用户名: 密码: 验证码:
PVAc/TiO_2杂化纳米纤维的制备、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为制备符合静电纺丝条件的PVAc/TiO2杂化纺丝液,课题根据使用五种抑制剂制备的TiO2溶胶分散液的沉降效果、与PVAc的混溶效果以及粒子的分散情况,最终选择以乙二醇胺为抑制剂的溶胶制备方案并结合静电纺丝工艺制备出PVAc/TiO2杂化纳米纤维。论文使用原子力显微镜(AFM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和傅里叶红外光谱(FTIR)为主要表征手段探索了PVAc/TiO2杂化纳米纤维中PVAc与TiO2溶胶分子的结合方式;研究了纺丝电压、接收装置的距离、周围的环境温度、和纺丝液的性质(粘度、表面张力、电导率等)对杂化纳米纤维的表面形貌和纤维状结构形成的影响;并首先提出了适用于杂化纳米纤维的静电纺丝射流形成的理论模型。
     课题使用AFM力距离曲线和薄膜拉伸的方法分别测试了单根纳米纤维的强度并分析了纳米纤维膜拉伸性能的影响因素,结果表明:有机无机杂化明显改善了纤维的力学性能;在使用差示扫描量热仪(DSC)、热失重分析仪(TGA)等方法研究杂化纳米纤维的热学性能时,发现有机无机杂化能够明显增强聚合物的热稳定性;论文还对粗糙表面的浸润模型进行了改进,提出了适用于纳米纤维表面的部分浸润模型,并使用静态水滴接触角分析仪对杂化纳米纤维润湿性能进行了测试和分析。结果表明,PVAc/TiO2纳米纤维膜的润湿性能随着TiO2溶胶含量的增加先减小后增大。
     在基于PVAc/TiO2前驱体制备TiO2纳米纤维的研究中,论文提出将乙酰丙酮作为抑制剂制备PVAc/TiO2溶胶前驱液,再由静电纺丝结合高温煅烧工艺制备出TiO2纳米纤维。使用SEM和X射线衍射仪(XRD)等仪器对样品形貌、晶型以及多孔结构形成的特点进行了表征。结果表明:300-700℃的煅烧过程使得杂化纳米纤维经历了聚合物分解,碳化和形成无机纤维的过程,在此过程中,纤维的表面多孔结构发生了很大变化,纤维的结晶结构也经历了无定形,锐钛矿和锐钛矿/金红石混合晶型三个阶段。
     为了进一步改善TiO2纳米纤维毡的结构和光催化性能,课题分别制备了不同浓度的Fe3+掺杂、La3+掺杂和Fe3+、La3+共掺杂TiO2纳米纤维并对纤维膜的比表面积、孔隙分布及结晶结构进行了表征。结果表明:适量的掺杂使得TiO2纳米纤维的比表面积和孔隙率明显增大,对TiO2纳米纤维的晶胞参数、晶粒尺寸以及结晶度都有了不同程度的影响。论文还着重讨论了Fe3+掺杂、La3+掺杂和Fe3+、La3+共掺杂在紫外-可见复合光源作用下,对TiO2纳米纤维光催化降解亚甲基蓝性能以及反应动力学的影响机理。结果表明:适量的Fe3+、La3+共掺杂由于协同作用的结果在较大程度上提高了TiO2纳米纤维的光催化活性。
In order to preparing the proper PVAc/TiO2 hybrid spinning solution for electrospining process, there were 5 kinds of inhibitors had been evaluated by settlement performance, the mixture compatibility with PVAc solution, and the disperse effect of TiO2 particles for PVAc/TiO 2 hybrid solution preparations. The Diethanolamine was chosen to be the fittest inhibitor for the PVAc/TiO2 sol preparation. The PVAc/TiO2 nanofibers were fabricated by sol-gel process and electrospining technology. The molecular binding mode between PVAc and TiO2 sol were examined by AFM, SEM, TEM and FTIR. The effect of direct voltage, the distance between pinhead and collecting device, the ambient temperature and the properties of spinning solution (viscosity, surface tension, conductivity etc.) on the surface morphologies and fibrous structures of hybrid nanofibers was investigated. The theoretical model of the hybrid nanofiber jets formation had been established in the thesis.
     The AFM force-distance curves and film elongation tests were employed to analyze the strength of single nanofiber and the elongation behaviors of nanofiber films, the results revealed that the mechanical properties were obvious improved after organic/inorganic hybridization. The DSC and TG analysis presented a better thermal stability after hybridization. The surface wettability mathematical model for nanofiber surface was established based on coarse surface moistening model. The static contact angle analyzer was employed to test the wettability of hybrid nanofiber films, the results showed that the wettability was decreased first then increased as the increasing of TiO2 sol contents.
     On the research process of preparing the TiO2 nanofibers based on PVAc/TiO2 precursor, the diacetone was used as the inhibitor to prepare the PVAc/TiO2 precursor. After electrospinning and calcinations process, the TiO2 nanofibers obtained. The SEM observations presented a significant difference in the surface morphologies and porous structures as the calcinationtemperature increased, the XRD was employed to analyze the change of crystal forms. The experimental results indicated that the hybrid nanofibers went through polymer decomposition, carbonization and inorganic nanofibers formation process. The results also revealed that the porous structures of these nanofiber films were changed a lot and the crystal forms also changed from amorphous to anatase and rutile mixture crystal form.
     TiO2 nanofiber films with different contents of Fe3+doped, La3+doped and Fe3+, La3+co-doped were prepared for improving the photocatalysis properties, and the specific surface area, poredistribution and crystal structure were characterized.The results showed that the defined amount of metal ions doped in the TiO2 nanofiber films can obviously increase the specific surface area and porosity, it can also influence the cell parameter, grain size and degree of crystallinity in different extents. The degradation of methylene blue properties and the reaction kinetics mechanism under UV-Vis compose illuminants were investigated. The results from the photocatalysis measurements indicated that the photocatalytic activity of TiO2 nanofibers were improved by doping the defined amount of Fe3+, La3+ all together.
引文
1.吴大成,杜仲良,高绪珊.纳米纤维[M].北京:化学工业出版社,2003.3—9
    2. Ajayan P M, Stephan O, Colliex C, et al. Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin-Nanotube Composite. Science, 1994, 265(26): 1212—1214
    3. Endo M, Hayashi T, Kim Y A. et al. Applications of Carbon Nanotubes in the Twenty -First Century . Phil. Trans. R. Soc. Lond. A ,2004, 362(1823): 2223—2238
    4. Guan H, Shao C, Chen B, et al. A novel method for making CuO superfine fibres via an electrospinning technique . Inorg. Chem. Commun., 2003,6(11):1409—1411
    5. 5. Shao C, Yang X, Guan H, et al. Electrospun nanofibers of NiO/ZnO composite. Inorg. Chem. Commun. 2004,7 (5):625—627
    6. 6. Guan H, Shao C, Wen S, et al.A novel method for preparing Co3O4 nanofibers by using electrospun PVA/cobalt acetate composite fibers as precursor . Mater Chem Phys, 2003, 82 (5): 1002—1006
    7. Dharmaraj N, Kim C H, Kim H Y, et al. Pb(Zr0.5, Ti0.5)O3 nanofibres by electrospinning. Mater Lett, 2005,59 (24-25): 3085—3089
    8. Dharmaraj N, Kim C H, Kim K W, et al. Spectral studies of SnO2 nanofibres prepared by electrospinning method. Spectrochim Acta, Part A, 2006, 64 (23): 136—140.
    9. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56—58
    10. Maser W K, Munoz E, Benito AM et al. Production of high density single-walled nano- tubematerial by a simple laser-ablation method. Chem Phys Letts, 1998, 292(4-6): 587—593.
    11. Sen R, Satishkumar B C, Govindaraj A et al. B–C–N, C–N and B–N nanotubes produced by the pyrolysis of precursor molecules over Co catalysts. Chem Phys Letts, 1998, 287 (5-6): 671—676
    12. Ondarcuhu T, Joachim C. Drawing a single nanofibre over hundreds of microns . Euro phys Lett , 1998 , 42 (2) : 215—220.
    13. Feng L, Li S, Li Y, et al. Super-hydrophobic surfaces: from natural to artificial. Adv Mater, 2002, 14(24): 1857—1860
    14. Martin C R. Membrane-based synthesis of nanomaterials. Chem Mater, 1996, 8(8): 1739—1746.
    15. Ma P X, Zhang R. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mat Res, 1999, 46(16): 60—72.
    16. Whitesides G M, Grzybowski B. Self-Assembly at All Scales. Science,2002, 295: 2418—2421.
    17. Deitzel J M, Kleinmeyer J, Hirvonen J K, et al . Controlled deposition of electrospun poly - (ethylene oxide) fibers. Polymer,2001, 42(19):8163—8170.
    18. Fong H , Reneker D H. Electrospinning and formation of nanofibers[M] .In : Salem DR , editor. Structure formation in polymeric fibers. Munich :Hanser , D.R. Salem (Ed), 2001, 225—246.
    19. Dzenis, Y. Spinning Continuous Fibers for Nanotechnology .Science, 2004,304: 1917—1919.
    20. Dan Li, Jesse T M, Xia Y ,et al. Electrospinning: A Simple and Versatile Technique for Producing Ceramic Nanofibers and Nanotubes. J Am Ceram Soc, 2006,89(6): 1861—1869
    21. Zeleny J. Instability of Electrified Liquid Surfaces. Phys Rev,1917,10(l):l—6.
    22. Formhals, A. Process and apparatus for preparing of artificial Threads [P].US Pat, 1975504.1934-264-164.
    23. Hendricks C D, Carson R S, Hogan J J, et al. Photomicrography of Electrically Sprayed Heavy Particles. AIAA J .1964,2(4):733—737.
    24. Taylor G S. Electrically driven jets. Proc Roy Soe London A, 1969,313: 53—47.
    25. Shin M K, Kim S I, Kim S J et al. Size-dependent elastic modulus of single electroactive polymer nanofibers. Appl Phys Lett, 2006, 89(23): 231929/1—231929/3
    26. Yarin A L, Koombhongse S, Reneker D H, et al. Bending instability in electrospinning of nanofibers. J Appl Phys, 2001,89(5):3018—3026
    27. Spivak A F, Dzenis Y A, Reneker D H. A model of steady state jet in the electrospinning process. Mech Res Commun, 2000,27(1):37—42
    28. Moses M, Hohman, Shin M. Gregory Rutledge Electrospinning and electrically forced jets applications. Phys Fluids.2001,13(8): 2221—2236
    29. Fridrikh, Yu SV,Brenner J H,et al. Controlling the Fiber Diameter during Electro- spinning . Phys Rev Lett.2003, 90(14): 144502/1—144502/4
    30. Christopher J, Buchko, Loui C, et al. Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer, 1999,40(26): 7397—7407.
    31. Silke M, Jean S S, Chase D B, et al. Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromol, 2002, 35(22): 8456—8466
    32. Doshi J, Reneker D H. Electrospinning Process and Applications of Electrospun Fibers. J Electrosta. 1995, 35(5): 151—160
    33. Chen H, Snyder J D, Elabd YA. Electrospinning and Solution Properties of Nafion and Poly(acrylic acid). Macromol, 2008, 41(1): 128—135
    34. Deitzel J M, Kleinmeyer J, Harris D, et al. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer,2001, 42(1):261—272
    35. Chronakis I S. Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process- A review. J Mater Process Technol , 2005,167(4): 283—298.
    36. Ree M, Goh W H, Kim Y. Thin-films of organic polymer composites with inorganic aerogels as dielectric materials– polymer-chain orientation and properties. Polym.Bull., 1995,35(1-2):215—218
    37. Ding X B, Sun Z H,Wan G X. Synthesis of Thermosensitve Magnetic Polymer Microspheres. Acta Polym Sin, 1998,(5):628—631
    38. Kyprianidou T, lthaus A,Wyser Y, et al. High refractive index materials of iron sulfides and poly(ethylene oxide). J Mater Res, 1997, 12(8):2198—2206
    39. Chan Y N C, Schrock R R, Cohen R E. Chem Mater ,1992,4:24—27
    40. Tamai H, Hamamo to S, Nishiyama F, et al. Ultrafine Metal Particles Immobilized on Styrene/Acrylic Acid Copolymer Particles. J Colloid Interf Sci, 1995, 171(1):250—253.
    41. Ma J, Hu J, Zhang Z J, et al. Polyacrylate/silica Nanocomposite Materials Prepared by Sol-gel Process. Eur Polym J. 2007, 43(10): 4169—4177
    42. Ting P K, Hussain Z, Cheong K Y, et al. Synthesis and Characterization of Silica-titania Nanocomposite Via a Combination of Sol-gel and Mechanochemical Process. J Alloys Compd, 2008, 466 (1/2): 304—307
    43. Liu Y J,DeGroot D C,Schindler J L,et a1.1ntercalation of Poly(ethylene oxide)in Vanadium Pentoxide(V2O5)Xerogel.Chem Mater,1991,3(6):992—994.
    44. Eduardo R H,Pilar A,Blanca C,et a1.Nanocomposite Materials with Controlled Ion Mobility. Adv Mater,1995,7(2):180一184.
    45. Vaia R A,Vasudevan S,Krawiec W,et a1.New Polymer Electrolyte Nanocomposites:Melt intercalation of Poly(ethylene oxide)in Mica—type Silicates.Adv Mater,1995,7(2):154—162
    46. Colvin V L, Goldstein A N, Alivistos A P. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers.J Am Chem Soc, 1992,114(13): 5221—5224.
    47. Schwerzel R E, Spahr K B ,Kurmer J P, et al. Nanocomposite photonic polymers. Third-order nonlinear optical properties of capped cadmium sulfide nanocrystals in an ordered polydiacetylene host. J Phys Chem A,1998,102(28):5622—5626
    48. Rodrigues D E,Brennan A B,Betrabet C,et al. Structural features of sol-gel-derived hybrid inorganic-organic network ceramer materials by small-angle x-ray scattering. Chem Mater,1992,4(6):1437—1446.
    49. Suzuki F, Onozato K A. A formation of compatible poly(vinyl alcohol)/alumina gel composite and its properties. J Appl Polym sci 1990,39(2):371—381
    50. Schmidt H. Some aspects of phase separation in glasses. J Non一Cryst solids,1989, 112(1-3):48—57.
    51. Girardi F, Graziola F, Aldighieri P,et al.Inorganic–organic hybrid materials with zirconium oxoclusters as protective coatings on aluminium alloys.Prog Org Coat, 2008, 62(4):376—381
    52. Landry C J T, Coltrain B K. Organic-inorganic Composites Prepared Via the Sol-gel Method - Some Insights into Morphology Control and Physical-properties. Polym Prepr, 1991, 32(3): 514—515
    53.熊明娜,周树学,游波,等.丙烯酸树脂/TiO2有机-无机杂化材料的力学、热学和光学性能研究[J].材料科学与工程学报,2005,23(2):191—195
    54. Shao C, Kim H Y, Gong J, et al. Fiber mats of poly(vinyl alcohol)/silica composite via Electrospinning .Mater Lett,2003, 57(9-10):1579—1584 55. Wei Y, Yang D C, Tang L G, et al. Synthesis, characterization, and properties of new polystyrene-SiO2 hybrid sol-gel materials. J mater res, 1993,8(5):1143—1152
    56. Sui X M, Shao C L,Liu Y C, et al. White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning .Appl Phys Lett, 2005,87(5): 113—115
    57. Choi S S, Chu BY, Hwang D S, et al. Preparation and characterization of polyaniline nanofiber webs by template reaction with electrospun silica nanofibers. Thin Solid Films,2005,477(1-2): 233—239
    58. Xu L D, Sui G, Zhao M L, et al. Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning .J Biomater Sci Polymer Edn, 2007, 18(1): 117—130
    59. Yan X, Liu G. Water-Dispersible Polymer/Pd/Ni Hybrid Magnetic Nanofibers. Chem Mater 2005, 17(26): 6053—6059
    60. Ohgo K, Zhao C, Kobayashi M, et al. Preparation of non-woven nanofibers of Bombyx mori silk, Samia cynthia ricini silk and recombinant hybrid silk with electrospinning method. Polymer, 2003,44(3): 841—846
    61. Wang X, Yan Y, Yost M J, et al.Nanomechanical characterization of micro/nanofiber reinforced type I collagens. J Biomed Mater Res A, 2007,83 (1): 130—135
    62. Zussman E, Burman M, Yarin A L, et al. Tensile Deformation of Electrospun Nylon-6,6 Nanofibers. J Polym Sci, Part B: Polym Phys, 2006, 44(10): 1482—1489
    63. Liu L, Huang Z M, He C L, et al. Mechanical performance of laminated composites incorporated with nanofibrous membranes . Mater Sci Eng A, 2006, 435–436(5): 309—317
    64. Xia Y, Yang P, Sun Y, et al. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Adv Mater, 2003,15(5):353—389
    65. Law M, Goldberger J, Yang P, Semiconductor Nanowires and Nanotubes, Annu Rev Mater Res, 2004,34:83—122.
    66. Wang Z L, Functional Oxide Nanobelts: Materials, Properties and Potential Applications in Nanosystems and Biotechnology, Annu Rev Phys Chem, 2004,55:159—196.
    67. Li D, Xia Y. Electrospinning of Nanofibers: Reinventing the Wheel, Adv Mater, 2004, 16(14):1151—1170
    68. Reneker D H, Chun I. Nanometre Siameter Fibres of Polymer, Produced by Electro- spinning, Nanotechnology, 1996,7(3): 216—223
    69. Frenot A, Chronakis I S. Polymer Nanofibers Assembled by Electrospinning, Curr Opin Colloid Interf Sci, 2003, 8(1):64—75
    70. Huang Z M, Zhang Y Z, Kotaki M, et al. A Review on Polymer Nanofibers by Electro- spinning and their Applications in Nanocomposites. Compos Sci Technol, 2003,63(15): 2223—2253
    71. Shao C, Kim H, Gong J ,et al.A novel method for making silica nanofibres by using electrospun fibres of polyvinylalcohol/silica composite as precursor. Nanotechnology , 2002,13 (5): 635—637
    72. Larsen G, Velarde-Ortiz R, Minchow K, et al. A Method for Making Inorganic and Hybrid (Organic/Inorganic) Fibers and Vesicles with Diameters in the Submicrometer and Micrometer Range Via Sol–Gel Chemistry and Electrically Forced Liquid Jets.J Am Chem Soc, 2003,125(5):1154—1155.
    73. Kataphinan W, Teye-Mensah R, Evans E A, et al. High-Temperature Fiber Matrices: Electrospinning and Rare-Earth Modification. J Vac Sci Technol A, 2003, 21(4): 1574—1578
    74. Choi S S, Lee S G, Im S S, et al. Silica Nanofibers from Electrospinning/Sol–Gel Process, J Mater Sci Lett, 2003,22(12): 891—893.
    75. Wang Y, Furlan R, Ramos I, et al. Synthesis and Characterization of Micro/Nanoscopic Pb(Zr0.52Ti0.48)O3 Fibers by Electrospinning. Appl Phys A, 2004,78(7): 1043—1047.
    76. Wang Y, Santigano-Aviles J J. Synthesis of Lead Zirconate Titanate Nanofibres and the Fourier-Transform Infrared Characterization of Their Metallo-Organic Decomposition Process. Nanotechnology, 2004, 15(1): 32—36.
    77. Zhang G, Kataphinan W, Teye-Mensah R, et al. Electrospun Nanofibers for Potential Space-Based Applications. Mater Sci Eng B, 2005,116(3): 353—358.
    78. Li D, Wang Y, Xia Y, et al. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays. Nano Lett, 2003,3(12): 1167—1171.
    79. Li D, Herricks T, Xia Y.Magnetic Nanofibers of Nickel Ferrite Prepared by Electro- spinning. Appl Phys Lett, 2003,83(22): 4586—4588
    80. Ding B, Kim H, Kim C, et al. Morphology and Crystalline Phase Study of Electrospun TiO2–SiO2 Nanofibres. Nanotechnology, 2003, 14(4): 532—537
    81. Viswanathamurthi P, Bhattarai N, Kim H Y, et al. Preparation and Morphology of Niobium Oxide Fibres by Electrospinning. Chem Phys Lett, 2003,374(1-2): 79—84.
    82. Viswanathamurthi P, Bhattarai N, Kim H Y, et al.Vanadium Pentoxide Nanofibers by Electrospinning. Scr Mater, 2003,49(6): 577—581
    83. Viswanathamurthi P, Bhattarai N, Kim H Y, et al. GeO2 Fibers: Preparation, Morphology and Photoluminescence Property. J Chem Phys, 2004,121(1): 441—445.
    84. Viswanathamurthi P, Bhattarai N, Kim H Y, et al. The Photoluminescence Properties of Zinc Oxide Nanofibres Prepared by Electrospinning. Nanotechnology, 2004,15(3): 320—323.
    85. Guan H, Shao C, Chen B, et al. A Novel Method for Making CuO Superfine Fibres Via an Electrospinning Technique. Inorg Chem Commun, 2003, 6(11): 1409—1411.
    86. Guan H, Shao C, Chen B, et al.Preparation and Characterization of NiO Nanofibres Via an Electrospinning Technique. Inorg Chem Commun, 6(10): 1302—1303 (2003).
    87. Guan H, Shao C, Wen S, et al.A Novel Method for Preparing Co3O4 Nanofibers by Using Electrospun PVA/Cobalt Acetate Composite Fibers as Precursor. Mater Chem Phys, 2003,82(3): 1002—1006.
    88. Shao C, Guan H, Liu Y, et al. A Novel Method for Making ZrO2 Nanofibres Via an Electrospinning Technique. J Cryst Growth, 2004,267(1-2), 380—384.
    89. Li S, Shao C, Liu Y, et al. Nanofibers and nanoplatelets of MoO3 via an electrospinning technique. J Phys Chem Sol, 2006,67(8): 1869—1872
    90. Ding B, Ogawa T, Kim J, et al.Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning. Thin Solid Films,2008, 516 (9): 2495—2501
    91. Min K D, Youk J H, Kwark Y J, et al. Preparation of Inorganic Silica Nanofibers Contain -ing Silver Nanoparticles. Fibers and Polymer,s 2007, 8(6): 591—600
    92. Dong X, Wang J, Cui Q, et al. Preparation of LaFeO3 Porous Hollow Nanofibers by Electrospinning. International journal of Chemistry, 2009, 1(1): 13—17
    93. Zhao Y, Cao X, Jiang L, et al. Bio-mimic Multichannel Microtubes by a Facile Method. J Am Chem Soc, 2007,129(4):764—765.
    94. Welna D T, Bender J D, Wei X L, et al. Preparation of Boron–Carbide/Carbon Nano- fibers from a Poly(norbornenyldecaborane)Single-Source Precursor Via Electrostatic Spinning. Adv Mater, 2005,17(7):859—862
    95. Li D, McCann J T, Xia Y. Use of Electrospinning to Directly Fabricate Hollow Nano- fibers with Functionalized Inner and Outer Surfaces. Small, 2005,1(1): 83—86.
    96. Guan H, Shao C, Chen B, et al. Preparation and Characterization of NiO Nanofibres Via an Electrospinning Technique. Inorg Chem Commun. 2003,6(10): 1302—1303.
    97. Yu N, Shao C, Liu Y, et al. Nanofibers of LiMn2O4 by Electrospinning. J Colloid Interf Sci, 2005,285(1): 163—166.
    98. Sawicka M, Prasad A K, Gouma P I. Metal Oxide Nanowires for Use in Chemical Sens -ing Applications. Sensor Lett, 2005,3(1): 31—35.
    99. Fujishima A, Honda K. Electronchemical photolysis of water at a semiconductor electode. Nature, 1972, 238(5358):37—38
    100.高镰,郑珊,张青红著.纳米氧化锌光催化材料及应用[M].北京:化学工业出版社,2003. 40—41
    101.赵秀峰,孟宪锋,张志红,等. Pb掺杂TiO2薄膜的制备及光催化活性研究[J].无机材料学报,2004,19(1):140—146.
    102. Yang Y,Li X J,Chen J T,et al. Effect of doping mode on the photocatalytic activities of Mo/ TiO2. J Photochem Photobiol A,2004,163(3):517—522.
    103. Suda Y,Kawasaki H,Ueda T,et al. Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Films,2004,453–454(1):162—166.
    104. Yuan Z H, Jia J H, Zhang L D.Influence of co-doping of Zn(II)+Fe(III) on the photocatalytic activity of TiO2 for phenol degradation.Mater Chem Phys,2002,73(2-3):323—326.
    105.闫俊萍,唐子龙,张中太,等.TiO2双掺Cr, Sb的光催化性能研究[J].稀有金属材料与工程,2005,34(3):429—432.
    106. Jeong E D, Borse P H, Jang J S, et al. Hydrothermal synthesis of Cr and Fe co-doped TiO2 nanoparticle photocatalyst. J Ceram Proc Res, 2008, 9(3):250—253
    107. Yang P,Lu C,Hua N P,et al.Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater Lett,2002,57(4):794—801.
    108. Shi J W, Zheng J T, Hub Y, et al. Influence of Fe3+ and Ho3+ co-doping on the photo- catalytic activity of TiO2. Mater Chem Phys, 2007,106(2-3): 247—249
    109.王剑波,张景来,卢寿慈.金属共掺杂对TiO2光催化性能的影响[J].安徽理工大学学报(自然科学版),2004,24(3):61—64.
    110. Khan R, Kim S W, Kim T J, et al. Comparative study of the photocatalytic performance of boron–iron Co-doped and boron-doped TiO2 nanoparticles. Materials Chemistry and Physics ,2008,112 (1): 167—172
    111.李红,赵高凌,刘琴华,等.硅掺杂和硅钒共掺杂对TiO2光催化性能的影响[J].硅酸盐学报,2005,33(6):784—788
    112. Shen Y, Xiong T, Li T, et al.Tungsten and nitrogen co-doped TiO2 nano-powders with strong visible light response. Appl Catal B, 2008, 83(3-4): 177—185
    113. Yang Y, Wang P.Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol–gel process. Polymer , 2006, 47 (8): 2683—2688
    114.葛建华,王迎军,等.溶胶凝胶法在聚合物/无机纳米复合材料中的应用[J].材料科学与工程学报, 2004,122 (3): 442—445.
    115.陈龙武,甘礼华,岳天仪,等.超临界干燥法制备SiO2气凝胶的研究[J].高等学校化学学报, 1996,16(6): 840—843.,
    116. Dzenis, Y. Spinning continuous fibers for nanotechnology. Science, 2004,304: 1917—1921
    117.赵珊茸,孙大亮,郭世义,等.CMTD晶体的分解过程原子力显微镜实时观测研究(英文版)[J].人工晶体学报,2005,34(3):390—394
    118.王小平,刘援,等.磁控溅射制备YBCO超导薄膜的AFM研究[J].稀有金属, 2001, 25(6): 416—418.
    119.张平余,杜祖亮,薛群基.C60 LB膜的原子显微镜表征[J].电子显微学报. 2001,20 (4): 370—371
    120.何琳,李刚.检测纳米微粒粒径方法的研究[J].现代科学仪器,2003,(2):24—25
    121. Putthanarata S, Stribeck N, Fossey S A, et al. Investigation of the nanofibrils of silk fibers. Polymer, 2000, 41(21):7735—7747.
    122. Lee I, Evans B R, Woodward J. The mechanism of cellulase action on cotton fibers: evidence from atomic force microscopy. Ultramicroscopy,2000,82(1-4):213—221
    123.王永芝,杨清彪,杜建时,等.电纺丝技术:一种高效低耗的纳米纤维制备方法[J].化工新型材料,2005,33(6):12—14
    124. Shakesheff K M, Chen X, Davies M G. The Study of The Surface Degradation of Polymer Blends Using SIMS, XPS, SPR and AFM. Polym Prepr, 1995,36(1):827—829
    125. Wu N, Shao D, Wei Q, et al.Characterization of PVAc/TiO2 Hybrid Nanofibers: From Fibrous Morphologies to Molecular Structures. J Appl Polym Sci, 2009, 112(3) : 1481—1485
    126. Wongsasulak S, Kit K M, McClements D J, et al. The effect of solution properties on the morphology of ultrafine electrospun egg albumen–PEO composite fibers. Polymer 2007, 48(2): 448—457.
    127. Taylor G I, Electrically Driven Jets. Proc R Soc Lond A, 1969, 313(1515): 453—475
    128. Y?rdem O S, Papila M, Mencelo?lu Y Z. Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: An investigation by response surface methodology. Mater & Design, 2008 ,29 (1): 34—44
    129. Henriques C,Vidinha R, Botequim D, et al. A systematic study of solution and processing parameters on nanofiber morphology using a new electrospinning apparatus. J Nanosci Nanotechnol, 2009 , 9(6):3535—3545
    130. Lu C, Chen P, Li J, et al. Computer simulation of electrospinning. Part I. Effect of solvent in electrospinning.Polymer, 2006, 47(3):915—921
    131. Chen H, Snyder J D, Yossef A, et al .Electrospinning and solution properties of Nafion and poly(acrylic acid). Macromolecules, 2008, 41(1):128—135
    132. You Y, Lee S J, Min B M. Effect of solution properties on nanofibrous structure of electrospun poly(lactic-co-glycolic acid). J Appl Polym Sci, 2006, 99(3): 1214—1221
    133. Ryuji Inai, Masaya Kotaki, Seeram Ramakrishna.Structure and properties of electrospun PLLA single nanofibres. Nanotechnology,2005,16(2):208—213
    134. Fong H, Chun I,Reneker D H. Beaded nanofibers formed during electrospinning. Polymer, 1999,40 (16): 4585—4592
    135. Theron S A, Zussman E, Yarin A L.Experimental investigation of the governing parameters in the electrospinning of polymer solutions.Polymer, 2004,45(6): 2017—2030
    136. Larrondo L, John M R S.Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci Polym Phys, 1981, 19(6): 909—920.
    137. Baumgarten P K. Electrostatic spinning of acrylic microfibers.J Colloid Interface Sci, 1971,36(1): 71—79
    138. Wilm M S, Mann M. Electrospray and Taylor-Cone theory, Dole's beam of macromole- cules at last? Int J Mass Spectrom. 1994,136(2-3):167—180.
    139. Doshi J, Reneker D H. Electrospinning process and applications of electrospun fibers. J Electrostatics, 1995,35(2-3): 151—160.
    140. Antonio E, Senador J, Montgomery T S, et al. Electrospinning of Polymeric Nanofibers: Analysis of Jet Formation. Mat Res Soc Symp Proc,2001,661: KK5.9.1—5.9.6
    141. Tan S H, Inai R, Kotaki M, et al. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process, Polymer, 2005, 46(16): 6128—6134
    142.徐妍,张小哲,周持兴,等.PVC/重晶石纳米复合材料力学性能与形态研究[J].高分子材料科学与工程. 2007, 23(5): 145—148.
    143. Fennessey S F, Farris R J. Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer, 2004, 45(12):4217—4225.
    144. Wenzel R N. Resistance of solid surfaces to wetting by water .Ind Eng Chem, 1936, 28(8): 988—994
    145. Cassie A B D. Contact angle hysteresis on heterogeneous surfaces. Discuss Faraday Soc, 1948, 3: 11—16
    146.程帅,董云开,张向军.规则粗糙固体表面液体浸润性对表观接触角影响的研究[J].机械科学与技术.2007, 26(7): 822—827
    147. Ding B, Ogawa T, Kim J, et al. Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning. Thin Solid Films,2008,516(9):2495—2501
    148. Zhang H, Wen X, Wang Y. Synthesis and characterization of sulfate and dodecylbenzenesulfonate intercalated zinc– iron layered double hydroxides by one-step coprecipitation route. J Solid State Chem, 2007,180 (5): 1636—1647
    149.李从举,翟国钧,付中玉,等.TiO2纳米纤维无纺布的制备及光催化性能研究[J].无机化学学报,2006,22(11): 2061—2066.
    150.潘才元.高分子化学[M].合肥:中国科学技术大学出版社.1997.163—165
    151. Sijakovic-vujicic N, Gotic M, Music S, et al. Synthesis and microstructural properties of Fe-TiO2 nanocrystalline particles obtained by a modified sol-gel method. J Sol-Gel Sci Technol, 2004, 30(1): 5—19.
    152. Xu A W,Gao Y,Liu H Q.The preparation,characterization,and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J Catal,2002, 207(2): 151—157
    153. Yoon K H, Noh J S, Kwon C H, et al. Photocatalytic behavior of TiO2 thin films prepared by sol–gel process. Mater Chem Phys, 2006, 95(1): 79—83.
    154. Ferber J, Luther J. Modeling of Photovoltage and Photocurrent in Dye-Sensitized Titanium Dioxide Solar Cells. J Phys Chem B, 2001, 105 (21): 4895—4903
    155. Gomeza M, Rodrígueza J, Lindquist S E, et al. Photoelectrochemical studies of dye- sensitized polycrystalline titanium oxide thin films prepared by sputtering. Thin Solid Films. 1999, 342(1-2): 148—152
    156. Alfano O M, Bahnemann D, Cassano A et al. Photocatalysis in water environments using artificial and solar light . Catal Today, 2000, 58(2) :199—230
    157. Chen J, Ollis D F , Rulkens W H , et al . Kinetic processes of photocatalytic mineralize -ation of alcohols on metallized titanium dioxide. Water Res, 1999 , 33 (5) : 1173—1180
    158.吴辉,党炜,李成芳,等. TiO2光催化氧化亚甲基蓝的动力学研究[J].化学与生物工程, 2009 ,26(6):36—39
    159.侯亚奇,庄大明,张弓,等.影响TiO2薄膜光催化降解亚甲基蓝的因素[J].催化学报, 2004 , 25 (2): 96—101
    160. Qu P , Zhao J , Shen T ,et al.TiO2-assisted photodegradation of dyes: A study of two competitive primary processes in the degradation of RB in an aqueous TiO2 colloidal solution. J Mol Catal A,1998, 129 (2-3) : 257—268
    161.刘守新,刘鸿.光催化及光电催化基础与应用.北京:化学工业出版社.2006,51—55.
    162. Li M, Zhou S, Zhang Y, et al. One-step solvothermal preparation of TiO2/C composites and their visible-light photocatalytic activities. Appl Surf Sci, 2008,254(13):3762—3766
    163.唐怀军,张敏,曹志军,等.Fe3+掺杂TiO2光催化自洁玻璃的研制[J].玻璃与搪瓷, 2003,31(6):20—25.
    164. Kim D H, Hong H S, Kim S J, et al.Photocatalytic behaviors and structural characteriz -ation of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying J Alloys Compd, 2004,375(1-2):259—264
    165. Jho J H, Kim D H, Kim S J, et al. Synthesis and photocatalytic property of a mixture of anatase and rutile TiO2 doped with Fe by mechanical alloying process.J Alloys Compd, 2008,459(1-2):386—389
    166. Fumiaki S, Sho F, Katsutoshi S, et al. Catalytic behavior of Ni/ZrxTi1?xO2 and the effect of SiO2 doping in oxidative steam reforming of n-butane.Int J Hydr Ener, 2009, 34(19): 8046—8052
    167. Xu A W, Gao Y, Liu H Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J Catal. 2002 ,207(2): 151—157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700