用户名: 密码: 验证码:
乳杆菌生物合成苯乳酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯乳酸(phenyllactic acid,PLA)是乳酸菌产生的一种新型抑菌物质,它不仅能够抑制多种食源性致病菌,而且对引起食品腐败的真菌具有广泛的作用。此外,苯乳酸稳定性高,安全无毒,有望开发成一种新型生物防腐剂应用于食品工业。国外对苯乳酸的研究尚处于初始阶段(1998-2008),存在诸如乳酸菌种产量低、底物成本高和发酵时间长等问题。本文在国内率先对乳酸菌合成苯乳酸进行了系统的研究,主要内容包括:筛选高产苯乳酸的乳酸菌;研究其产生苯乳酸的途径和机理;优化乳酸菌生长细胞产生苯乳酸的发酵条件;研究影响乳酸菌静息细胞合成苯乳酸的因素;乳酸菌合成苯乳酸的酶进行分离、纯化并研究其酶学性质。
     利用MRS培养基发酵和HPLC检测,从中国传统发酵食品——泡菜中分离出一株高产苯乳酸的乳酸菌菌株,30℃培养72 h最高可产生91.3 mg/L的苯乳酸。通过形态学、生理生化及16S rDNA,初步鉴定为乳杆菌,命名为Lactobacillus sp.SK007,GenBankaccession number:DQ534529。系统发育分析表明,和植物乳杆菌亲缘关系最近。
     研究利用苯丙氨酸途径合成苯乳酸,提高苯丙氨酸的浓度可以增加苯乳酸的产量。以1.5g/L苯丙氨酸为底物的转化过程中发现:发酵72 h苯乳酸达到最高,而此时苯丙氨酸剩余94%、检测不到中间产物苯丙酮酸,这表明转氨反应是苯乳酸合成的限速步骤。进一步对影响转氨反应的因素进行研究,确定氨基受体α-酮戊二酸的缺乏是主要因素。研究了通过促进转氨反应提高苯乳酸的途径,分别采用添加α-酮戊二酸、谷氨酸以及柠檬酸和谷氨酸,苯乳酸产量有一定提高。
     苯丙氨酸的转氨反应已成为苯乳酸合成的瓶颈。在此基础上,使用苯丙酮酸替代同浓度的苯丙氨酸作为底物合成苯乳酸,结果苯乳酸产量提高了11倍、发酵时间缩短了48 h、原料成本降低了2/3。这表明,以苯丙酮酸为底物是苯乳酸合成的有利途径,为规模化生产提供了可能性。
     对乳杆菌的发酵条件进行了优化,用廉价的玉米浆代替昂贵的蛋白胨作为氮源。利用响应面法对培养基成分进行了优化,得到的培养基成分(g/L):为葡萄糖30,玉米浆47,酵母粉5,磷酸氢二钟3,醋酸钠5,柠檬酸三铵2,硫酸镁0.58,硫酸锰0.25,吐温-80 3 mL,苯丙酮酸5。最适的培养温度30℃、接种量3%、静置培养。发酵过程中pH变化对苯乳酸影响很大,可采用添加0.5%的缓冲盐及中和剂进行内源调节。在发酵罐中,采用后期流加碱液控制pH的方法有利于苯乳酸合成。在此基础上进行了300 L发酵罐中试,苯乳酸产量达到2.81 g/L。
     利用乳酸菌静息细胞也可以合成苯乳酸,HPLC分析了静息细胞内、外的苯乳酸含量,结果表明绝大部分苯乳酸释放到转化液中。研究了细胞浓度、底物浓度、表面活性剂以及环境因素对苯乳酸产生的影响,得到的转化条件为:菌体静置培养24 h、用pH6.0的缓冲液收获细胞调节浓度为20g/L,加入2g/L苯丙酮酸,35℃、120 rpm反应2 h,苯乳酸产量可达0.98 g/L。静息细胞重复利用实验表明:第二次使用时,细胞活力仅为首次使用的20%,第三次已没有苯乳酸产生。进一步研究表明还原型辅酶NADH的缺乏是主要影响因素。针对反应过程中辅酶缺乏这一问题,构建了基于辅助底物的酶法再生体系。研究了葡萄糖、乙醇等辅助底物对苯乳酸合成的影响,确定葡萄糖是最适的辅助底物。在添加1%的葡萄糖,细胞重复利用5次活力仍能保持80%,细胞冷藏10天仍有60%的活力。
     经过超声波破碎、硫酸铵沉淀、DEAE-Sepharose Fast Flow离子交换色谱和AKTAExplore Sephacryl S-200凝胶过滤等分离步骤,纯化得到乳酸脱氢酶(LDH),SDS-PAGE呈现单一条带,HPLC检测纯度达98%。比酶活提高34.29倍、达到203.30 U/mg,回收率19.27%。在各纯化步骤中,该酶作用丙酮酸和苯丙酮酸的比值恒定,说明此酶是将苯丙酮酸还原成苯乳酸的主要酶。由SDS-PAGE得到LDH相对分子质量为39 kDa,而凝胶过滤色谱求得LDH的相对分子量约为80 kDa,因此,推断乳杆菌LDH分子内有2个亚基,是一种二聚体酶。圆二色性分析表明,LDH二级结构中α-旋占14.9、β-折叠35.7%、回转结构由为28.6%、无规卷曲为20.8。
     纯化的LDH作用苯丙酮酸的最适作用温度是40℃,超过60℃迅速下降;最适pH值为6.0、在4-8之间保持稳定;Mg~(2+)、Mn~(2+)对酶活力有促进作用,Cu~(2+)、Hg~(2+)对酶活力有不同程度的抑制作用。LDH对丙酮酸和苯丙酮酸的亲和力差别很大。采用Lineweaver-Burk法作图法,求得LDH作用丙酮酸和苯丙酮酸的米氏常数K_m分别为0.31、1.69 mM。
     对10株乳杆菌的乳酸脱氢酶活力与其合成苯乳酸的能力进行了初步探讨,结果表明乳杆菌之间LDH对丙酮酸和苯丙酮酸的差别很大,对苯丙酮酸高的LDH乳杆菌产生了高的苯乳酸含量。因此,乳酸脱氢酶的活力可以作为筛选乳酸菌产生苯乳酸的标准之
Phenyllactic acid(PLA) is a novel antimicrobial compound,which has been recently found in culture of lactic acid bacteria(LAB).The inhibitory properties of PLA have been demonstrated against both gram-positive and gram-negative bacteria.Moreover,PLA has an inhibitory activity against a wide range of fungi including some mycotoxigenic species.Due to its broad inhibitory activity,higher stability and safety, PLA has interesting potential for practical application as a novel bio-preservative in the food industry. International research on PLA is quite new(1998-2008),and sevaral problems are being faced in PLA production,such as low yield,expensive substrate and long fermentation time.In this study, PLA-producing LAB strains were isolated and screened.PLA production from Phe(phenylalanine) and PPA(phenylpyruvic acid) by LAB was investigated.Fermentation conditions were optimized for PLA production by growing cells.The bioconversion of PLA from PPA by resting cells was studied.LDH from LAB was purified and characterized.
     The strain B7,which was isolated from Chinese traditional pickles using MRS medium,exhibited the highest PLA yield(91.3 mg/L) after growing in MRS broth at 30℃for 72h.The strain was identified and named as Lactobacillus sp.SK007,according to its cell morphology,metabolism characters and 16S rDNA sequence.The sequence has been deposited in GenBank under the accession number DQ534529.
     PLA production from Phe by Lactobacillus sp.SK007 was investigated.PLA production was improved in MRS broth using increased concentrations of Phe,but the conversion inclined drastically.It was found that 94%of Phe remained after fermentation for 72h,but the intermediate metabolite PPA stayed below the detection level.These results indicated that the transamination of Phe to PPA is a rate-limiting step.A further study showed that the deficiency in amino acceptorα-ketoglutarate(α-KG) is the main factor during transamination.PLA yield was increased by improving Phe transamination,including the addition ofα-KG,glutamine,and the combination of both citric acid and glutamine.
     Phe transamination is the bottleneck in PLA production by Lactobacillus sp.SK007.Therefore,PLA production from PPA was investigated.When 1.5 g/L PPA was used to replace Phe as substrate at the same concentration,PLA yield increased 11-fold,the fermentation time decreased from 72 h to 24 h and the cost of substrate decreased to 2/3.The limiting factor was overcome using PPA to replace Phe as substrate and this finding provided the possibility of utilizing PPA as substrate in PLA production using growing cells of Lactobacillus sp.SK007.
     The fermentation process for PLA production by LAB was carried out by replacing the nitrogen peptone with cheaper corn steep liquor.The obtained optimal medium consisted of 3%glucose,0.5%yeast extract,4.7%corn steep corn,0.3%Tween-80,0.5%PPA and some salt(0.5%acetate,0.3%K_2HPO_4,0.2% citric acid ammonium,0.058%MgSO_4 and 0.025%MnSO_4) using response surface method.PLA production was effective when Lactobacillus sp.SK007 was cultured at 30℃for 24 h without shaking.The initial pH is one of important factors for PLA production and pH could be controlled by two methods: addition of buffer salts or neutralizer,and feeding NaOH in bioreactor.Based on previous results,the fermentation process was enlarged and PLA yield achieved 2.81 g/L in 300 L bioreactor.
     PLA production by resting cells of Lactobacillus sp.SK007 was also investigated.HPLC analysis showed that almost all PLA is extracellular after biotransformation.The effects of bioconversion factors on PLA production were also studied and the obtained conditions were 20 g/L for initial cell concentration,2 g/LPPA,pH 6.0,35℃and 120 rpm of shaking spped.It was found that PLA content in the second batch is only 20%of that in the first batch,and no PLA is in the third batch for repetitive conversions by resting cells.Further tests indicated that the reduced co-enzyme NADH is not sufficient for repetitive batch.In order to achieve the coenzyme regeneration,the effects of various cosubstrates on the efficiency in repetitive batch were investigated.Results indicated that glucose was the best cosubstrate and the optimal concentration was 10 g/L.In the presence of glucose,the whole cells could be reused for 5 times and PLA yield reached 80%,and resting cells could maintain 60%of their activity after storage at 4℃for 10 days.
     A lactate dehydrogenase(LDH),which catalyzes the reduction of PPA to PLA,has been purified to homogeneity from a cell-free extract of Lactobacillus sp.SK007 by precipitation with ammonium sulfate, ion exchange and gel filtration chromatography,respectively.Purified LDH averaged 19.27%of yield with a 34-fold purification level.The specific activities of purified LDH with pyruvate and PPA were 203.3 and 22.48 U/mg,respectively.However,the ratio of enzyme activity with PPA to that with pyruvate was almost invariable at every purification step.These results indicated that,in Lactobacillus sp.SK007,LDH is responsible for the conversion of PPA into PLA.HPLC profiles of PPA transformation into PLA by growing cells,cell-free extract,and purified LDH of Lactobacillus sp.SK007 were also investigated.The molecular mass of purified LDH was estimated at 78 kDa by size exclusion chromatography and 39 kDa by SDS-PAGE.Results from Circular Dichroism showed that the enzyme has a-helix,35.7%β-sheet,28.6% turn structure and 20.8%randon coil.
     Purified LDH displayed optimal activity for PPA at 40℃and could retain 50%of its relative activity at 60℃.The optimal pH was 6.0 and the stability was observed from pH 4.0 to 8.0.LDH activity was stimulated by Mg~(2+),Mn~(2+) and inhibited by Cu~(2+),Hg~(2+).The apparent Michaelis-Menten constant(K_m) of the enzyme for PPA and pyruvate were 1.69 and 0.32 mM,respectively.
     The activities of LDH from 10 isolated LAB strains and their abilities to produce PLA in MRS broth were investigated.Results showed that the relative activity(the percentage of enzyme activity with PPA to that with pyruvate) varies from 1.08 to 12.51%within strains and high LDH activity towards PPA correlates with high PLA production.Therefore,LDH activity for PPA could be used as a screening marker for PLA-producing LAB.
引文
[1]Dieuleveux V,der Van P,Chataud J,et al.Purification and characterization of anti-Listeria compounds produced by Geotrichurn candidum[J].Applied and Environmental Microbiology,1998,64(2):800-803
    [2]Lavermicocca P,Valerio F,Evidente A,et al.Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarurn strain 21B[J].Applied and Environmental Microbiology,2000,66(9):4084-4090
    [3]乃用.苯基乳酸的抗霉菌活性[J].工业微生物,2003,(4):52-52
    [4]祁国荣,袁士龙.关于征求《生物化学与分子生物学名词》修正意见的说明(续)[J].生命的化学,2006,26,1:72-88
    [5]Strom K.Fungal inhibitory lactic acid bacteria-characterization and application of Lactobacillus plantarum MiLAB 393[D].Uppsala,Sweden:Swedish University of Agricultural Sciences,2005
    [6]Dieuleveux V,Lemarinier S,Gueguen M.Antimicrobial spectrum and target site of D-3-phenyllactic acid [J]. International Journal of Food Microbiology, 1998, 40(3): 177-183
    
    [7] Allen KL, Molan PC, Reid GM. A survey of the antibacterial activity of some New Zealand honeys [J]. Journal of Pharmacy and Pharmacology, 1991,43(12): 817-822
    
    [8] Molan P, Russell K. Non-peroxide antibacterial activity in some New Zealand honeys [J]. Journal of Apicultural Research, 1988, 27(1): 62-67
    
    [9] Russell KM, Molan PC, Wilkins AL, et al. Identification of some antibacterial constituents of New Zealand manuka honey [J]. Journal of Agricultural and Food Chemistry, 1990, (38): 10-13
    
    [10] Wilkins A L, Lu Y, Molan PC. Extractable organic substances from New Zealand unifloral manuka (Leptosperum scoparium) honeys [J]. Journal of Apicultural Research, 1993, 32: 3-9
    
    [11] Weston RJ, Mitchell KR, Allen KL. Antibacterial phenolic components of New Zealand manuka honey [J]. Food Chemistry, 1999, 64(3): 295-301
    
    [12] Ohhiral I, Kuwaki S, Morita H, et al. Identification of 3-phenyllactic acid as a possible antibacterial substance produced by Enterococcus faecalis TH10 [J]. Biocontrol Science, 2004, 9(3): 77-81
    
    [13] Lee JY, Hwang KY, Kim K, et al. Characteristics of antimicrobial organic acids produced by Lactobacillus pentosus K34 isolated from small intestines of Korean native chickens [J]. Korean Journal of Microbiology and Biotechnology, 2002, 30(3): 241-246
    
    [14] Lavermicocca P, Valerio F, Visconti A. Antifungal activity of phenyllactic acid against molds isolated from bakery products [J]. Applied and Environmental Microbiology, 2003, 69(1): 634-640
    
    [15] Gupta RK, Prasad DN. Antibiotic activity of nisin in food preservation [J]. Microbiology Aliments Nutrition, 1989,7: 199-208
    
    [16] Straus SK, Hancock REW. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides [J]. Biochimica et Biophysica Acta, 2006, 1758: 1215-1223
    
    [17] Piddock LJV. Antibacterials-mechanisms of action [J]. Current Opinion in Microbiology, 1998, 1: 502 -508
    
    [18] Strom K, Schnurer J, Melin P. Co-cultivation ofantifungal Lactobacillus plantarum MiLAB 393 and Aspergillus nidulans, evaluation of effects on fungal growth and protein expression [J]. FEMS Microbiology Letters, 2005, 246(1): 119-124
    
    [19] Brunhuber NM, Thoden JB, Blanchard JS, et al. Rhodococcus L-phenylalanine dehydrogenase: kinetics, mechanism, and structural basis for catalytic specificity [J]. Biochemistry, 2000, 39(31): 9174-9187
    
    [20] Chifiriuc MC, Veronica L, Dracea O, et al. Drastic attenuation of Pseudomonas aeruginosa pathogenicity in a holoxenic mouse experimental model induced by subinhibitory concentrations of phenyllactic acid (PLA) [J]. International Journal of Molecular Sciences, 2007, 8 (7): 583-592
    
    [21] Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms [J]. Clinical Microbiology Reviews, 2002, 15: 167-193
    [22]王珏英,张渊博.β-苯基乳酸对心血管系统的实验研究[J].上海医科大学学报,1991,18(4):295-297
    [23]程彰华,楼亚平,戴华娟等.丹参素对微循环障碍和血浆乳酸含量影响的实验研究[J].复旦学报(医学版),1987,4(1):25-29
    [24]Yamamoto T,Nozaki A,Shintani S,et al.Structure-specific effects of thyroxine analogs on human liver 3-hydroxysteroid dehydrogenase[J].The Journal of Biochemistry,2000,128(1):121-128
    [25]Schofield GM.Emerging food-borne pathogens and the significance in chilled foods[J].Journal of Applied Bacteriology,1992,75:267-273
    [26]Doyle MP.Effect of environmental and processing conditions on Listeria monocytogenes[J].Food Technology,1988,42:169-171.
    [27]Dieuleveux V,Gueguen M.Antimicrobial effects of D-3-phenyllactic acid on Listeria monocytogenes in TSB-YE medium,milk,and cheese[J].Journal of Food Protection,1998,61(10):1281-1285.
    [28]江明华,林华,施勤等.β-苯基乳酸对离体小鼠子宫的平滑肌作用[J].上海医科大学学报:1990,17(5):350-354
    [29]李德茂,李从发,刘四新等.3-苯基乳酸的研究进展[J].药物生物技术,2004,11(5):344-347
    [30]薛芬,邵以德.一种带节育器出血的治疗药物及其制备方法[P].CN 1141772
    [31]Urban FJ,Moore S.synthesis of optically active 2-benzyldihydrobenzopyrans for hypoglycemic agent Englitazone[J].Journal of Heterocyclic Chemistry,1992,29:431-438
    [32]Kano S,Yuasa Y,Yokomatsu T,et al.Highly stereocontrolled synthesis of the four individual stereoisomers of Statine[J].The Journal of Organic Chemistry,1988(3):3865-3868
    [33]Weckwerth W,Miyamoto K,Iinuma K,et al.Biosynthesis of PF1022A and related cyclooctadepsipeptides[J].Journal of Biological Chemistry,2000,275(23):17909-17913
    [34]Yu R J,Van S E J.Method of using 3-phenyllactic acid for treating wrinkles[P].US 5643953
    [35]Bubl EC,Butts JS.A method of synthesis of phenyllactic acid and substituted phenyllactic acid[J].Journal of the American Chemical Society,1951,73(5):4972-4973
    [36]Kazuaki N,Mamoru I.Method for producing optically active phenyllactic acid[P].JP2003192633
    [37]邓喜玲,陈学敏,周淑芳等.苯基乳酸的合成[J].西北药学杂志,2001,16(1):36-37
    [38]Kamata M,Toyomasu R,Suzuki D,et al.D-phenyllacfic acid production by Brevibacterium or Corynebacterium[P].JP 86108396
    [39]Vermeulen N,Ganzle MG,Vogel RF.Influence of peptide supply and cosubstmtes on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451~T and Lactobacillus plantarum TMW1.468[J].Journal of Agricultural and Food Chemistry,2006,54(11):3832-3839
    [40]Thierry A,Maillard MB.Production of cheese flavour compounds derived from amino acid catabolism by Propionibacterium freudenreichii[J].Lait,2002,82:17-32
    [41]Lind H,Jonsson H,Schnurer J.Antifungal effect of dairy propionibacteria-contribution of organic acids[J].International Journal of Food Microbiology,2005,98(2):157-65
    [42] Schnurer J, Magnusson J. Antifungal lactic acid bacteria as biopreservatives [J]. Trends in Food Science & Technology, 2005, 16: 70-78
    
    [43] Strom K, Sjogren J, Broberg A, et al. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid [J]. Applied and Environmental Microbiology, 2002, 68(9): 4322-4327
    
    [44] Magnusson J, Strom K, Roos S, et al. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria [J]. FEMS Microbiology Letters, 2003, 219(1): 129-135
    
    [45] Magnusson J. Antifungal activity of lactic acid bacteria [D]. Uppsala, Sweden: Swedish University of Agricultural Sciences, 2003
    
    [46] Valerio F, Lavermicocca P, Pascale M, et al. Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation [J]. FEMS Microbiology Letters, 2004, 233(2): 289-295
    
    [47] Makras L, Triantafyllou V, Fayol-Messaoudi D, et al. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds [J]. Research in Microbiology, 2006, 157: 241-247
    
    [48] Dal Bello F, Clarke CI, Ryan LAM, et al. Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7 [J]. Journal of Cereal Science, 2007,45:309-318
    
    [49] Coloretti F, Cam S, Armaforte E, et al. Antifungal activity of lactobacilli isolated from salami [J]. FEMS Microbiology Letters, 2007,271(2): 245-250
    
    [50] Van der Meulen R, Scheirlinck I, Van Schoor A, et al. Lactic acid bacteria population dynamics and metabolite target analysis during laboratory fermentations of wheat and spelt sourdoughs [J]. Applied and Environmental Microbiology, 2007, 17: 4741-4750
    
    [51] Broberg A, Jacobsson K, Strom K, et al. Metabolite profiles of lactic acid bacteria in grass silage [J]. Applied and Environmental Microbiology, 2007, 73: 5547-5552
    
    [52] Lowe DP, Arendt EK. The use and effects of lactic acid bacteria in malting and brewing with their relationships to antifungal activity, mycotoxins and gushing: A review [J]. Journal of the Institute of Brewing, 2004, 110(3): 163-180
    
    [53] Leroy F, Vuyst L. Lactic acid bacteria as functional starter cultures for the food fermentation industry [J]. Trends in Food Science & Technology, 2004, 15: 67-78
    
    [54] Clarke CI, Arendt EK. A review of the application of sourdough technology to wheat breads [J]. Advances in Food and Nutrition Research, 2005, 49: 137-161
    
    [55] Gobbetti M, De Angelis M, Corsetti A, et al. Biochemistry and physiology of sourdough lactic acid bacteria [J]. Trends in Food Science &Technology, 2005, 16: 57-69
    
    [56] Boutrou R, Gueguen M. Interests in Geotrichum candidum for cheese technology [J]. International Journal of Food Microbiology, 2005, 102 (1): 1-20
    [57] Leroy F, Verluyten J, De Vuyst L. Functional meat starter cultures for improved sausage fermentation [J]. International Journal of Food Microbiology, 2006, 106: 270-285
    
    [58] Blanco CA, Rojas A, Nimubona D. Effects of acidity and molecular size on bacteriostatic properties of beer hop derivates [J]. Trends in Food Science & Technology, 2007, 18: 144-149
    
    [59] Corsetti A, Settanni L. Lactobacilli in sourdough fermentation: A review [J]. Food Research International, 2007, 40: 539-558
    
    [60] Helander IM, Wright A von, Mattila-Sandholm TM. Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria [J]. Trends in Food Science & Technology, 1997, 8: 146-150
    
    [61] Corsetti A, Gobbetti M, Rossi J, et al. Antimould activity of sourdough lactic acid bacteria: identification of a mixture of organic acids produced by Lactobacillus sanfrancisco CB1 [J]. Applied Microbiology and Biotechnology, 1998, 50: 253-256
    
    [62] Piard JC, Desmazeaud M. Inhibiting factors produced by lactic acid bacteria. 2. Bacteriocins and other antibacterial substances [J]. Lait, 1992, 71: 525-541
    
    [63] Lindgren SE, Dobrogosz WJ. Antagonistic activities of lactic acid bacteria in food and feed fermentations [J]. FEMS Microbiology Reviews, 87: 149-164
    
    [64] Niku-Paavola ML, Laitila A, Mattila-Sandholm T. New types of antimicrobial compounds produced by Lactobacillus plantarum [J]. Journal of Applied Microbiology, 1999, 86: 29-35
    
    [65] Nes IF, Holo H. Class II antimicrobial peptides from lactic acid bacteria [J]. Biopolymers, 2000, 55: 50-61
    
    [66] Roy U, Batish VK, Grover S, et al. Production of antifungal substance by Lactococcus lactis subsp. lactis CHD-28.3 [J]. International Journal of Food Microbiology, 32: 27-34
    
    [67] Magnusson J, Schnurer J. Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad-spectrum proteinaceous antifungal compound [J]. Applied and Environmental Microbiology, 2001, 67: 1-5
    
    [68] Nakanishi K, Tokuda H, Ando T, et al. Screening of lactic acid bacteria having the ability to produce reuterin [J]. Japanese Journal of Lactic Acid Bacteria, 2002, 13: 37-45
    
    [69] Claisse O, Lonvaud-Funel A. Assimilation of glycerol by a strain of Lactobacillus collinoides isolated from cider [J]. Food Microbiology, 2000, 17: 513-519
    
    [70] Gourama H, Bullerman LB. Inhibition of growth and aflatoxin production of Aspergillus flavus by Lactobacillus species [J]. Journal of Food Protection, 1995, 58: 1249-1256
    
    [71] M Graz, A Hunt, H Jamie, et al. Antimicrobial activity of selected cyclic dipeptides [J]. Pharmazie, 1999, 54: 772-775
    
    [72] Sjogren J, Magnusson, J Broberg A, et al. Antifungal 3-hydroxy fatty acids from Lactobacillus plantamm MiLAB 14 [J]. Applied and Environmental Microbiology, 2003, 69: 7554-7557
    
    [73] Armaforte E, Cam S, Ferri G, et al. High-performance liquid chromatography determination of phenyllactic acid in MRS broth [J]. Journal of Chromatography A, 2006, 1131(1): 281-284
    [74] Khan RI, Onodera R, Amin MR, et al. Aromatic amino acid biosynthesis and production of related compounds from p-hydroxyphenylpyruvic acid by rumen bacteria, protozoa and their mixture [J]. Amino Acids, 2002, 22(2): 167-177
    
    [75] Amin MR, Onodera R. Synthesis of phenylalanine and production of other related compounds from phenylpyruvic acid and phenylacetic acid by ruminal bacteria, protozoa, and their mixture in vitro [J]. The Journal of General and Applied Microbiology, 1997, 43(1): 9-15
    
    [76] Sjogren J. Bioassay-guided isolation and characterisation of antifungal metabolites: studies of lactic acid bacteria and propionic acid bacteria [D]. Uppsala, Sweden: Swedish University of Agricultural Sciences, 2005
    
    [77] Gummalla S, Broadbent JR. Tyrosine and phenylalanine catabolism by Lactobacillus cheese flavor adjuncts [J]. Journal of Dairy Science, 2001, 84:1011-1019
    
    [78] Kieronczyk A, Skeie S, Langsrud T, et al. Cooperation between Lactococcus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids [J]. Applied Environmental Microbiology, 2003, 69(2): 734-739
    
    [79] Yvon M, Rijnen L. Cheese flavour formation by amino acid catabolism [J]. International Dairy Journal, 2001,11:185-201
    
    [80] Yvon M, Thirouin S, Rijnen L, et al. An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds [J]. Applied and Environmental Microbiology, 1997, 63: 414-419
    
    [81] Yvon M, Berthelot S, Gripon JC. Adding alpha-ketoglutarate to semi-hard cheese curd highly enhances the conversion of amino acids to aroma compounds [J]. International Dairy Journal, 1998, 8: 889-898
    
    [82] Banks JM, Yvon M, Gripon JC, et al. Enhancement of amino acid catabolism in Cheddar cheese using α-ketoglutarate: amino acid degradation in relation to volatile compounds and aroma character [J]. International Dairy Journal, 2001, 11: 235-243
    
    [83] Williams AG, Noble J, Banks JM. The effect of alpha-ketoglutaric acid on amino acid utilization by nonstarter Lactobacillus spp. isolated from Cheddar cheese [J]. Letters in Applied Microbiology, 2004, 38: 289-295
    
    [84] Tanous C, Kieronczyk A, Helinck S, et al. Glutamate dehydrogenase activity: A major criterion for the selection of flavour-producing lactic acid bacteria strains [J]. Antonie Van Leeuwenhoek 2002, 82: 271-278
    
    [85] Williams AG, Withers SE, Brechany EY, et al. Glutamate dehydrogenase activity in lactobacilli and the use of glutamate dehydrogenase-producing adjunct Lactobacillus spp. cultures in the manufacture of cheddar cheese [J]. Journal of Applied Microbiology, 2006, 101(5): 1062-1075
    
    [86] Helinck S, Le Bars D, Moreau D, et al. Ability of thermophilic lactic acid bacteria to produce aroma compounds from amino acids [J]. Applied and Environmental Microbiology, 2004, 70: 3855-3861
    
    [87] Tanous C, Gori A, Rijnen L, et al. Pathways for alpha-ketoglutarate formation by Lactococcus lactis and their role in amino acid catabolism [J]. International Dairy Journal, 2005, 15: 759-770
    [88] Weber WW, Zannoni VG. Reduction of phenylpyruvic acids to phenyllactic acids in mammalian tissues [J]. Journal of Biological Chemistry, 1966, 241(6): 1345-1349
    
    [89] Zannoni VG, Weber WW. Isolation and properties of aromatic α-keto acid reductase [J]. Journal of Biological Chemistry, 1966,241(6): 1340-1344
    
    [90] Nakano M, Tsutsumi Y, Danowski TS. Aromatic α-keto acid reductase from rat kidney [J]. Journal of Biological Chemistry, 1970,245(17): 4443-4449
    
    [91] Friedrich CA, Morizot DC, Siciliano MJ, et al. The reduction of aromatic alpha-keto acids by cytoplasmic malate dehydrogenase and lactate dehydrogenase [J]. Biochemical Genetics, 1987, 25: 657-669
    
    [92] Montemartini M, Santome JA, Cazzulo JJ, et al. Purification and partial structural and kinetic characterization of an aromatic L-a-hydroxy acid dehydrogenase from epimastigotes of Trypanosoma cruzi [J]. Molecular and Biochemical Parasitology, 1994, 68: 15-23
    
    [93] Krishnan S, Gowda LR, Karanth NG. Studies on lactate dehydrogenase of Lactobacillus plantarum spp. involved in lactic acid biosynthesis using permeabilized cells. Process Biochemistry, 2000, 35: 1191-1198
    
    [94] Isobe K, Koide Y, Yokoe M, et al. Crystallization and some properties of D-lactate dehydrogenase from Staphylococcus sp. LDH-1 [J]. Journal of Bioscience and Bioengineering, 2002, 94(4): 330-335
    
    [95] Garvie EI. Bacterial lactate dehydrogenases [J]. Microbiological Reviews, 1980,44(1): 106-139
    
    [96] Bhowmik T, Lueck M, Steele JL. Purification and partial characterization of D-(-)-lactate dehydrogenase from Lactobacillus helveticus CNRZ 32. Journal of Industrial Microbiology and Biotechnology, 1993, 12: 35-41
    
    [97] Gasser F, Doudoroff M, Contopoulos R. Purification and properties of NAD-dependent lactic dehydrogenases of different species of lactobacillus. Journal of General Microbiology, 1970, 62: 241-250
    
    [98] Hensel R, Mayr U, Stetter KO, et al. Comparative studies of lactic acid dehydrogenases in lactic acid bacteria [J]. Archives of Microbiology, 1977, 1: 81-93
    
    [99] Tokuda C, Ishikura Y, Shigematsu M, et al. Conversion of Lactobacillus pentosus D-lactate dehydrogenase to a D-hydroxyisocaproate dehydrogenase through a single amino acid replacement. Journal of Bacteriology, 2003, 185: 5023-5026
    
    [100] Arai K, Kamata T, Uchikoba H, et al. Some Lactobacillus L-lactate dehydrogenases exhibit comparable catalytic activities for pyruvate and oxaloacetate. Journal of Bacteriology, 2001, 183: 397-400
    
    [101] Taguchi H, Ohta T. D-lactate dehydrogenase is a member of the D-isomer-specific 2-hydroxyacid dehydrogenase family. Cloning, sequencing, and expression in Escherichia coli of the D-lactate dehydrogenase gene of Lactobacillus plantarurum. Journal of Biological Chemistry, 1991, 266: 12588-12594
    
    [102] Meister A. Reduction of α, γ-Diketo and α-Keto acids catalyzed by muscle preparations and by crystalline lactic dehydrogenase. Journal of Biological Chemistry, 1950, 184: 117-129
    
    [103] Hummel W, Schiitte H, Kula MR. Large scale production of D-lactate dehydrogenase for the stereospecific reduction of pyruvate and phenylpyruvate. Europen Journal of Applied Microbiology and Biotechnology, 1983, 18: 75-85
    
    [104] Schiitte H, Hummel W, Kula MR. L-2-hydroxyisocaproate dehydrogenase-A new enzyme from Lactobacillus confusus for the stereospecific reduction of 2-ketocarboxylic acids. Applied Microbiology and Biotechnology, 1984, 19: 167-176
    
    [105] Khan RI, Amin MR, Mohammed N, et al. Quantitative determination of aromatic amino acids and related compounds in rumen fluid by high-performance liquid chromatography [J]. Journal of Chromatography B, 1998, 710(1): 17-25
    [1]Dieuleveux V,Van Der Pyl D,Chataud J,et al.Purification and characterization of anti-Listeria compounds produced by Geotrichum candidum[J].Applied and Environmental Microbiology,1998,64(2):800-803
    [2]Dieuleveux V,Lemarinier S,Gueguen M.Antimicrobial spectrum and target site of D-3-phenyllactic acid[J].International Journal of Food Microbiology,1998,40(3):177-183
    [3]Dieuleveux V,Gueguen M.Antimicrobial effects of D-3-phenyllactic acid on Listeria monocytogenes in TSB-YE medium,milk,and cheese[J].Journal of Food Protection,1998,61(10):1281-1285
    [4]Schnurer J,Magnusson J.Antifungal lactic acid bacteria as biopreservatives[J].Trends in Food Science & Technology,2005,16(1-3):70-78
    [5]Lavermicocca P,Valerio F,Visconti A.Antifungal activity of phenyllactic acid against molds isolated from bakery products[J].Applied and Environmental Microbiology,2003,69(1):634-640
    [6] Lavermicocca P, Valerio F, Evidente A, et al. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Applied and Environmental Microbiology, 2000, 66(9): 4084-4090
    
    [7] Strom K, Sjogren J, Broberg A, et al. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid [J]. Applied and Environmental Microbiology, 2002, 68(9): 4322-4327
    
    [8] Magnusson J, Strom K, Roos S, et al. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria [J]. FEMS Microbiology Letters, 2003, 219(1): 129-135
    
    [9] Lee JY, Hwang KY, Kim K, et al. Characteristics of antimicrobial organic acids produced by Lactobacillus pentosus K34 isolated from small intestines of Korean native chickens [J]. Korean Journal of Microbiology and Biotechnology, 2002, 30(3): 241-246
    
    [10] Valerio F, Lavermicocca P, Pascale M, et al. Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation [J]. FEMS Microbiology Letters, 2004, 233(2): 289-295
    
    [11] Coloretti F, Cam S, Armaforte E, et al. Antifungal activity of lactobacilli isolated from salami. FEMS Microbiology Letters, 2007, 271(2): 245-250
    
    [12] Ohhiral I, Kuwaki S, Morita H, et al. Identification of 3-phenyllactic acid as a possible antibacterial substance produced by Enterococcus faecalis TH10 [J]. Biocontrol Science, 2004, 9(3): 77-81
    
    [13] Strom K. Fungal inhibitory lactic acid bacteria-characterization and application of Lactobacillus plantarum MiLAB 393[D]. Uppsala, Sweden: Swedish University of Agricultural Sciences, 2005
    
    [14] Armaforte E, Carri S, Ferri G, et al. High-performance liquid chromatography determination of phenyllactic acid in MRS broth [J]. Journal of Chromatography A, 2006, 1131(1): 281-284
    
    [15] Dal Bello F, Clarke CI, Ryan LAM, et al.Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7 [J]. Journal of Cereal Science, 2007,45:309-318
    
    [16] Makras L, Triantafyllou V, Fayol-Messaoudi D, et al. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Research in Microbiology, 2006, 157: 241-247
    
    [17] Van der Meulen R, Scheirlinck I, Van Schoor A, et al. Lactic acid bacteria population dynamics and metabolite target analysis during laboratory fermentations of wheat and spelt sourdoughs [J]. Applied and Environmental Microbiology, 2007, 17: 5547-5552
    
    [18] Vermeulen N, Ganzle MG, Vogel RF. Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451~T and Lactobacillus plantarum TMW1.468 [J]. Journal of Agricultural and Food Chemistry, 2006, 54(11): 3832-3839
    
    [19] Thierry, A, Maillard MB. Production of cheese flavour compounds derived from amino acid catabolism by Propionibacterium freudenreichii [J]. Lait, 2002, 82(1): 17-32
    [20]Kieronczyk A,Skeie S,Langsrud T,et al.Cooperation between Lactococcus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids[J].Applied and Environmental Microbiology,2003,69(2):734-739
    [21]凌代文,东秀珠.《乳酸细菌分类鉴定及实验方法》[M],中国轻工业出版社,1999
    [22]John GH,et al.Bergey's Manual of Determinative Bacteriology[M],Williams & Wilkins,Maryland,USA,1984
    [23]张刚.乳酸细菌——基础、技术和应用[M],化学工业出版社,2006
    [24]张斌,东秀珠.FtsZ蛋白同源性分析在乳酸菌系统学研究中的应用[J].微生物学报,2005,45(10):661-664
    [25]郭兴华.益生菌基础与应用[M],北京科学与技术出版社,2002
    [26]Giorgio G,Monica G,Lia R.Molecular diversity within Lactobacillus helveticus as revealed by genotypic characterization[J].Applied and Environmental Microbiology,2000,66(4):1259-1265
    [27]Gevers D,Huys G,Swings J.Applicability of rep-PCR fingerprinting for identification of Lactobacillus species[J].FEMS Microbiology Letters,2001,205(1):31-36
    [28]刘长建,权春善,范圣第.16S rDNA和recA-gene对乳酸菌Ⅱ32的鉴定[J].大连民族学院学报:2007,36:50-52
    [29]何亮,熊礼宽,曾忠铭.乳杆菌的分类与分子鉴定方法研究进展[J].中国微生态学杂志,2007,19(3):312-316
    [1]Vermeulen N,Ganzle MG,Vogel RF.Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451~T and Lactobacillus plantarum TMW1.468[J].Journal of Agricultural and Food Chemistry,2006,54(11):3832-3839
    [2]Lavermicocca P,Valerio F,Evidente A,et al.Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarurn strain 21B[J].Applied Environmental and Microbiology,2000,66(9):4084-4090
    [3]Christensen JE,Dudley EG,Pederson JA,et al.Peptidases and amino acid catabolism in lactic acid bacteria [J]. Antonie van Leeuwenhoek, 1999, 76: 217-246
    
    [4] Gummalla S, Broadbent JR. Tyrosine and phenylalanine catabolism by Lactobacillus cheese flavor adjuncts [J]. Journal of Dairy Science, 2001, 84: 1011-1019
    
    [5] Kieronczyk A, Skeie S, Langsrud T, et al. Cooperation between Lactococcus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids [J]. Applied Environmental Microbiology, 2003, 69(2): 734-739
    
    [6] Yvon M, Rijnen L. Cheese flavour formation by amino acid catabolism [J]. International Dairy Journal, 2001, 11: 185-201
    
    [7] Yvon M, Thirouin S, Rijnen L, et al. An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds [J]. Applied and Environmental Microbiology, 1997, 63: 414-419
    
    [8] Valerio F, Lavermicocca P, Pascale M, et al. Production of phenyllactic acid by lactic acid bacteria: an approach to the selection of strains contributing to food quality and preservation [J]. FEMS Microbiology Letters, 2004, 233(2): 289-295
    
    [9] Wallace JM, Fox PF. Effect of adding free amino acids to Cheddar cheese curd on proteolysis, flavor and texture development [J]. International Dairy Journal, 1997, 7: 157-167
    
    [10] Yvon M, Berthelot S, Gripon JC. Adding alpha-ketoglutarate to semi-hard cheese curd highly enhances the conversion of amino acids to aroma compounds [J]. International Dairy Journal, 1998, 8: 889-898
    
    [11] Banks JM, Yvon M, Gripon JC, et al. Enhancement of amino acid catabolism in Cheddar cheese using α-ketoglutarate: amino acid degradation in relation to volatile compounds and aroma character [J]. International Dairy Journal, 2001, 11: 235-243
    
    [12] Williams AG, Noble J, Banks JM. The effect of alpha-ketoglutaric acid on amino acid utilization by nonstarter Lactobacillus spp. isolated from Cheddar cheese [J]. Letters in Applied Microbiology, 2004, 38: 289-295
    
    [13] Rijnen L, Courtin P, Gripon JC, et al. Expression of a heterologous glutamate dehydrogenase gene in Lactococcus lactis highly improves the conversion of amino acids to aroma compounds [J]. Applied and Environmental Microbiology, 2000, 66: 1354-1359
    
    [14] Tanous C, Kieronczyk A, Helinck S, et al. Glutamate dehydrogenase activity: A major criterion for the selection of flavour-producing lactic acid bacteria strains [J]. Antonie Van Leeuwenhoek 2002, 82: 271-278
    
    [15] Williams AG, Withers SE, Brechany EY, et al. Glutamate dehydrogenase activity in lactobacilli and the use of glutamate dehydrogenase-producing adjunct Lactobacillus spp. cultures in the manufacture of cheddar cheese [J]. Journal of Applied Microbiology, 2006, 101(5): 1062-1075
    
    [16] Tanous C, Gori A, Rijnen L, et al. Pathways for alpha-ketoglutarate formation by Lactococcus lactis and their role in amino acid catabolism [J]. International Dairy Journal, 2005, 15: 759-770
    
    [17] Helinck S, Le Bars D, Moreau D, et al. Ability of thermophilic lactic acid bacteria to produce aroma compounds from amino acids [J]. Applied and Environmental Microbiology, 2004, 70: 3855-3861
    [18]Morishita T,Yajima M.Incomplete operation of biosynthetic and bioenergetic functions of the citric acid cycle in multiple auxotrophic lactobacilli[J].Bioscience Biotechnology Biochemistry,1995,59:251-255
    [19]Matsunaga T,Higashijima M,Sulaswatty A,et al.Repeated batch production of L-phenylalanine from phenylpyruvate and NH_4Cl by immobilized cells of Nocardia opaca under hydrogen high pressure[J].Biotechnology and Bioengineering,1987,31:834-840
    [20]Then J,Doherty A,Neatherway H,et al.Production of L-phenylalanine from phenylpyruvate using resting cells ofEscherichia coli[J].Biotechnology Letters,1987,9:680-684
    [21]Hong Xu,Ping Wei,Hua Zhou,et al.Efficient production of L-phenylalanine catalyzed by a coupled enzymatic system of transaminase and aspartase[J].Enzyme and Microbial Technology,2003,33:537-543
    [22]Yong Leng,Pu Zheng,Zhihao Sun.Continuous production of L-phenylalanine from phenylpyruvic acid and L-aspartic acid by immobilized recombinant Escherichia coli SW0209-52[J].Process Biochemistry,2006,41:1669-1672
    [23]徐虹,欧阳平凯.大肠杆菌EP8-10转化苯丙酮酸生成L-苯丙氮酸的研究[J].微生物学报,1999,39(3):272-274
    [24]张湜,范伟平,蔡瑞英等.苯丙酮酸钠反应结品过程的数学模拟[J].高校化学工程学报,1999,13(6):538-542
    [25]周华,韦萍,欧阳平凯.亚苄基海因水解制备苯丙酮酸的动力学[J].化工学报,2001,52(2):184-187
    [26]郑天,武红丽,屠春燕等.亚苄基海因水解制备苯丙酮酸过程的色-质联用分析[J].南京工业大学学报,2005,27(1):31-36
    [27]崔群,唐开华,欧阳平凯.苯丙酮酸钠的开发应用研究[J].南京化工学院学报,1995,17(2):133-136
    [28]钱明,范伟平,欧阳平凯等.苯丙酮酸及其盐的理化性质比较[J].南京化工大学学报,1997,19(1):24-28
    [1]杨洁彬,郭兴华,凌代文等.《乳酸菌——生物学基础及应用》[M].北京:中国轻工业出版社,1996
    [2]Valerio F,Lavermicocca P,Pascale M,et al.Production of phenyllactic acid by lactic acid bacteria:an approach to the selection of strains contributing to food quality and preservation[J].FEMS Microbiology Letters,2004,233(2):289-295
    [3]苏虹,汪建军,杨海麟等.植物乳杆菌产乳酸脱氢酶的发酵条件优化及酶的纯化[J].吉林大学学报(理学版),2006,44(6):1015-1018
    [4]汪建军,王立艳,杨海麟等.L-乳酸脱氢酶生产菌的选育及产酶条件[J].无锡轻工大学学报,2004,23(2):36-39.
    [5]Kalil SJ,Maugeri F,Rodrigues MI.Response surface analysis and simulation as a tool for bioprocess design and optimization[J].Process Biochemistry,2000,35(6):539-550
    [6]胡永红,沈树宝,欧阳平凯.响应面分析法用于微生物培养基浓度的优化[J].工业微生物,2002,32:9-12
    [7]Ambati P,Ayyanna C.Optimizing medium constituents and fermentation conditions for citric acid production from palmyra jaggery using response surface method[J].World Journal of Microbiology and Biotechnology,2001,17:331-335
    [8]Chen QH,He GQ,Ali MAM.Optimization of medium composition for the production of elastase by Bacillus sp.EL31410 with response surface methodology[J].Enzyme and Microbial Technology,2002,30:667-672
    [9]江元翔,高淑红,陈长华.响应面设计优化腺苷发酵培养基[J].华东理工大学学报:自然科学版,2005,31(3):309-313
    [10]沈娟,陆兆新,别小妹.Bacillus sp.fmbJ224发酵产新型抗菌肽培养基的优化研究[J].生物工程学报,2005,21:609-614
    [11]李寅,高海军,陈坚等.《高细胞密度发酵技术》[M],北京:化学工业出版社,2006
    [12]畅天狮,刘俊果,张桂等.乳酸菌在酸性环境中的生理变化及pHin的调控机制[J],中国乳品工业,2002,30(2):7-10
    [13]Harvery RJ.Damage to streptococcus lactis resulting from growth at low pH[J].Journal of Bacteriology,1965,90:1330-1336
    [14]王奎明,王昌禄,陈铁涛等.保加利亚乳杆菌高密度培养的初步研究[J].食品与发酵工业,2007,33(10):46-49
    [15]熊晓辉,于修砲,熊强等.乳酸菌发酵剂高密度培养的研究[J].中国调味品,2004,5:17-21
    [16]Charalampopoulos D,Pandiella SS,Webb C.Evaluation of the effect of malt,wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions[J].International Journal of Food Microbiology,2003,82(2):133-141
    [17]Vermeulen N,Ganzle MG,Vogel RF.Influence of peptide supply and cosubstmtes on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451~T and Lactobacillus plantarum TMW1.468[J].Journal of Agricultural and Food Chemistry,2006,54(11):3832-3839
    [18]Kamata M,Toyomasu R,Suzuki D,et al.D-phenyllactic acid production by Brevibacterium or Corynebacterium[P].JP 86108396
    [19]Dieuleveux V,der Van P,Chataud J,et al.Purification and characterization of anti-Listeria compounds produced by Geotrichum candidum[J].Applied and Environmental Microbiology,1998,64(2):800-803
    [20]Makras L,Triantafyllou V,Fayol-Messaoudi D,et al.Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds[J].Research in Microbiology,2006,157:241-247
    [21]Lind H,Jonsson H,Schnurer J.Antifungal effect of dairy propionibacteria-contribution of organic acids[J].International Journal of Food Microbiology,2005,98(2):157-65
    [22]李远颂.生物合成R-3-苯基乳酸的研究[D].华南热带农业大学,2006
    [1]Hashimoto S,Ozaki A.Whole microbial cell processes for manufacturing amino acids,vitamins or ribonucleotides[J].Current Opinion in Biotechnology,1999,10:604-608
    [2]Leon R,Fernandes P,Pinheiro HM,et al.Whole-cell biocatalysis in organic media[J].Enzyme and Microbial Technology,1998,23:483-500
    [3]Lee SO,Kim CS,Cho SK,et al.Bioconversion of linoleic acid into conjugated linoleic acid during fermentation and by washed cells of Lactobacillus reuteri[J].Biotechnology Letters,2003,25:935-938
    [4]朱宏莉,张嘉,宋纪蓉等.静息细胞法转化天麻素的研究[J].西北大学学报(自然科学版),2007,37:73-76
    [5]Zhilong Wang,Fengsheng Zhao,Daijie Chen.Biotransformation of phytosterol to produce androsta-diene-dione by resting cells of Mycobacterium in cloud point system[J].Process Biochemistry,2006,41:557-561
    [6]Wagner T,Hantke B,Wagner F.Production of L-methionine from D.L-5-(2-methylthioethyl) hydantoin by resting cells of a new mutant strain of Arthrobacter species DSM 7330[J].Journal of Biotechnology,1996,46:63-68
    [7]孙馨蔚,郭长伟,李继安等.恶臭假单胞菌NA-1菌体培养转化和静息细胞转化联合工艺生产6-羟基烟酸研究[J].微生物学报,2006,46:63-67
    [8]徐莉,袁生,陈婷等.利用粘红酵母静息细胞高效转化7-ACA成7-ADCA[J].中国医药工业杂志,2006,37(3):159-161
    [9]Valerio F,Lavermicocca P,Pascale M,et al.Production of phenyllactic acid by lactic acid bacteria:an approach to the selection of strains contributing to food quality and preservation[J].FEMS Microbiology Letters,2004,233(2):289-295
    [10]Komatsuzaki N,Shima J,Kawamoto S,et al.Production of γ-aminobutyric acid(GABA) by Lactobacillus paracasei isolated from traditional fermented foods[J].Food Microbiology,2005,22:497-504
    [11]Meister A.Reduction of α,γ-Diketo and α-Keto acids catalyzed by muscle preparations and by crystalline lactic dehydrogenase.Journal of Biological Chemistry,1950,184:117-129
    [12]Hummel W,Sch(u|¨)tte H,Kula MR.Large scale production of D-lactate dehydrogenase for the stereospecific reduction of pyruvate and phenylpyruvate.Europen Journal of Applied Microbiology and Biotechnology,1983,18:75-85
    [13]Gummalla S,Broadbent JR.Tyrosine and phenylalanine catabolism by Lactobacillus cheese flavor adjuncts[J].Journal of Dairy Science,2001,84:1011-1019
    [14]Kieronczyk A,Skeie S,Langsrud T,et al.Cooperation between Lactococcus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids[J].Applied Environmental Microbiology,2003,69(2):734-739
    [15]Yvon M,Rijnen L.Cheese flavour formation by amino acid catabolism[J].International Dairy Journal,2001,11:185-201
    [16]Yvon M,Thirouin S,Rijnen L,et al.An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds[J].Applied and Environmental Microbiology,1997,63:414-419
    [17]徐虹,欧阳平凯.大肠杆菌EP8-10转化苯丙酮酸生成L-苯丙氨酸的研究[J].微生物学报,1999,39(3):272-274
    [18]Vermeulen N,Ganzle MG,Vogel RF.Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451~T and Lactobacillus plantarum TMW1.468[J].Journal of Agricultural and Food Chemistry,2006,54(11):3832-3839
    [19]杨忠华,姚善泾,夏海峰等.酵母催化2-辛酮不对称还原为2-辛醇.化工学报,2004,55(8):1301-1305
    [20]张翀,邢新会.辅酶再生体系的研究进展[J].生物工程学报,2004,20(6):811-816
    [21]Wilfred A van der Donk,Zhao Huimin.Regeneration of cofactors for use in biocatalysis[J].Current Opinion in Biotechnology,2003,14:583-589
    [22]Huimin Zhao,Wilfred A van der Donk.Recent developments in pyridine nucleotide regeneration[J].Current Opinion in Biotechnology,2003,14:421-426
    [23]黄志华,刘铭,王宝光等.甲酸脱氢酶用于辅酶NADH再生的研究进展.过程工程学报,2006,6:1011-1016
    [24]Delecoul Servat K,Basseguy R,Bergel A.Membrane electrochemical reactor(MER):application to NADH regeneration for ADH-catalysed synthesis.Chemical Engineering Science,2002,57(21):4633-4642
    [25]吕腾飞,徐岩,穆晓清等.木糖辅助底物对近平滑假丝酵母催化(R,S)-苯基乙二醇不对称氧化还原合成(S)-苯基乙二醇体系稳定性的促进作用.催化学报,2007,28(5):446-450
    [26]Haberland J,Kriegesmann A,Wolfram E,et al.Diastereoselective synthesis of optically active (2R,5R)-hexanediol[J].Applied Microbiology and Biotechnology,2002,58:595-599
    [27]Kataoka M,Nomura Y,Shimizu S,et al.Enzymes involved in the NADPH regeneration system coupled with asymmetric reduction of carbonyl compounds in microorganisms.Bioscience Biotechnology Biochemistry,1992,56:820-821
    [1]Armaforte E,Carri S,Ferri G,et al.High-performance liquid chromatography determination of phenyllactic acid in MRS broth[J].Journal of Chromatography A,2006,1131(1):281-284
    [2]Valerio F,Lavermicocca P,Pascale M,et al.Production of phenyllactic acid by lactic acid bacteria:an approach to the selection of strains contributing to food quality and preservation[J].FEMS Microbiology Letters,2004,233(2):289-295
    [3]Coloretti F,Card S,Armaforte E,et al.Antifungal activity of lactobacilli isolated from salami.FEMS Microbiology Letters,2007,271(2):245-250.
    [4]Gummalla S,Broadbent JR.Tyrosine and phenylalanine catabolism by Lactobacillus cheese flavor adjuncts[J].Journal of Dairy Science,2001,84:1011-1019
    [5]Kieronczyk A,Skeie S,Langsrud T,et al.Cooperation between Lactococcus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids[J].Applied Environmental Microbiology,2003,69(2):734-739
    [6]Yvon M,Rijnen L.Cheese flavour formation by amino acid catabolism[J].International Dairy Journal,2001,11:185-201
    [7]Yvon M,Thirouin S,Rijnen L,et al.An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds[J].Applied and Environmental Microbiology,1997,63:414-419
    [8]Matsunaga T,Higashijima M,Sulaswatty A,et al.Repeated batch production of L-phenylalanine from phenylpyruvate and NH_4Cl by immobilized cells of Nocardia opaca under hydrogen high pressure[J].Biotechnology and Bioengineering,1987,31:834-840
    [9]Then J,Doherty A,Neatherway H,et al.Production of L-phenylalanine from phenylpymvate using resting cells of Escherichia coli[J].Biotechnology Letters,1987,9:680-684
    [10]Hong Xu,Ping Wei,Hua Zhou,et al.Efficient production of L-phenylalanine catalyzed by a coupled enzymatic system of transaminase and aspartase[J].Enzyme and Microbial Technology,2003,33:537-543
    [11]Krishnan S,Gowda LR,Karanth NG.Studies on lactate dehydrogenase of Lactobacillus plantarum spp.involved in lactic acid biosynthesis using permeabilized cells[J].Process Biochemistry,2000,35: 1191-1198
    [12]石轩峰,杨海麟,王武.高纯度诊断用乳酸脱氢酶的制备和酶促反应[J].食品与生物技术学报,2005,24(6):38-42
    [13]Meister A.Reduction of α,γ-Diketo and α-Keto acids catalyzed by muscle preparations and by crystalline lactic dehydrogenase[J].Journal of Biological Chemistry,1950,184:117-129
    [14]Hummel W,Sch(u|¨)tte H,Kula MR.Large scale production of D-lactate dehydrogenase for the stereospecific reduction of pyruvate and phenylpyruvate[J].Europen Journal of Applied Microbiology and Biotechnology,1983,18:75-85
    [15]Laemmli,UK.Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J].Nature,1970,227:680-685
    [16]Rijnen L,Luo D,Chambellon E,et al.Rrle des hydroxy acide deshydrogenases potentielles de Lactococcus lactis dans le catabolisme des acides amines.In 12~(eme) reunion du Club des Bacteries Lactiques,Aurillac,France,2003;pp.t5
    [17]Kieronczyk A,Cachon R,Feron G,et al.Addition of oxidizing or reducing agents to the reaction medium influences amino acid conversion to aroma compounds by Lactococcus lactis[J].Journal of Applied Microbiology,2006,101:1114-1122
    [18]Sch(u|¨)tte H,Hummel W,Kula MR.L-2-hydroxyisocaproate dehydrogenase-A new enzyme from Lactobacillus confusus for the stereospecific reduction of 2-ketocarboxylic acids[J].Applied Microbiology and Biotechnology,1984,19:167-176
    [19]Wilfred A van der Donk,Zhao Huimin.Regeneration of cofactors for use in biocatalysis[J].Current Opinion in Biotechnology,2003,14:583-589
    [20]Huimin Zhao,Wilfred A van der Donk.Recent developments in pyridine nucleotide regeneration[J].Current Opinion in Biotechnology,2003,14:421-426
    [21]Isobe K,Koide Y,Yokoe M,et al.Crystallization and some properties of D-lactate dehydrogenase from Staphylococcus sp.LDH-1[J].Journal of Bioscience and Bioengineering,2002,94(4):330-335
    [22]Garvie EI.Bacterial lactate dehydrogenases[J].Microbiological Reviews,1980,44(1):106-139.
    [23]Bhowmik T,Lueck M,Steele JL.Purification and partial characterization of D-(-)-lactate dehydrogenase from Lactobacillus helveticus CNRZ 32.Journal of Industrial Microbiology and Biotechnology,1993,12:35-41
    [24]Gasser F,Doudoroff M,Contopoulos R.Purification and properties of NAD-dependent lactic dehydrogenases of different species of lactobacillus[J].Journal of General Microbiology,1970,62:241-250
    [25]孙崇荣,李玉民.蛋白质化学导论[M].复旦大学出版社1991
    [26]Hensel R,Mayr U,Stetter KO,et al.Comparative studies of lactic acid dehydrogenases in lactic acid bacteria[J].Archives of Microbiology,1977,1:81-93
    [27]Tokuda C,Ishikura Y,Shigematsu M,et al.Conversion of Lactobacillus pentosus D-lactate dehydrogenase to a D-hydroxyisocaproate dehydrogenase through a single amino acid replacement [J]. Journal of Bacteriology, 2003, 185: 5023-5026
    
    [28] Arai K, Kamata T, Uchikoba H. et al. Some Lactobacillus L-lactate dehydrogenases exhibit comparable catalytic activities for pyruvate and oxaloacetate [J]. Journal of Bacteriology, 2001, 183: 397-400
    
    [29] Taguchi H, Ohta T. D-lactate dehydrogenase is a member of the D-isomer-specific 2-hydroxyacid dehydrogenase family. Cloning, sequencing, and expression in Escherichia coli of the D-lactate dehydrogenase gene of Lactobacillus plantation [J]. Journal of Biological Chemistry, 1991, 266: 12588-12594
    
    [30] Lavermicocca P, Valerio F, Evidente A, et al. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B [J]. Applied and Environmental Microbiology, 2000, 66(9): 4084-4090
    
    [31] Strom K, Sjogren J, Broberg A, et al. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid [J]. Applied and Environmental Microbiology, 2002, 68(9): 4322-4327.
    
    [32] Magnusson J, Strom K, Roos S, et al. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria [J]. FEMS Microbiology Letters, 2003, 219(1): 129-135
    
    [33] Schnurer J, Magnusson J. Antifungal lactic acid bacteria as biopreservatives [J]. Trends in Food Science &Technology, 2005, 16(1-3): 70-78
    
    [34] Ohhiral I, Kuwaki S, Morita H, et al. Identification of 3-phenyllactic acid as a possible antibacterial substance produced by Entemcoccus faecalis TH10 [J]. Biocontrol Science, 2004, 9(3): 77-81
    
    [35] Lee JY, Hwang KY, Kim K, et al. Characteristics of antimicrobial organic acids produced by Lactobacillus pentosus K34 isolated from small intestines of Korean native chickens [J]. Korean Journal of Microbiology and Biotechnology, 2002, 30(3): 241-246
    
    [36] Vermeulen N, Ganzle MG, Vogel RF. Influence of peptide supply and cosubstrates on phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451~T and Lactobacillus plantarum TMW 1.468 [J]. Journal of Agricultural and Food Chemistry, 2006, 54(11): 3832-3839
    
    [37] Dal Bello F, Clarke CI, Ryan LAM, et al. Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7 [J], Journal of Cereal Science, 2007,45:309-318
    
    [38] Van der Meulen R, Scheirlinck I, Van Schoor A, et al. Lactic acid bacteria population dynamics and metabolite target analysis during laboratory fermentations of wheat and spelt sourdoughs [J]. Applied and Environmental Microbiology, 2007, 17: 4741-4750
    
    [39] Makras L, Triantafyllou V, Fayol-Messaoudi D, et al. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds [J]. Research in Microbiology, 2006, 157: 241-247
    [40]Valerio F,Lavermicocca P,Pascale M,et al.Production of phenyllactic acid by lactic acid bacteria:an approach to the selection of strains contributing to food quality and preservation[J].FEMS Microbiology Letters,2004,233(2):289-295
    [41]Strom K.Fungal inhibitory lactic acid bacteria-characterization and application of Lactobacillus plantarum MiLAB 393[D].Uppsala,Sweden:Swedish University of Agricultural Sciences,2005
    [42]杨寿钧,蔡妙英,刘俊风.嗜热菌的耐热L-乳酸脱氢酶的研究.1991,31(6):438-442

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700