用户名: 密码: 验证码:
应用SSH技术研究氧化胁迫下细粒棘球蚴基因的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细粒棘球蚴(Echinococcus granulosus, Eg)是囊性包虫病的病原体,棘球蚴以包囊形式在人和有蹄兽类等中间宿主的内脏器官中生长。细粒棘球绦虫的生活史中包含了四个不同的时期:卵或六钩蚴,包囊虫,原头蚴和成虫。在棘球蚴的早期发育阶段,包囊自身和宿主的新陈代谢及对感染产生的免疫应答都会产生大量的不稳定的活性氧类物质(reactive oxygen species, ROS),ROS具有很高的反应性,能够对蛋白、膜脂和DNA造成直接的损伤,产生严重的生物学效应,当在机体内大量堆积时可导致细胞和组织的死亡。为了适应高度的氧化胁迫压力的环境及逃避宿主的免疫应答反应,寄生虫通过合成抗氧化酶并大多在宿主—寄生虫的接触面表达以适应及抵抗氧化胁迫的压力。抗氧化酶在保护寄生虫抵御来自宿主新陈代谢和白细胞激活的ROS的氧化损伤起关键作用。
     硫氧还蛋白过氧化物酶(thioredoxin peroxidases, TPx)基因家族是一个很大的抗氧化蛋白家族,从原核到真核,广泛存在于生物体中,具有强大的抗氧化功能。TPx在寄生虫逃避氧化性伤害过程中起着重要的作用。若能将此功能阻断,则可以减弱或使包虫的生理机能丧失,从而导致其死亡,这将为疫苗的研制和特效药的筛选奠定基础。
     原头蚴在天然情况下可以向两个方向发育分化:一个是无性繁殖方向分化形成包囊,另一个是有性繁殖方向分化形成能产卵的成虫。本研究首先利用双相培养方法,掌握了原头蚴体外培养及无性发育至包囊阶段的技术,为建立药物筛选的体外模型,研究虫体发育及生活各阶段的基因功能打下基础。
     应用抑制性消减杂交技术(suppression subtractive hybridization,SSH)研究H2O2胁迫下细粒棘球蚴基因的表达。以H2O2胁迫后的细粒棘球蚴cDNA为试验方(tester),正常生长的细粒棘球蚴cDNA为驱动方(driver),构建了H2O2胁迫下与正常细粒棘球蚴差异表达的消减cDNA文库。文库扩增后得到124个阳性克隆,菌落PCR分析,均得到200~1000 bp插入片段。将整个文库克隆进行测序,测得序列结果利用BLAST在线软件与GenBank数据库进行同源序列比对分析和BlastX分析。结果获得重要基因的cDNA序列,如氧化还原酶、蛋白激酶、生长因子等。另有部分克隆在GenBank中无法查到对应的同源基因,可能代表了新基因。利用定量PCR的方法初步获得了原头蚴在H2O2胁迫24h条件下部分差异表达基因片段在mRNA水平上的表达情况,为研究细粒棘球蚴在抗氧化过程中的相关靶基因筛选奠定基础。
     采用RT-PCR的方法,根据GenBank已发表的细粒棘球蚴硫氧还蛋白过氧化物酶(EgTPx)基因的序列设计引物,获取EgTPx的cDNA片段并克隆到原核表达载体pET41-b中,构建原核表达质粒pET41-b-EgTPx,经过IPTG诱导,在原核表达系统大肠杆菌E.coli (BL21)中获得可溶性表达的融合蛋白,经过谷胱甘肽Sepharose4B层析柱分离纯化融合蛋白,免疫小鼠获得高效价的特异性抗血清。ELISA和Western blot结果表明融合蛋白免疫小鼠产生了高效价和特异性强的抗血清。为深入开展EgTPx基因功能研究和免疫学诊断试剂,及疫苗的开发分析奠定了物质基础。
     利用重组EgTPx多克隆抗体,经消化处理后的原头蚴制备石蜡切片,以间接免疫荧光法确定抗氧化蛋白EgTPx在原头蚴内的分布。结果表明,EgTPx多克隆抗体能够特异性地结合天然EgTPx抗原表位, EgTPx广泛分布在原头蚴的体表皮层、皮下层和钙颗粒细胞内。构建了原头蚴EgTPx基因与绿色荧光蛋白(GFP)融合的虫体表达载体,命名为pPD-EgTPx,通过脂质体转染活性状态良好的原头蚴,在倒置荧光显微镜下观察该基因在原头蚴中的瞬时表达。结果表明,虫体表达载体pPD-EgTPx构建正确,而且能够在原头蚴中进行瞬时表达。
     总之,本研究为细粒棘球蚴在抗氧化过程中相关靶基因的筛选和功能研究提供了重要的参考,为进一步利用抗氧化基因开展包虫病的预防治疗和疫苗研制提供了物质基础,具有重要的现实意义。
Echinococcu granulosus, the cause of cystic echinococcosis, is a small tapeworm that resides in the intestine of carnivore definitive hosts,generally dogs or wolves.The life cycle of E. granulosus consists of four stages: egg or oncosphere, hydatid cyst, protoscolex and the adult worm. Survival of the infectious agent in the mammalian hosts requires adaptive mechanisms, such as producing antioxidant enzymes against reactive oxygen species (ROS) generated by the host immune responses. ROS are generally considered to be cytotoxic because high concentrations of ROS can have seriously deleterious effects on membrane lipids, nucleic acids and proteins.To avoid the oxygen toxicity, parasites have developed a mechanism of antioxidant defenses, including enzymes that decompose peroxides and superoxide anion (O2-) and compounds that sequester metal ions. Parasites have adapted to considerable oxidative stress by synthesizing high levels of antioxidant enzymes and, in many cases, expressing them at the host–parasite interface.The levels of these defense enzymes are correlated with the survival of a number of parasitic helminths in host tissues.
     Antioxidants including thioredoxin peroxidas have been identified and characterized in parasitic nematodes e.A new class of antioxidant enzyme has recently been described, which reduces hydroperoxides with thioredoxin as an immediate hydrogen donor. These enzymes are known as thioredoxin peroxidases (TPx). TPx, one of the peroxiredoxin (Prx) gene superfamily, functions as an antioxidant to remove ROS and H2O2 derived from normal cellular metabolism using thioredoxin as the electron donor. TPx have been found in diverse organisms ranging from prokaryotes to mammals. EgTPx may play a role in protecting the parasite from oxidative damage.
     The larval stages (protoscoleces) are exceptional in having the potential to differentiate in either of two directions. The protoscolex can develop asexually, into the hydatid cyst, or sexually into the adult worm. In vitro culture procedures, PSC were aspirated and pooled from sheep liver hydatid cysts collected from a slaughterhouse in Urumqi, Xinjiang. PSC were collected under sterile conditions from intact cysts, washed three times in phosphate-buffered saline (PBS) prior to digestion in pepsin to release PSC from capsules and remove immature PSC by digestion. After the digestion procedure, the PSC were washed three times with PBS and incubated in glass culture vessels in a liquid DMEM medium placed above a solid-phase base prepared by heating new born calf serum. The solid-phase significantly enhanced PSC growth. After 40 days cultivation, about 10% of the PSC had developed into cysts. In paraffin section of the protoscolex there were many calcareous corpuscle cells, which could provide energy for the protoscolex.The aims of the project are to fully establish and exploit an in vitro culture model that can be used to assess the functions and interactions of a panel of selected E. granulosus genes during differentiation and development of the larval protoscolex stage in an asexual direction to form a hydatid cyst.
     To isolate specific genes expressed in PSC of E. granulosus under H2O2 stresses, we used suppression subtractive hybridization (SSH) technique with cDNA from PSC treated with H2O2 as tester and cDNA from PSC in normal growth as driver. mRNA was isolated from the tester and driver respectively, and SSH method was employed to analyze the differentially expressed DNA sequence between the two groups. After tester cDNA was hybridized with driver cDNA twice and underwent two times of nested PCR, the products were subcloned into T/A plasmid vectors to set up the subtractive library. Amplification of the library was carried out with E. coli strain DH5α. The cDNA was sequenced and analyzed in GenBank with Blast search. The subtractive library of genes regulated by H2O2 stresses was constructed successfully. The amplified library contained 124 clones, of which all clones had 200-1000 bp inserts. Sequence analysis indicated that 124 clones containing the coding sequences, of which some had homology in the GenBank and other were unknown. The obtained sequences may be target genes regulated by H2O2, which provided foundation for the further identify differentially expressed genes in PSC of E. granulosus exposed to oxidative stress.
     The cDNA sequence of thioredoxin peroxidase from E. granulosus (EgTPx) was cloned from PSC by RT-PCR and subcloned into the expressive vector pET41-b after sequence analysis。A recombinant plasmid carrying EgTPx gene from was constructed. The resulting recombinant plasmid pET41-b- EgTPx was transformed into the competent cells BL21 and the recombinant plasmid was expressed by IPTG induction.The TPx fusion protein was purified through a Glutathione Sepharose 4B affinity column, and high titer of polyclonal antiserum was obtained by the immunizing the mice using the TPx fusion protein. SDS- PAGE analysis showed that the EgTPx was expressed in E. coli and the relative molecular weight of expressed fusion protein was 54 000Da. ELISA and Western blot indicated the high titer and specifically antiserum produced by protein immune strategy. Construction of pET41-b- EgTPx recombinant plasmid and preparation of the high titer and specifica antiserum were provided as the experimental materials for the EgTPx function analysis.
     To study the localization of the antioxidant protein–thioredoxin peroxidase (TPx) of E. granulosus (EgTPx) in the protoscolex of the parasite, protoscoleces of E. granulosus were aspirated and pooled from sheep liver hydatid cysts collected from a slaughterhouse in Urumqi, Xinjiang. After digested by pepsin, the sedimented protoscoleces were used for paraffin sections and indirect immunofluorescence staining analysis with polyclonal antibody against rEgTPx. The results indicated that the EgTPx distributed mainly in the tegument, subtegument and calcareous corpuscle cells of the protoscolex. The wide distribution and large sites of EgTPx in the parasite were clearly demonstrated. In the present study, we reported on the cloning, overexpression, immunogenicity, localisation and functional characterisation of E. granulosus TPx, which established a significant clue for further studies of biologic functions and application of TPx protein.
     In summary, this study could provide primary reference for antioxidant enzymes and genes of E. granulosus. Further studies to elucidate the precise role of antioxidant enzymes may pave the way for considering the enzyme as an alternative target for hydatid disease chemotherapy and present a novel strategy to develop vaccine in human.
引文
[1] Hendrick S M , Cohen D I , Nielsen E A , Davis M M. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature[J]. 1984 , 308 : 149-153.
    [2] Hubank M , Schatz D G. Identifying differences in mRNA expression by representational difference analysis of cDNA. Nucleic Acids Res[J]. 1994 ,22 : 5640-5648.
    [3] Liang P , Pardee A. Differential display of eucaryotic messenger RNA by means of the polymerase chain reaction. Science[J]. 1992 , 257 : 967-997.
    [4] Welsh J , Chada K, Dalal S S , Cheng R, Ralph D, McClelland M. Arbitrarily primed PCR fingerprinting of RNA.Nucleic Acids Res[J]. 1992 , 20 : 4965-4970.
    [5] Diachenko L , Lau Y F C , Campbell A P , Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N. Suppression subtractive hybrization: A method for generating differentially regulated or tissue-specific cDNA probes. Proc Natl Acad Sci USA [J].1996 , 93 : 6025-6030.
    [6] Stein O D V , Thies W G, Hofmann M. A high throughout screening for rarely transcripteddifferentially expressed gene.N ucleic Acids Res[J]. 1997 , 25 (13) : 2598-2602.
    [7] Bernardo F, Jorge M, Juan C, Salvitti, Martín O, Gustavo C, Edmundo L. Epidemiological surveillance of human hydatidosis by means of ultrasonography: its contribution to the evaluation of control programs. Acta Trop [J].2001, 79: 219-223.
    [8]蒋次鹏.我国包虫病流行现状.中国寄生虫病防治杂志[J].1996,9:290-292.
    [9]史大中.中国囊型包虫病的地理分布.地方病通报[J].2000,15(1):74-75.
    [10]余森海,许隆祺.首次全国人体寄生虫分布调查报告.中国寄生虫病防治杂志[J].1994,12:241-247.
    [11] Bowles J. Blair D, McManus DP. Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol[J].1992,54(2):165-l73.
    [12] Bowles J, McManus DP. NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. Int J Parasitol[J].1993,23(7):969-972.
    [13] Bowles J, Blair D, McManus DP. Molecular genetic characterization of the cervid strain (northern form )of Echinococcus granulosus. Parasitology[J].1994,109(2):215-221.
    [14] Scott JC, Stefaniak J, Pawlowski ZS, McManus DP. Molecular genetic analysis of human cystic hydatid cases from Poland: identification of a new genotypic group (G9) of Echinococcus granulosus. Parasitology[J].1997,l14(1):37-43.
    [15] Lavikainen A, Lehtinen MJ, Meri T, Hirvel?-Koski V, Meri S. Molecular genetic characterization of the Fennoscandian cervid strain,a new genotypic group (G10)of Echinococcus granutosus. Parasitology[J].2003,127(3):207- 215.
    [16] Bart JM, Bardonnet K, Elfegoun MC, Elfegoun H, Dumon L, Dia D A, Vuitton, R Piarroux.. Echinococcus granulosus strain typing in North Africa:comparison of eight nuclear and mitochondrial DNA fragments. Parasitology[J]. 2004, 128 (2):229-234.
    [17] Zhang L, Eslami A, Hosseini SH, McManus DP. Indication of the presence of two distinct strains of Echinococcus granulosus in Iran by mitochondrial DNA makers. Am J Trop Med Hyg[J]. 1998, 59 (1):171-174.
    [18] Zhang LH, Chai JJ, Jiao W, Osman Y, McManus DP. Mitochondrial genomic markers confirm the presence of the camel strain (G6)of Echinococcus granulosus in north-western china. Parasitology[J]. 1998, 116 (1):29-33.
    [19] Rozenzvit MC, Zhang LH, Kamenetzky L, Canova SG, Guarnera EA, McManus DP. Genetic variation and epidemiology of Echinococcus in Argentina. Parasitology[J].1999,118(5):523-530.
    [20] Dinkel A, Njoroge EM, Zimmermann A, Walz M, Zeyhle E, Elmahdi IE, Mackenstedt U, Romig T. A PCR system for detection of species and genotypes of the Echinococcus granulosus-complex,with reference to the epidemiological situation in eastern Africa. Int J Parasitol[J].2004,34(5):645-653.
    [21] McManus DP, Zhang L, Castrodale LJ, McManus DP,Zhang L,Castrodale LJ, LeTH,Pearson M,Blair D. Short report:molecular genetic characterization of an unusually servere case of hydatid disease in Alaska caused by the cervid strain of Echinococcus granutosus. Am J Trop Med Hyg[J].2002,67(3):296-298.
    [22] Fernandez C, Gregory wF, Loke P, Maizels RM. Full-length-enriched cDNA libraries from Echinococcus granulosus contain separate populations of oligo-capped and trans-spliced transcripts and a high level of predicted singal peptide sequences. Mol Biochem Parasitol[J]. 2002,122(2):171-180.
    [23] Bartholomei-santds M L, Heinzelmann LS, Oliveira RP. Isolation and characterization of microsateIlites from the tapeworm Echinococcus granulosus. Parasitology [J]. 2003, 126(6):599.
    [24] Osborn PJ, Heath DD.Immunization of lambs against Echinococcus granulosis using antigens obtained by incubation of oncospherea in vitro. Research in Veterinary Science[J].1982,33:132-133.
    [25]王洪法,赵中评,李桂萍.猪带绦虫六钩蚴抗原对猪体免疫保护作用的初步研究.中国寄生虫病防治杂志[J].1998,11(1):32.
    [26] Lightowlers MW, Lawrence SB,Gauci CG, Young J, Ralston MJ, Maas D.Vaccination against hydatidosis using a defined recombinant antigen.Parasite Immunol[J].1996,18(9):457-462.
    [27] Lightowlers MW, Jensen O, Fernandez E, Iriarte JA, Woollard DJ, Gauci CG.Vaccination trials in Australia and Argentina confirm the effectiveness of the EG95 hydatid vaccine in sheep.Int J Parasitol[J]. 1999,29(4):531-534.
    [28] Gottstein B, Peplazes P, Tanner I. Diagnostic identification of Taenia saginata with the polymeras chain reaction. Trans Roy Soc Trop Med Hyg [J].1991, 85(2):248-249.
    [29] Bowles J, Mcmanus D P. Genetic characterization of the Asian taenia, a newly described taenic cestode of humans.Am J Med Hygiene [J]. 1994, 50(1):33-44.
    [30] Lightowlers MW, Lawrence SB, Gauci CG, Young J, Ralston MJ, Maas D, Health DD. Vaccination against hydatidosis using a defined recombinant antigen. Parasite Immunol [J]. 1996, 18 (9): 457-462.
    [31] Lightowlers MW, Jensen O , Fernandez E, Iriarte JA, Woollard DJ. Vaccination trials in Australia and Argentina confirm the effectiveness of the EG95 hydatid vaccine in sheep. Int J Parasitol[J]. 1999, 29(4) : 531-534.
    [32] Thompson RCA. Biology and Systematics of Echinococcus.In: Thompson RCA , Lymbery AJ. Echinococcus and Hydatid Disease. Oxon: CAB International, 1995. 1-50.
    [33] Chow C, Charles GG, Alan FC. A gene family expressing a host-protective antigen of Echinococcus granulosus.Mol Biochem Parasitol [J]. 2001, 118 (1) : 83-88.
    [34] Patenaude A, Ven Murthy MR, Mirault ME. Mitochondrial thioredoxin system: effects of TrxR2 overexpression on redox balance, cell growth, and apoptosis. J Biol Chem [J]. 2004, 279( 26) : 27302-27314.
    [35] Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER. The isolation and purification of a specific‘‘protector’’protein which inhibits inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. Biol. Chem [J]. 1988, 263: 4704-4711.
    [36] Jin DY, Chae HZ, Rhee SG, Jeang KT. Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation. Biol. Chem[ J]. 1997,272:30952-30961.
    [37] Lim YS,Chae MK,Yun CH, Kim HK, Kim K, Kim IH. Purification and characterization of thiol-sp ecific antioxidant protein from human red blood cell:A new type of antioxidant protein.Biochem Biophy Res Commun[J].1994,199(1):199-206.
    [38] Laurent T C ,Moore E C ,Reichard P. Enzymatic synthesis of deoxyribonucleotidesⅣ. Isolation and characterization of thioredoxin ,the hydrogen donor from Escherichia coli B . J Biol Chem[ J]. 1964,239:3436-3444.
    [39] Lim YS,Kim HK,Vhm TB, Park JW, Kim K, Kim IH.Removal of hydrogen peroxide and hydroxyl radical by thiol specific antioxidant protein as a possibble role in vivo.Biochem Biophys Res Commun[J]. 1993,192(1):273-280.
    [40] Kwon SJ, Kim KH, Kim IH.Strand breaks in DNA induced by a Thiol/Fe/O 2 mixed-function oxidase system and its protection by a yeast antioxidant protein.Biochem Biophy Res Commun[J]. 1993,192(2):772-777.
    [41] Chae HZ,Kim IH,Kin K.Cloning,Sequencing,and mutation of thiol-speci flc autoxidant gene of Saccharomyces cerevisiae.J Biol Chem[J]. 1993,268:16815-16821.
    [42] Ahn Sm, Lee Sm,Chung T, Kim K, Park JW.Yeast Thiol-depent protector protein expressi on enhanees the resist of Escherichia coli to hydrogen peroxide.Biochem and mol Biol Intern[J]. 1996,39(5):1007-1015.
    [43] Klimowski L,Chandrashekar R,Tripp C A.Molecularcloning,expression and enzymatic activity of athioredoxin peroxidase from dirofilaria immitis. Mol Biochem Parasitol[J].1997,90(1):297-306.
    [44] McGonigle S, Curley P, Dalton JP.Peroxiredoxin:A new antioxidant family.para sitology Today[J].1998,14:139-145.
    [45] Spector A , Yan GZ , Huang RR , McDermott MJ , Gascoyne PR. PigietV. The effect of H202 upon thioredoxin - enrichedlens epithelial cells. J Biol Chem[J]. 1988 , 263 (10) : 4984– 4990.
    [46] Schallreuter KU, Wood JM. Thioredoxin reductase - its role in epidermal redox status. J Photochem Photobiol B[J]. 2001 , 64:179-184.
    [47] Tanaka T, Nakamura H,Nishiyama A, Takeda S, Wada H, Spyrou G . Redox regulation by thioredoxin superfamily; protection against oxidative stress and aging. Free Radic Res[J]. 2001 , 33 (6) :851-855.
    [48] Nakamura H. Thioredoxin and its related molecules: update 2005 Antioxid Redox Signal[J]. 2005 ,7 (56) : 823-828.
    [49] Luthman M and Holmgren A. Rat thioredoxin and thioredoxin reductase: purification and characterization.Biochemistry[J]. 1982, 21: 6628-6633.
    [50] Gasdaska PY, Gasdaska JR, Cochran S, Powis G. Cloning and sequencing of human thioredoxin reductase. FEBS Lett[J].1995, 373 (1) : 5-9.
    [51] JamesM. May, Charles E. Cobb, ShaluM endiratta.Reduction of dehydroascorbate to ascorbate by the sele-noenzyme thioredoxin reductase. Reduction of the ascorbyl free radical to ascorbate by thioredoxin reductase. J Biol Chem[J]. 1998, 273: 23039-23045.
    [52] Higashikubo A , Tanaka N , Noda N, Maeda I, Yagi K, Mizoguchi T. Increase in thioredoxin activityof intesinal epithelial cells mediated by oxidative stress. Biol Pharm Bull[J]. 1999, 22: 900-903.
    [53] Zhang P,Liu B,Kang SW, Seo MS, Rhee SG, Obeid LM. Thioredoxin peroxidase is a noval inhibitor of apoptosis with a mechanism distinct from that of BCL-2.J Biol Chem[J].1997,272 (4 9):30615-30618.
    [54] Ichimiya S,Davis JG,O'Rourke DM.Murine thioredoxin peroxidase delays neuronal apoptosis and is expressed in areas of the brain most susceptible to hypoxic and ischemic injury.DNA Cell Biol[J].1997,16(2):311-21.
    [55] Liu X,Kim CN,Yang J, Jemmerson R, Wang X.Induction of apoptotic program in cell free Ex tracts:reguirement for dATP and cytochrome C.Cell[J].1996,86:147-157.
    [56] Ishikawa A , Kubota Y,Murayama T, Nomura Y. Cell death by 1- chloro - 2, 4- dinitrobenzene, an inhibitor of thioredoxin reductase and its dual regulation by nitric oxide in rats. Neurosci Lett[J]. 1999, 277: 99-102.
    [57] MatsuiM ,Oshima M ,Oshima H. Early embryonic lethality caused by targeted disrup tion of the mouse thioredoxin gene. Dev Biol[J]. 1996, 178-185.
    [58] Powis G. Thioredoxin redox control of cell growth and death and the effects of inhibitors. Chem. Biol Interact[J].1998, 111/112; 23-24.
    [59] Mau BL and Powis G. M echanism - based inhibition of thioredoxin reductase by antitumor quinoid compounds.B iochem Pharmacol[J]. 1992, 43: 1613-1620.
    [60] Mau Bland Powis G. Ihibition of cellular thioredoxin reductase by diaziquone and doxirubicin. Relationship to the inhibition of cell proliferation and dereased ribonucleotide reductase activity. Biochem Pharmacol[J]. 1992,43: 1621-1627.
    [61] Elias S. J. Arner,Biornstedt M , and Holmgren A. 1-chloro- 2, 4- dinitrobenzene is an irreversible inhibitor of human thioredoxin reductase activity. J Biol Chem[J].1995, 270: 3479-3482.
    [62] Yodoi J and Tursz T. ADF, a growth- promoting factor derived from adult T cell leukemia and homo logous to thioredoxin: involvement in lymphocyte immortalization by HTLV - and EBV. A dv Cancer Res[J]. 1991, 57: 381-441.
    [63] Baker A , Payne CM ,Briechl MM. Thioredoxin, a gene found overexpression in human cancer, inhibits apoptosis in vitro and in vivo. Cancer Res[J]. 1997, 57:5162-5167.
    [64] Dan Su , Sergey V , Novoselov, Qi-An Sun, Mohamed E. Moustafa, You Zhou, Richard Oko, Dolph L. Hatfield, Vadim N. Gladyshev Mammalian selenoprotein thioredoxin/ glutathione reductase : Roles in disulfide bond formation and sperm maturation. J .Biol. Chem[J]. 2005,10: 1074.
    [65] Marcus Conrad, Cemile Jakupoglu, Ste′phanie G.Moreno. Essential Role for Mitochondrial Thioredoxin Reductase in Hematopoiesis. Heart Development , and Heart Function Molecular and Cellular Biology[J]. 2004 , (11) : 9414-94231.
    [66] Takagi Y, Gon Y, Todaka T, Nozaki K, Nishiyama A, Sono H, Hashimoto N. Expression of thioredoxin is enhanced in atherosclerotic plaques and during neointima formation in rat arteries. Lab Invest[J]. 1998, 78 (8) : 957-966.
    [67] Shioji K, Kishimoto C, Nakamura H, Yodoi J, Sasayama S. Up regulation of thioredoxin (TRX)expression in giant cell myocarditis in rats. FEBS Lett[J]. 2000,472 (1) : 109-113.
    [68] Shioji K, Kishimoto C, Nakamura H, Yodoi J, Sasayama S. Significance of the antioxidant factor thioredoxin, in heart failure. J Cardiol[J]. 2002, 40 (2) : 59-63.
    [69] Lovell MA , Xie C, Gabbita SP. Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer’s Disease brain. Free Radic Bio Med[J]. 2000, 28 (3) : 418-427.
    [70] Takagi Y, Tokime T, Nozaki K. Redox control of neuronal damage during brain ischemia after middle cerebral artery ocolusion in the rat: Immunohistochemical and hybridization studies of thioredoxin. J Cereb Blood Flow Metab[J]. 1998, 18 (2) : 206-214.
    [71] Yamagata K, Xie C , Gabbita SP. Decreased thioredoxin and increased thioredoxin reductase levels in Alzheimer′s Disease. Free Radic Bio Med[J]. 2000 , 28 : 418 - 427.
    [72] Hirota K, Matsui M, Iwata S , Nishiyama A, Mori K, Yodoi J. AP - 1 transcriptional activityis regulated by a direct association between thioredoxin and Ref - 1. Proc Natl Acad Sci USA[J]. 1997 , 94 : 3633 - 3638.
    [73] Powis G, Montfort WR. Properties and biological activities of thiore doxins. Annu Rev Biophys Biomol Struct[J]. 2001 , 30 : 421 -455.
    [74] Gallegos A , Raffel J ,Bhattacharyya A K. Increased expression of thioredoxin in human primary and metastatic colon cancer. Am Assoc Cancer Res[J]. 2000, 41: 189.
    [75] Nakamura H, DeRosa S, Roedere M, Anderson M T, Dubs J G, Yodoi J, Holmgren A, Herzenberg L A. Elevation of plasma thioredoxin levels in HIV infected individuals. Int Immunol[J]. 1996, 8 (4) : 603-611.
    [76] Kim K, Kim I H, Lee K Y, Rhee SG, Stadtman ER. The isolation and purification of a specific‘‘protector’’protein which inhibits inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. Biol Chem[J]. 1988, 263 (10): 4704-4711.
    [77] Docampo R. Biochemistry and Molecular Biology of Parasites[M]. London: Academic Press,1995:147-160.
    [78] Henkle-Duhrsen K, Kampkotter A. Antioxidant enzyme families in parasitic nematodes. Mol Biochem Parasitol[J]. 2001, 114 (2):129-142.
    [79] Cookson E, Blaxter M L, Selkirk M E. Identification of the major soluble cuticular glycoprotein of lymphatic filarial nematode parasites (gp29) as a secretory homologue of glutathione peroxidase. Proceedings of the National Academy of Sciences USA[J].1992, 89 (13): 5837-5841.
    [80] James E. Superoxide dismutase. Parasitology Today[J].1994, 10 (12): 481-484.
    [81] Salinas G, Fernandez V, Fernandez C, Selkirk ME. Echinococcus granulosus: cloning of a thioredoxin peroxidase. Exp Parasitol[J].1998, 90 (3):298-301.
    [82] Jaqueline J S Rodrigues, Henrique B Ferreira, Sandra E F. A protein with a novel calcium-binding domain associated with calcareous corpuscles in Echinococcus granulosus. Biochem Biophys Res Commun[J]. 1997,237 (2):451- 456.
    [83] Callahan H L, Crouch R K, James E R. Helminth antioxidant enzymes: A protective mechanismagainst host oxidants?. Parasitology Today[J].1988, 4 (8): 218-225.
    [84] Salinas G, Ferna′ndez V, Ferna′ndez C. Echinococcus granulosus: Cloning of a Thioredoxin Peroxidase. Experimental parasitology[J].1998, 90, 298-301.
    [85] Chae, H. Z., Uhm, T. B., and Rhee, S. G.. Dimerization of thiol specific antioxidant and the essential role of cysteine 47. Proceedings of the National Academy of Sciences USA[J]. 1994b, 91: 7022-7026.
    [86] Netto L E S, Chae H Z, Kang S.W, Rhee SG, Stadtman ER. Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. The Journal of Biological Chemistry[J]. 1996,271:15315-15321.
    [87] Watabe S, Hasewaga H, Takimoto K. Possible function of SP-22, a substrate of mitochondrial ATP-dependent protease as a radical scavenger. Biochemical and Biophysical Research Communications[J]. 1995,213: 1010-1016.
    [88] Jun Li, Wen-Bao Zhang, Alex Loukas, Ren-Yong Lina, Akira Itoc, Li-Hua Zhang, Malcolm Jones, Donald P.McManusa. Functional expression and characterization of Echinococcus granulosus thioredoxin peroxidase suggests a role in protection against oxidative damage. Gene[J]. 2004,326 :157-165.
    [89] Jin H ,Cheng X, Diatchenko L. Differential screening of a subtracted cDNA library :a method to search for genes preferentially expressed in multiple tissue. Biotechniques[J]. 1997,23 (6) :1084 -1086.
    [90] Caruso C ,Bertini L ,Tucci M. Isolation and characterization of wheat cDNA clones encoding Pk4 proteins . DNA seq[J]. 2000 ,10(4-5) :301 - 307.
    [91] Diatchenko L , Lau Y, Campbell AP, Chenchik A, Moqadam F, Huang B. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA[J]. 1996, 93: 6025-6030.
    [92] Diatchenko L, Lukyanov S, Lau YF. Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol[J]. 1999, 303:349-380.
    [93] Rebrikov DV, Britanova OV ,Gurskaya NG, Lukyanov KA,Tarabykin VS, Lukyanov SA. Mirror orientation selection :a method for eliminating fales positive clones from libraries generated by supression subtractive hybridization. Nucleic Acids Res[J]. 2000 ,28 (20) :90.
    [94] Pitzer C, Stassar M, Zoller M. Identification of renal-cell-carcinoma-related cDNA clones by suppression subtractive hybridization. J Cancer Res Clin Oncol[J].1999,125(8-9):487-492.
    [95] Kuang WW, Thompson DA, Hoch RV, Weigel RJ. Differential screening and suppression subtractive hybridization identified genes differentially expressed in an estrogen receptor-positive breast carcinoma cell line. Nucleic Acids Res[J]. 1998,26 (4):1116~l123.
    [96] Thompason DA , Weigel RJ. HAG2 , the human homologue of the Xenopus laevis Cement Gland Gene XAG2 , is coexpressed with estrogen receptor in breast cancer cell lines. Biochem Biophys Res Commun[J]. 1998 ,251 :111-116.
    [97] Carmeci C, Thompson DA, Kuang WW. Moesin expression is associated with the estrogenreceptor-negative breast cancer phenotype. Surgery[J]. 1998,124(2):211–217.
    [98] Stubbs AP, Abel PD, Golding M. Differentially expressed genes in hormone refractory prostate cancer : Association with chromosomal regions involved with genetic aberrations. Am. J. Pathol [J]. 1999,154(5): 1335-1343.
    [99] Boehm U, Guethlein L, Klamp T, Boehm U, Guethlein L, T. Klamp, Ozbek K, Schaub A, Futterer A. Two families of GTPases dominate the Complex Cellular Response to IFN-γ. The Journal of Immunology[J].1998, 161(2) : 6715-6723.
    [100] Schamel C, Pardali E, Sallusto F. Activated murine B lymphocytes and dendritic cells produce a novel CC chemokine which acts selectively on activated T cells.J Exp Med[J]. 1998, 188: 451-463.
    [101] Miska K. B., Fetterer R.H., Barfield, R.C.. Analysis of transcripts expressed by Eimeria tenella oocysts using subtractive hybridization methods. J Parasitol[J]. 2004,90 (6) :1245-1252.
    [102] Dessens JT, Margos G, Rodriguez MC, Sinden RE. Identification of differentially regulated genes of Plasmodium by suppression subtractive hybridization. Parasitol Today[J].2000, 16: 354-356.
    [103] Nowak TS,Woodards AC,Jung Y, Adema CM, Loker ES. Identification of transcripts generated during the response of resistant Biomphalaria glabratato Schistosoma mansoniinfection using suppression subtractive hybridization.J Parasitol[J].2004,90(5):1034-1040.
    [104] Jung Y, Nowak TS , Zhang SM. Manganese superoxide dismutase from Biomphalaria glabrata.J Invertebr Pathol[J]. 2005,90 (1) :59-63.
    [105]汪琦,陈观今,郑焕钦.弓形虫ZS2和RH株基因差异表达的研究.生命科学研究[J]. 2003,7(3):236-238.
    [106]吴绍强,邹丰才,翁亚彪,宋慧群,林瑞庆,朱兴全.利用抑制消减杂交技术筛选猪蛔虫性别差异表达基因.中国农业科学[J]. 2005,38(5):1040-1045.
    [1]陆家海,郭中敏,李德昌,郭固,张守竹,冯德元,程维新,陈启军.棘球蚴细胞系(株)的培育及其在免疫预防中的应用研究.I.人源细粒棘球蚴细胞培养.中国兽医学报[J]. 1997, 17(5):473.
    [2] Smyth, J.D.. In Vitro Cultivation of Parasitic Helminths [M]. CRC Press, Boca Raton, Boston, 1990.
    [3] RP Oempster, MV Berridge, GBL Harrision. Echinococcus granulosus:Development of an intermdiate host mouse model for use in vaccination studies.Int J Parasitol[J].1991,21:549-554.
    [4] Todorow T. Factors influencing the response chemotherapy in human cystic echinococcosis.Butlletin of the World Health Organization[J].1992,70:347-358.
    [5] Thompson RCA.Immunology of echinococcus[M].George Ailen& Unwin,London:1986,164-188.
    [6]薛海筹,裘丽姝,张永红,张超威,朱震霞,杨元清,陆健,李浩.细粒棘球蚴实验感染鼠体液免疫动态的初步结果.中国寄生虫学与寄生虫病杂志[J]. 1989,(3):17O-172.
    [7] Kumaratilake L M ,Thompson R C A.A comparison of E.granulosus from sidderent geographical areas of Australia using secondary cyst development in mice. Int J Parasito1[J].1983,13:509-515.
    [8] Smyth J D, McManus D P. The physiology and biochemistry of cestodes[M].Cambridge,U.K: Cambridge University Press,1989:268-269.
    [9]赵耘,张文宝,张壮志,哈斯巴提,齐普生.包虫病动物模型的建立.中国兽医科技[J].1997,27:19.
    [10] Breijo M, Spinelli P, Sim RB. Echinococcus granulosus: an intraperitoneal diffusion chamber model of secondary infection in mice. Experimental Parasitology [J]. 1998, 90: 270-276.
    [11] Rogan MT. T-cell activity associated with secondary infections and implanted cysts of Echinococcus granulosus in BALB/c mice.Parasite Immunology [J].1998,20: 527-533.
    [12] Wen-Bao Zhang, Malcolm K. Jones, Jun Li, Donald P. McManus. Echinococcus granulosus: Pre-culture of protoscoleces in vitro significantly increases development and viability of secondary hydatid cysts in mice. Experimental Parasitology [J].2005,110:88-90.
    [13] Jenkins P, Dixon JB, Rakha NK. Regulation of macrophage-mediated larvicidal activity in Echinococcus granulosus and Mesocestoides corti (Cestoda) infection in mice. Parasitology [J].1990, 100:309-315.
    [14] Gottstein B, Dai WJ, Walker M. An intact laminated layer is important for the establishment of secondary Echinococcus multilocularis infection. Parasitology Research[J]. 2002,88: 822-828.
    [15] Steer NJ, Rogan MT, Heath S. In vitro susceptibility of hydatid cysts of Echinococcus granulosus tonitric oxide and the efect of the laminated layer on nitric oxide production.Parasite Immunol[J].2001,23(8): 41l-417.
    [16]傅玉才,王进成,张立民,张壮志,由虹, Bosquet G.用核酸原位杂交技术观察细粒棘球绦虫66kDa抗原mRNA在虫体上的细胞定位.汕头大学医学院学报[J]. 2003a,16(2):65-69.
    [17] Fu ,Y. , C. Martinez , C. Chalar. A new potent antigen from Echinococcus granulosus associated with muscles and tegument . Mol . Biochem. Parasitol[J]. 1999, 102 :43-52.
    [1] Halliwell B, Gutterridge JMC. Production against Radical Damage: Systems with Problems. Free Radicals in Biology and Medicine[M]. 2nd ed, Oxford: Clarendon Press, 1989.
    [2] Li J, Zhang W.B , Loukas A, Ren-Yong Lin, Akira Itoc, Li-Hua Zhanga,Malcolm Jones, Donald P. McManus. Functional expression and characterization of Echinococcus granulosus thioredoxin peroxidase suggests a role in protection against oxidative damage.Gene[J]. 2004,326: 157–165.
    [3] Salinas G, Fernandez V, Fernandez C, Selkirk ME. Echinococcus granulosus: cloning of a thioredoxin peroxidase. Exp Parasitol[J].1998, 90 (3):298–301.
    [4]顾克余,翟虎渠.抑制性扣除杂交及其在基因克隆上的研究进展.生物技术通报[J].1999 ,15 (2) :13–16.
    [5]徐德全,张义兵,熊远著,桂建芳,蒋思文,苏玉虹.梅山猪与长白猪肌肉组织间正反向消减cDNA文库的构建.遗传学报[J].2003 ,30(7) :668–672.
    [6] Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurs-kaya N, Sverdlov E.D. Suppression subtractive hybridization : a method for generating differentially regulated or tissue-specific cDNA probes and libraries. PNAS[J].1996 ,93(12) : 6025–6030.
    [7] Higuchi R, Dollinger G, Walsh PS, Griffith, R. Simultaneous amplification and detection of specific DNA sequences.Biotechnology[J].1992, 10: 413-417.
    [8] Dussault AA, Pouliot M. Rapid and simple comparison of messenger RNA levels using real-time PCR. Biol Proced[J]. Online,2006, 8(1): 1-10.
    [9] Dallas BP, Gottardo NG, Firth MJ, Beesley AH, Hoffmann K, Terry PA, Freitas JR, Boag JM, Cummings AJ, Kees UR. Gene expression levels assessed by oligonucleotide microarray analysis and quantitative real-time RT-PCR -- how well do they correlate?. BMC Genomics [J]. 2005,1: 59.
    [10] Budhia S, Haring LF, Mcconnell I, Blacklaws BA. Quantitation of ovine cytokine mRNA by real-time RT-PCR. J Immunol Methods[J]. 2006, 309(1-2): 160-172.
    [11] Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun[J]. 2004, 313(4): 856-862.
    [12] Mackay IM, Arden KE, Nitsche A. Real-time PCR in virology. Nucleic Acids Res[J]. 2002, 30(6): 1292-1305.
    [13] Kenneth J. Livak and Thomas D. Schmittgen. Analysis of Relative Gene Expression Data Using Real Time Quantitative PCR and the 2–ΔΔCt Method. METHODS[J]. 2001,25:402–408.
    [14] Kim H, Lee TH, Park ES, Suh JM, Park SJ, Chung HK, Kwon OY, Kim YK, Ro HK, Shong M. Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide-induced apoptosis in thyroid cells. Biol Chem[J].2000, 275 (24): 18266–18270.
    [15] Patenaude A, Ven Murthy MR, Mirault ME. Mitochondrial thioredoxin system: effects of TrxR2 overexpression on redox balance, cell growth, and apoptosis. J Biol Chem[J].2004,279(26) : 27302–27314.
    [16] Rabilloud T, Berthier R, Vincon M. Early events in erythroid differentiation: accumulation of the acidic peroxidoxin (PRP/TSA/NKEF-B). Biochem J [J].1995, 312 (Pt 3): 699–705.
    [17] Butterfield LH, Merino A, Golub SH, Shau H. From cytoprotection to tumor suppression: the multifactorial role of peroxiredoxins. Antioxid Redox Signal[J].1999,1(4): 385– 402.
    [18] Thompson RCA. The biology of Echinococcus and hydatid disease[M]. London: George Allen and Unwin Press,1995: 232–305.
    [19] Ammann RW, Echert J. Cestodes: Echinococcus. Gastroenterol Clin Nor Am[J]. 1996, 25 (3): 655-689.
    [20] Cookson E, Blaxter ML, Selkirk ME. Identification of the major soluble cuticular glycoprotein of lymphatic filarial nematode parasites (gp29) as a secretory homologue of glutathione peroxidase. PNAS[J].1992, 89 (13): 5837–5841.
    [21] James E. Superoxide dismutase. Parasitology Today[J].1994, 10 (12): 481–484.
    [22] Callahan HL, Crouch RK, James ER. Helminth antioxidant enzymes: A protective mechanism against host oxidants?. Parasitology Today [J].1988, 4 (8): 218–225.
    [23] Stone JM, Walker JC. Plant protein kinase families and signal transduction. Plant Physiol[J]. 1995, 108: 451-457.
    [1] Kim K, Kim IH, Lee KY, Rhee SG, Stadtman ER. The isolation and purification of a specific ‘‘protector’’protein which inhibits inhibits enzyme inactivation by a thiol/Fe (III)/O2 mixed-function oxidation system. Biol Chem [J]. 1988, 263 (10): 4704–4711.
    [2] Docampo R. Biochemistry and Molecular Biology of Parasites [M]. London: Academic Press, 1995:147–160.
    [3] Henkle-Duhrsen K, Kampkotter A. Antioxidant enzyme families in parasitic nematodes. Mol Biochem Parasitol[J]. 2001, 114 (2):129– 142.
    [4] Salinas G, Fernandez V, Fernandez C. Echinococcus granulosus: cloning of a thioredoxin peroxidase. Exp Parasitol[J].1998, 90 (3):298– 301.
    [5] Rodrigues JS, Farias SE, Sandra EF. A protein with a novel calcium-binding domain associated with calcareous corpuscles in Echinococcus granulosus. Biochem Biophys Res Commun [J]. 1997,237 (2):451– 456.
    [6] Lee K K, Murakawa M, Takahashi S. Purification, molecular cloning, and characterization of TRX32 , a novel thioredoxin related mammalian protein of 32kDa. J Biol Chem [J].1998, 273 (30): 19160-19166.
    [7] Thompson RCA. The biology of Echinococcus and hydatid disease [M]. London: George Allen and Unwin Press, 1995: 232-305.
    [8] Ammann RW, Echert J. Cestodes: Echinococcus. Gastroenterol Clin Nor Am[J]. 1996, 25 (3): 655-689.
    [9]王娅娜,丁淑琴,王健,张焱,王洁,王淑静,赵巍.细粒棘球蚴铁蛋白基因的克隆重组高效表达及免疫学初步研究.中国人兽共患病学报[J]. 2006, 22 (5):21-24.
    [10]张静,王洁,王淑静,张焱,高岭,赵巍.细粒棘球蚴(中国大陆株)线粒体苹果酸脱氢酶重组蛋白的表达、纯化及免疫特性分析.中国病原生物学杂志[J].2006,1(4):249-252.
    [11]赵嘉庆,王娅娜,丁淑琴,王健,赵巍.细粒棘球蚴抗血清的制备及特性鉴定.宁夏医学院学报[J].2005,27 (3):234-236.
    [12] Callahan H L, Crouch R K, James E R. Helminth antioxidant enzymes: A protective mechanism against host oxidants?. Parasitology Today [J].1988, 4 (8): 218–225.
    [13] Cookson E, Blaxter M L, Selkirk M E. Identification of the major soluble cuticular glycoprotein of lymphatic filarial nematode parasites (gp29) as a secretory homologue of glutathione peroxidase. Proceedings of the National Academy of Sciences USA [J].1992, 89 (13): 5837–5841.
    [14] James E. Superoxide dismutase. Parasitology Today[J].1994, 10 (12): 481–484.
    [15] Lee WS, Kim SR, Park NS.Characterization of a silkworm thioredoxin peroxidase that is induced by external temperature stimulus and viral infection.Insect Biochemistry and Molecular Biology [J]. 2005, 35: 73–84.
    [16] Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc. Natl. Acad. Sci.[J]. 1994, 91:7017–7021.
    [17] Kang, SW, Baines, IC, Rhee, SG. Characterization of a mammalian peroxiredoxin that contains one conserved cysteine. Biol. Chem [J]. 1998, 273:6303–6311.
    [18] Rabilloud T, Berthier R, Vincon M. Early events in erythroid differentiation: accumulation of the acidic peroxidoxin (PRP/TSA/NKEF-B). Biochem J [J].1995, 312 (Pt 3): 699-705.
    [19] Butterfield LH, Merino A, Golub SH, Shau H. From cytoprotection to tumor suppression: the multifactorial role of peroxiredoxins. Antioxid Redox Signal [J].1999,1 (4): 385-402.
    [20] Kim H, Lee TH, Park ES, Suh JM, Park SJ, Chung HK. Role of peroxiredoxins in regulating intracellular hydrogen peroxide and hydrogen peroxide-induced apoptosis in thyroid cells. Biol Chem [J]. 2000, 275 (24): 18266-18270.
    [21] Jin DY, Chae HZ, Rhee SG, Jeang KT. Regulatory role for a novel human thioredoxin peroxidase in NF-kappaB activation. Biol Chem[J]. 1997,272 (49):30952-30961.
    [22] Halliwell, B, Gutterridge, JMC. Production against Radical Damage: Systems with Problems. Free Radicals in Biology and Medicine [M]. Oxford :second ed Clarendon Press, 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700