis,Department of Civil Engineering,University of Alberta,Edmonton,Alberta,Canada,1964:116.
    [12]Vanapallis K.Simple test procedures and their interpretation in evaluating the shear strength of an unsaturated soil:Ph.D.Thesis,Department of Civil Engineering,University of Saskatchewan,Canada,1994:350.
    [13]Russam K.An investigation into the soil moisture conditions under roads in Trinidad,B.W.I.Geotechnique,1958,8:55-77.
    [14]Richards B G.Measurement of the free energy of soil moisture by the psychrometric technique using thermistors.Water Resources Publications,Fort Collins,CO,1994:259.
    [15]钱家欢,殷宗泽.土工原理与计算.北京:中国水利水电出版社,1996.
    [16]李生林,王正宏.我国细颗粒土在塑性图上的分布特征.岩土工程学报,1985,7(3):84-89.
    [17]Harrison B A,Blight G E.The use of indicator tests to estimate the drying leg of the soil-water characteristic curves.In:Unsaturated Soils of Asia.Rotterdam,2000:323-328.
    [18]Tan J L,Leong C E,Rahardjo H.Soil-water characteristic curves of peaty soils.In:Unsaturated Soils of Asia.Rotterdam,2000:357-362.
    [19]Khanzode R M,D G Fredlund,S K Vanapalli.A new test procedure to measure the soil-water characteristic curves using a small-scale centrifuge.In:Asian Conference on Unsaturated Soils From Theory to Practice,Singapore,2000,5.
    [20]Fredlund D G,Morgenstern N R,Wedger R A.The shear strength of unsaturated soils.Canadian Geotechnical Journal,1978,15(3):313-321.
    [21]谢森传.非饱和土壤水分运动参数的测定.水文地质工程地质,1982,(1):8-19.
    [22]王文焰,张建丰.在一个水平土柱上同时测定非饱和土壤水各运动参数的试验研究.水利学报,1990,(7):26-30.
    [23]徐捷,王钊,李未显.非饱和土的吸力量侧技术.岩石力学与工程学报,2000,19(增):905-909.
    [24]吕殿青,邵明安.非饱和土壤水力参数的模型及确定方法.应用生态学报,2004,15(1):163-166.
    [25]Toker N K,Germaine J T,Sjoblom K J,et al.A new technique for rapid measurement of continuous soil moisture characteristic curves.Geotechnique,2004,54(3):179-186
    [26]Meilani I,Rahardjo H,Leong E C,et al.Mini suction probe for matric suction measurement.Canadian Geotechnical Journal,2002,39:1427-1432.
    [27]邵明安.不同方法测定土壤基质势的差别及准确性的初步研究.土壤通报,1985,16(5):223-226.
    [28]Shuai F,Clements C,Ryland L,et al.Some factors that influence soil suction measurements using a thermal conductivity sensor.In:Proceeding of 3rd International Conference on Unsaturated Soils,Netherlands,2002,(1):325-330.
    [29]李未显,刁玉春,陈仲颐.非饱和土吸力传感器的研制及其量测仪的研制.见:中加非饱和土学术研讨会文集,1994,268-273.
    [30]王钊,杨金鑫,况娟娟等.滤纸法在现场基质吸力量测中的应用.岩土工程学报,2003,25(4):405-408.
    [31]Fredlund M D,Wilson G W,Fredlund D G.Use of the grain-size distribution for estimation of the soil-water characteristic curve.Canadian Geotechnical Journal,2002,39:1103-1117.
    [32]刘建立,徐绍辉,刘慧.估计土壤水分特征曲线的间接方法研究进展.水利学报,2004,2:68-76.
    [33]Tietje O,Tapkenhinrichs M.Evaluation of pedotransfer functions.Soil Science Society of America Journal,1993,57:1088-1095.
    [34]Rawls W J,Gish T J,Brakensiek D L.Estimating soil water retention from soil physical properties and characteristics.Advances in Soil Science,1991,16:213-235
    [35]Arya L M,Paris J F.A physicoempirical model to predict the soil moisture characteristic from particle size distribution and bulk density data.Soil Science Society of America Journal,1981,45:1023-1030.
    [36]李保国.分形理论在土壤科学中的应用及其展望.土壤学进展,1994,22:1-10.
    [37]Gimenez D,Perfect E,Rawls W J.Fractal processes in soil water retention.Water Resources Research,1990,26:1047-1056.
    [38]陈怀满.环境土壤学.北京:科学出版社,2005.
    [39]Fredlund D G,Xing A,Huang S G.Predicting the permeability function for unsaturated soils using the soil-water characteristic curve.Canadian Geotechnical Journal,1994,31:533-546.
    [40]Jarvis N J,Messing I.Near-saturated hydraulic conductivity in soils of contrasting texture as measured by tension infiltrometers.Soil Science Society of America Journal,1995,59:27-34.
    [41]Hillel D.Introduction to soil physics.New York:Academic Press,1972:364.
    [42]陈正汉.非饱和土与特殊土测试技术新进展.见:第二届全国非饱和土学术研讨会论文集,杭州,2005,4:77-136.
    [43]俞培基,陈愈炯.非饱和土的水-气形态及其与力学性质的关系.水利学报,1965,(1):16-23.
    [44]Corey.A.T.Measurement of water and air permeability in unsaturated soil.Soil Science Society of America Proceedings,1957,21(1):7-10.
    [45]Klute A.Laboratory measurement of hydraulic conductivity of unsaturated soil.In:Black C A,Evans D D,White J L,et al.Methods of Soil Analysis,Madison:American Society of Agronomy,1965:253-261.
    [46]Hamilton J M,Daniel D E,Olson R E.Measurement of hydraulic conductivity of partially saturated soils.In:Zimmie T F,Riggs C O.Permeability and Groundwater Contaminant Transport,New York:ASTM Special Technical Publication,1981:182-196.
    [47]陈正汉.非饱和土固结的混和物理论——数学模型、试验研究、边值问题:(博士学位论文).西安:陕西机械学院,1991.5.
    [48]陈正汉,谢定义,王永胜.非饱和土的水气运动规律及其工程性质研究,岩土工程学报1993,15(3):9-20.
    [49]王永胜.非饱和土中水、气运动规律与水、气压力演化特性的研究:(硕士学位论文).西安:西安理工大学,1991,2.
    [50]刘奉银,谢定义,王培贤等.非饱和土渗水渗气的机理与参数测试方法的探讨.西安公路交通大学学报,1996,16,岩土工程专辑.
    [51]刘奉银.非饱和土力学基本试验设备的研制与新有效应力原理的探讨.(博士学位论文).西安:西安理工大学,1999,10.
    [52]Liu Fengyin and Xie Dingyi.Movement characteristics measurement of pore water-air in unsaturated soils.In:Proceedings of the 2nd International Conference on Unsaturated soils,Beijing,1998:395-401.
    [53]赵敏.非饱和土孔隙流体运动规律的研究:(硕士学位论文).西安:西安理工大学,1999,3.
    [54]高永宝,刘奉银,李宁.确定非饱和土渗透特性的一种新方法.岩石力学与工程学报,2005,24(18):3258-3261.
    [55]Liu FengYin,Gao YongBao.Experimental research on water permeability of unsaturated loess.In:Proceedings of International Conference on Problematic Soils,Eastern Mediterranean University,Famagusta,N.Cyprus,2005,3:167-174.
    [56]高永宝.微机控制非饱和土水-气运动联测仪的研制及浸水试验研究:(硕士学位论文).西安:西安理工大学,2006,3.
    [57]孙健.非饱和土土水特性曲线及导水系数测量方法研究:(硕士学位论文).大连:大连理工大学,2001.
    [58]孙健,邵龙潭,王助贫.稳态渗流过程中土水特性曲线的试验量测.见:第七届全国岩土力学数值分析与解析方法讨论会,中国:大连,2001:393-397.
    [59]邵龙潭,梁爱民,王助贫等.非饱和土非饱和土稳态渗流试验装置的研制与应用.岩土工程学报,2005,27(11):1338-1340.
    [60]Fleureau J M,Taibi S.Water-air permeabilities of unsaturated soils.In:Proceedings of the 1st International Conference on Unsaturated Soils,Balkema/Rotterdam/ Brookfield,1995,2,479-484.
    [61]Barden L,Pavlakis G.Air and water permeability of compacted unsaturated cohesive soil.Journal of Soil Science,1971:302-317.
    [62]Huang S Y,Fredlund D G,Barbour S L.Measurement of the coefficient of permeability for a deformable unsaturated soil using a triaxial permeameter.Canadian Geotechnical Journal,1998,35:426-432.
    [63]Gan J K M,Fredlund D G.A new laboratory method for the measurement of unsaturated coefficient of permeability of soils.In unsaturated soils for Asia.Balkema,Rotterdam,2000:381-386.
    [64]Samingan A S,Leong E C,Rahardjo H.A flexible wall permeameter for measurements of water and air coefficients of permeability of residual soils.Canadian Geotechnical Journal,2003,40:559-574.
    [65]李永乐,刘翠然,刘海宁等.非饱和土的渗透特性试验研究.岩石力学与工程学报,2004,23(22):3861-3865.
    [66]徐永福,兰守奇,孙德安等.一种能测量应力状态对非饱和土渗透系数影响的新型试验装置.岩石力学与工程学报,2005,24(1):160-164.
    [67]Childs E C,N Collis-George.The permeability of porous materials.Proceedings of Royal Society of London,1950,201:392-405.
    [68]Vogelsanger W.Der Wasserhaushalt eines zw eischichtigen Bodenprofiles unter Waldbestockung,dargestellt an einer sandigen Parabraunerde ueber Schotter.Eidg.Anst.Forstl.Versuchswes.Mitt.,1986,62(2):103-326.
    [69]Bruce R R.Hydaulic conductivity evaluation of the soil profile from soil water retention relations.Soil Science Society of America Proceedings,1972,36:555-561.
    [70]Talsma T.Prediction of hydraulic conductivity from soil water retention data.Soil Science,1985,140:184-188.
    [71]邵明安,李开元,钟良平.根据土壤水分特征曲线推求土壤的导水参数.水土保持研究,1991.6:26-32.
    [72]Mualem Y,Dagan G.Methods of predicting the hydraulic conductivity of unsaturated soils.Research Profect,1976,332:78.
    [73]Van Genuchten M TH.A closed-form equation for predicting the hydraulic conductivity of unsaturated Soils.Soil Science Society of America Journal,1980,44:892-898.
    [74]Xu Y F,Sun D A.A fractal model for soil pores and its application to determination of water permeability.Physica A,2002,316(1-4):56-64.
    [75]Xu Y F,Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution.Computers and Geotechnics,2004,31:37-41.
    [76]Toledo P G,Novy R A,Davi H T,s et al.Hydraulic conductivity of porous media at low water content.Soil Science Society of America Journal,1990,54:673-679.
    [77]Tyler S W,Wheatcraft S W.Fractal process in soil water retention.Water Resources Research,1990,26:1047-1054.
    [78]Mualem Y.A new model for predicting the hydraulic conductivity of unsaturated porous media.Water Resources Research,1976,12:513-522.
    [79]Burdine N T.Relative permeability calculations from size distribution data.Transactions of the American Institute of Mining,Metallurgical and Petroleum Engineers,1953,198:71-78.
    [80]Crawford J W.The relationship between structure and the hydraulic conductivity of soil.European Journal of Soil Science,1994,45:493-501.
    [81]Fuentes C,Vauclin M,Parlange J I.A note on the soil-water conductivity of a fractal soil.Transport in Porous Media,1996,23:31-36.
    [82]Hunt A G,Gee G W.Application of critical path analysis to fractal porous media:comparison with examples from the Hanfordsite.Adv in Water Resources,2002,25:129-146.
    [83]Xu Y F,Dong P.Fractal approach to hydraulic properties in unsaturated porous media.Chaos,Solitons and Fractals,2004,19:327-337.
    [84]孙大松,刘鹏,夏小和等.非饱和土的渗透系数.水利学报,2004,(3):71-75
    [85]邵明安.根据土壤水分再分布过程确定土壤的导水参数.见:中国科学院西北水土保持研究所集刊.1985,2:47-53.
    [86]邵龙潭,韩国城.两相多孔介质力学分析的相互作用原理.见:辽宁省第二届青年学术年会论文集,中国:大连,1995:232-234.
    [87]邵龙潭.孔隙介质力学分析方法及其在土力学中的应用.(博士学位论文).大连:大连理工大学,1996:24-65.
    [88]邵龙潭.相间相互作用原理与土壤水动力学基本方程.水科学进展,2002,13(2):24-65.
    [89]李生秀.中国早地农业.北京:中国农业出版社,2004.
    [90]刘贤赵,康绍忠.陕西王东沟小流域野外土壤入渗试验研究.人民黄河,1998,20(2):14-17.
    [91]Bodman G B,Colman E A.Moisture and energy conduction during down-ward entry of water into soil.Soil Science Society of America Journal,1944,(8)2:166-182.
    [92]Richards L A.Capillary conduction of liquids in porous mediums.Journal of Physics,1931,(1):30-33.
    [93]Green W H,Ampt G A.Studies on soil physics Part Ⅰ:The flow of air and water though soil.Journal of Agricultural Sciences,1911,4(1):1-24.
    [94]Horton R E.An approach toward a physicalinterpretation of infiltration-capacity.Soil Science Society of America Proceedings,1940,5:399-417.
    [95]Philip J R.The theory of infiltration 4,Sorptivity and algebraic infiltration equations.Journal of Soil Science,1957c,84:257-264.
    [96]Kostiakov A N.On the dynamics of the coeffient of water percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration.Journal of Soil Science,1932,97(1):17-21.
    [97]王文焰,汪志荣,王全久等.黄土中Green-Ampt入渗模型的改进与验证.水利学报,2003,(5):30-34.
    [98]郭生练,熊立华,杨井.基于DEM的分布式流域水文物理模型.武汉水利电力大学学报,2000,33(6):1-5.
    [99]王全九,来剑斌,李毅.Green-Ampt模型与Philip入渗模型的对比分析.农业工程学报,2002,18(2):13-16.
    [100]袁建平,蒋定生.黄土丘陵沟壑区小流域降雨入渗产流点面转化.物理科学,2001,21(3):262-266.
    [101]魏忠义,王治国,段喜明等.河沟流域水分入渗的数学模型.水土保持研究,2000,7(4):32-35.
    [102]李裕元,邵明安.土壤翻耕对坡地水分转化与产流产沙特征的影响.农业工程学报,2003,19(1):46-50.
    [103]周国逸,潘淮俦.林地土壤的降雨入渗规律.水土保持学报,1990,4(2):79-84.
    [104]Philip J R.Plant water relations:some physical aspects.Annual Review of Plant Physiology,1966,17:245-268.
    [105]Peck A J.Moisture profile development and air compression during water uptake by bounded porous dodies:2.Horizontal columns.Soil Science,1965a,100:333-340.
    [106]Peck A J.Moisture profile development and air compression during water uptake by bounded porous bodies:3.Vertical Columns.Soil Science,1965b,100:44-51.
    [107]Touma J,M Vauclin.Experimental and numerical analysis of two-phase infiltration in a partially saturated soil.Transport in Porous Medial.1986,2:27-55.
    [108]Weir G J,W M Kissing.The influence of airflow on the vertical infiltration of water into soil.Water Resources Research,1992,28(10):2765-2772.
    [109]Grismer M E,M N Orang,V Clausnitzer,et al..Effects of air compression and counterflow on infiltration into soils.Journal of Irrigation and Drainage Engineering,1994,120:775-795.
    [110]Morel-Seytoux H J,Khanji J.Derivation of equation of infiltration.Water Resources Research,1974,10:795-800.
    [111]Wang Z,Feyen J,Nielsen D R,et al.Two-phase flow infiltration equations accounting for air entrapment effects.Water Resources Research,1997,33:2759-2767.
    [112]Wang Z,Feyen J,Nielsen D R,et al.Air entrapment effects on infiltration rate and flow instability.Water Resources Research,1998,34:213-222.
    [113]唐海行,苏逸深,刘炳敖.土壤包气带中气体对入渗水流运动影响的试验研究.水科学进展,1995,6(4):263-268.
    [114]李援农,林性粹.土壤积水入渗的气阻变化及对入渗参数的影响.西北农业大学学报,1997,25(3):51-54.
    [115]李援农,林性粹.均质土壤积水入渗的气阻变化规律及其影响.土壤侵蚀与水土保持学报,1997,3(3):88-93.
    [116]李援农,林性粹,杨江涛等.土壤空气阻力对水平畦灌溉的影响.西北农业大学学报,2000,28(3):70-73..
    [117]李援农.土壤入渗中气相对水流运动影响的研究.干旱地区农业研究,2002,20(1):81-83.
    [118]彭胜,陈家军,王金生等.包气带水气二相流国外研究综述.水科学进展,2000,11(3):8-13.
    [119]Bernadiner M G.A capillary microstructure of the wetting front.Transport in porous media.1998,30:251-265.
    [120]Lu T X,J E Biggar,D R Nielsen.Water movement in glass bead porous media 2.Experiment of infiltration and finger flow.Water Resources Research.1994,30:3283-3290.
    [121]Youngs E G,Peck A J.Moisture profile development and air compression during water uptake by bounded porous dodies:1.Theoretical introduction.Soil Science,1964,98:290-294.
    [122]李援农,吕宏兴,林性粹.土壤入渗过程中空气压力变化规律的研究.西北农业大学学报,1995,23(5):72-75.
    [123]李援农,费良军.土壤空气压力影响下的非饱和入渗格林-安姆特模型.水利学报,2005,36(6):733-736.
    [124]Power W L.Soil-water movement as affected by confined air.Journal of Agricultural Research,1934,49:1125-1134.
    [125]Jarrett A R,Fritton D D.Effect of entrapped soil air on infiltration.Transactions of the ASAE.1978,21(5):901-906.
    []26]Suhr J L,Jarrett A R,Hoover J R.The effect of soil air entrapment on erosion.Transactions of the ASAE.1984,27(1):93-98.
    [127]China S S,Jarrett A R,Hoover J R.The effect of soil air entrapment on erosion during simulated rainfall.Transactions of the ASAE.1985,28(5):1598-1601.
    [128]Badrashi B A,Jarrett A R,J R Hoover.The role of escaped soil air on erosion in sand.ASAE Paper No.18-2002,ASAE,St.Joseph,Michigan 49085,1981.
    [129]Shao Longtan.EQuilibrium analysis in soil mechanics.1999.
    [130]谢定义,陈正汉.非饱和土力学特性的理论与测试.见:土力学及基础工程学会.非饱和土理论与实践学术研讨会文集.北京,1992,227-229.
    [131]Marshall T J.A relation between permeability and size distribution of pores.Journal of Soil Science,1958,9(1):1-8.
    [132]Millington R J,Quirk J P.Permeability of porous media.Nature,1959,183(2):387-388.
    [133]Millington R J,Quirk J P.Permeability of porous media.Transactions of the Faraday Society,1961,57(10):1200-1207.
    [134]程金茹,郭择德,郭大波.非饱和土壤特性参数获取方法.水文地质工程地质.1996,2:9-13.
    [135]陈继光.智能精密水压力发生器的研制:(硕士论文).大连:大连理工大学,2004,6.
    [136]郑卫锋,洪帅,邵龙潭.精密水压力发生器的研制与应用.实验力学,2003,18(6):389-392.
    [137]郑卫锋.循环动孔隙水压力作用下饱和砂土的力学特性:(硕士论文).大连:大连理工大学,2003,6.
    [138]三浦宏文.机电一体化.北京:科学出版社,2001.
    [139]张旦华,肖盛怡译.传感器应用.北京:中国计量出版社,1992.
    [140]林继宝.一种实用的D/A转换电路.电子技术应用,1997:48-49.
    [141]窦振中.模糊逻辑控制技术及其应用.北京:北京航空航天大学出版社,1994.
    [142]王盛萍,张志强,武军等.土壤水分运动特征参数空间异质性理论分析、取样与影响因素.中国水土保持科学,2003,1(3):95-98.
    [143]Gomez J A,Vanderlinden K,Nearing M A.Spatial variability of surface roughness and hydraulic conductivity after disk tillage:implications for runoff variability.Journal of Hydrology,2005,311:1-4.
    [144]黄文熙.土的工程性质.北京:水利电力出版社,1983:110-119.
    [145]Vanapalli S K,Fredlund D G,Pufahl D E.Comparison of saturated-unsaturated shear strength and hydraulic conductivity behavior of a compacted sandy-clay till.In:50th Canadian Geotechnical Conference,Ottawa,1997,625-632.
    [146]徐永福,叶翠明,赵书权等.压应力对非饱和渗透系数的影响.上海交通大学学报,2004,38(6):982-986.
    [147]邵龙潭,单宗岭,王军辉.土层下地膜覆盖吸灌方法.中国,发明专利,0210907.3,2002.
    [148]土工试验规程.中华人民共和国行业标准(SL237-1999).北京:中国水利水电出版社,1999:19-27
    [149]Leong E C,Rahardjo H.Peameability functions for unsaturated soils.Journal of Geotechnical and Geoenvironmental Engineering,1997,123(12):1118-1126.
    [150]Banapalli S K,Lobbezoo J.A normalized function for predicting the coefficient of permeability unsaturated soils.Third International Conference on Unsaturated Soils,Recife,Brazil,2002:839-844.
    [151]Lobbezoo J,Banapalli S K.A simple technique for estimating the coefficient of permeability of unsaturated soils.55th Canadian Geotechnical Conference,Niagara,Canada,2002.
    [152]Bear J.多孔介质流体动力学.李竞生译,北京:建筑工业出版社,1983.
    [153] 刘光尧. 渗透系数概念发展的回顾. 工程勘察, 1997: (2):34-38.
    
    [154] Christiansen J E. Effects of entrapped air upon the permeability of soils. Soil Science, 1944, 58: 355-366.
    [155] Bodman G B. The variability of the permeability 'constant' at low hydraulic gradients during saturated water flow in soils. Soil Science Society of America Proceedings, 1937, 36: 948-953.
    [156] Wilson L G, Luthin J N. Effect of air flow ahead of the wetting front on infiltration. Soil Science, 1963, 96: 136-143.
    [157] Adrian D D, J B Franzini. Impedance to infiltration by pressure build up ahead of the wetting front. Journal of Geophys Research, 1966, 71(24): 5857-5862.
    [158] Smiles D E, G Vachaud, M Vauclin. A test of the uniqueness of the soil moisture characteristics during transient, non hysteretic flow of water in a rigid soil. Soil Science Society of America Proceedings, 1971, 35: 534-539.
    [159] Dixon R M, D R Linden. Soil air pressure and water infiltration under border irrigation. Soil Science Society of America Proceedings, 1972, 36: 948-953.
    [160] Vachaud G, M Vauclin, D Khanji, et al.. Effects of air pressure on water flow in an unsaturated stratified vertical column of sand. Water Resources Research, 1973, 9: 160-173.
    [161] Vachaud G, J P Gaudet, V Kuraz. Air and water flow during ponded infiltration in a bounded column of soil. Journal of Hydrology, 1974, 22: 89-108.
    [162] Watson K K, A A Curtis. The use of a transformed boundary condition in modeling air compression during infiltration. Soil Science Society of America Journal, 1979, 43: 848-850.
    [163] Latifi H, S N Prasad, O J Helweg. Air entrapment and water infiltration in two-layered soil column. Journal of Irrigation and Drainage Engineering, 1994, 120: 871-891.
    [164] Morel-Seytoux H J, Khanji J. Derivation of equation of infiltration. Water Resources Research, 1974, 10: 795-800.
    [165] Brustkern R L, H J Morel-Seytoux. Description of water and air movements during infiltration. Journal of Hydrology, 1975, 24: 21-35.
    
    [166] Noblanc A, H J Morel-Seytoux. Perturbation analysis of two-phase infiltration. Journal of Hydraulics Division of the American Society of Civil Engineering, 1972, 98: 1527-1541.
    
    [167] Parlange J Y, D E Hill. Air and water movement in porous media: Compressibility effects. Soil Science, 1979, 127: 257-263
    [168]Morel-Syetoux H J,Billica J A.A two-phase numerical model for prediction of infiltration:Application to a semi-infinite soil column.Water Resources Research,1985a,21:607-615.
    [169]Morel-Syetoux H J,Billica J A.A two-phase numerical model for prediction of infiltration:Case of an impervious bottom.Water Resources Research,1985a,21:1389-1396.
    [170]Sander G C,Parlange J Y,Hogarth W L.Air and water flow,Ⅱ,Gravitational flow with an arbitrary flux boundary condition.Journal of Hydrology,1988,21:225-234.
    [171]Felton G K,D L Reddell.A Finite element axisymmetrical and linear model of two-phase flow through porous media.Transaction of ASAE,1992,35(5):1419-1429.
    [172]吴发启,赵西宁等.坡耕地土壤水分入渗影响因素分析.水土保持通报,2003,23(1):16-72.
    [173]贾志军,王贵平等.土壤含水率对坡耕地产流影响的研究.山西水土保持科技,1990,22(4):25-27.
    [174]邵龙潭,王助贫,韩国城等.三轴试验试样径向变形的计算机图像测量.岩土工程学报,2001,23(3):337-341.
    [175]邵龙潭,王助贫,刘永禄.三轴试样局部变形的数字图像测量方法.岩土工程学报,2002,24(2):159-163.
    [176]刘永禄.三轴实验试样变形数字图像测量的实现:(硕士学位论文).大连:大连理工大学,2002.
    [177]王助贫.三轴试验试样变形的数字图像测量方法及其应用:(博士学位论文).大连:大连理工大学,2002.
    [178]王助贫,邵龙潭,刘永禄等.三轴试样变形数字图像测量误差和精度分析.大连理工大学学报,2002,42(1):98-103.
    [179]邵龙潭,孙益振,王助贫等.数字图像测量技术在土工三轴试验中的应用研究.岩土力学,2006,27(1):29-34.
    [180]孙益振.基于三轴试样局部变形测量的土体应力应变特性研究:(博士学位论文).大连:大连理工大学,2005.
    [181]董建军.基于数字图像测量的非饱和压实土应力-应变特性研究:(博士学位论文).大连:大连理工大学,2008.
    [182]刘永禄.数字图像测量技术在岩土工程试验中的应用研究:(博士学位论文).大连:大连理工大学,2008.
    [183]Raats P A C.Unstable wetting fronts in uniform and non-uniformsoils.Soil Science Society of America Proceedings,1973,37:681-685.
    [184]Philip J R.Stability analysis of infiltration.Soil Science Society of America Proceedings,1975,39:1042-1049.
    [185] White I, Colombera P M, Philip J R. Experimental studies of wetting front instability induced by gradual changes of pressure gradient and by heterogeneous porous media. Soil Science Society of America Proceedings, 1977, 41: 483-489.
    [186] Baker R S, Hillel D. Laboratory tests of theory of fingering during infiltration into layered soils. Soil Science Society of America Journal, 1990, 54(1) : 20-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700