用户名: 密码: 验证码:
人类ZO-1蛋白第二个PDZ结构域的溶液结构与功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞连接是存在于多细胞动物细胞间的一种特化结构,多存在于上皮组织。在脊椎动物上皮组织中,主要有三类细胞连接:紧密连接,粘性连接和间隙连接。每一种连接在形态、位置与功能上都各有不同。紧密连接在位置上是这三种连接上最靠近极性上皮细胞顶膜的,也是将相邻的细胞膜连的最为紧密的。功能上紧密连接负责控制小分子和离子在细胞间通路的通过,同时作为屏障阻碍细胞侧膜上膜蛋白在细胞顶膜和基底膜之间的流动从而维持上皮细胞的极性。粘性连接在位置上位于紧密连接之下,对相邻细胞的连接也没有紧密连接那么紧,粘性连接处的细胞间距在10-20纳米。缝隙连接又成为通讯连接,通过由connexin组成六聚体connexon彼此对接形成胞间通道,从而参与突触电信号的传递和胞间营养物质的共享等重要生命活动。
     ZO1蛋白首先在紧密连接中被发现,它在细胞膜处同构成紧密连接的主要的跨膜蛋白Claudins, occludin以及JAM等都有相互作用,在胞内又同细胞骨架蛋白以及一些核酸结合蛋白相互作用。ZO1在调节紧密连接的建立,细胞内信号的传递方面起着重要作用。同时,在缺乏紧密连接的细胞中也发现了ZO1蛋白,如粘性连接处和缝隙连接处。在粘性连接处,ZO1同链蛋白等粘性连接的主要组成部分catenin等有相互作用;在缝隙连接处,ZO1同多种连接子蛋白connexin相互作用,调节connexin在细胞质和细胞膜之间的分不平衡进而调控缝隙连接斑块的大小。
     我们的工作中,利用核磁共振波谱学(NMR)的方法解析了人类ZO1蛋白第二个PDZ结构域(ZO1PDZ2)的溶液结构。ZO1PDZ2为结构域交换的二体,通过将二体中每条多肽链N端的20个残基彼此交换形成非常稳定的同二聚体。这种同二聚体保留了PDZ结构域同配基相互作用所学要的位于α2与β2之间的疏水口袋。
     我们利用NMR化学位移扰动的方法以及等温量热实验进一步研究了ZO1PDZ2同其配基的相互作用,发现ZO1PDZ2表现出了II型PDZ结构域的结合特征,选择C端0位和-2位为疏水氨基酸残基的小肽相互作用。同时,我们确认了Cx45可以通过它的C端同ZO1相互作用,并将之前认为的Cx45的作用范围,即PDZ1-PDZ2精确到了PDZ2。此外,我们还发现ZO1PDZ2可以同Cx25和Cx59的C端小肽相互作用,这两种相互作用是没有文献报道过的,它们的生理学意义还有待进一步的实验发掘。
     通过插入突变实验,我们成功的在ZO1PDZ2的第22位缬氨酸之前插入了1-6氨基酸不等,其中当插入氨基酸达到3个或3个以上时,ZO1PDZ2会从同二聚体被突变成单体,分子量的确定是通过分子筛实验和沉降速率分析型超离心实验完成的。这种从二体到单体的突变成功为我们揭示出了ZO1PDZ2不同于经典PDZ结构域的单体构象而形成二体构象的原因。第22位缬氨酸刚好位于ZO1PDZ2按经典PDZ结构域定义的β2和β3之间,这里的残基较其他PDZ结构域少形成转角较难,所以β2同β3没有形成反平行的折叠片,而形成了一条连续的两倍长度的β链。ZO1PDZ2突变后的单体保留了同Cx43的相互作用,但相互作用强度大大减弱;同时该突变体不再能够同ZO2PDZ2以及ZO3PDZ2相互作用。
     找到了ZO1PDZ2形成二体的原因有利于我们进一步研究ZO1PDZ2在细胞内的功能。我们构建了全长ZO1的突变体,该突变体的PDZ2结构域被引入了如前所述的插入突变,因此ZO1突变体不再能够通过PDZ2二聚。MDCK细胞在紧密连接建立初期,其跨膜电阻(TER)曲线会经历依次迅速增高再回落,而ZO1缺失的细胞的TER曲线则一直较为平缓。我们将野生型ZO1及其突变体转染到内源ZO1被沉默的MDCK细胞中并们发现,野生型ZO1使得平缓TER曲线恢复了先迅速升高再降低的特点,而ZO1突变体没有这个能力。因此,我们认为ZO1蛋白中其PDZ2结构域的二聚对于紧密连接的建立是必须的。
Cell junctions exist within the tissue of a multicellular organism as a specialized structure. They are especially abundant in epithelial tissues. In vertebrates, there are three major types of cell junctions, which are tight jucntion (TJ), adherent junction (AJ) and gap junction (GJ). All the three junctions differ from each other in their morphous, location and function. TJs locate most apical in the lateral membrane, they connect the two adjencent cells tightly. TJ function as gate to regulate the ion and small molecule to pass through intercellular pathway. Furthermore, TJ maintain the polarity of epithelial cells by separating transmembrane proteins. AJ locates near TJ in epithelial cells, and will leave a 10-20 nm space between the adjacent cells. GJ is constituted by two anchored connexon which contains 6 connexins. As a channel, GJ allows the sharing of signals and nutrition between connecting cells.
     Zonular occludens 1(ZO1) was found in TJs, and later in AJs and GJs. As a scaffolding protein, ZO1 binds directly with caludins, occlundin and JAMs to regulate TJs. Also ZO1 associats with actin and ZONAB, which implied ZO1 was invovled in cell signaling, proliferation and differentiation. In cells which lack of TJs, ZO1 was found in AJs interacting with catenin. In GJs, many connexins have been reported to interact with ZO1. For examply, Cx43 intheract with ZO1 through its very C-terminal, and the interaction regulate the balance of the amount of Cx43 between GJ plaques and nonjunctional pools.
     In our work, we determined the solution structure of the second PDZ domain of ZO1 (ZO1PDZ2) which exhibited a highly stable domain-swapped homodimer form. 20 residues in the N-terminal in one chain swapped into the other chain. The homodiemr is very stable and reserved the hydrophobic pocket for PDZ binding ligands.
     By NMR chemical shift perturbation issue and ITC issue, ZO1PDZ2 was found to bind the C-terminal of connexins in a way of type II PDZ domain. Cx25, Cx45 and Cx59 were found to interact with ZO1PDZ2 for the first time, which need to be investigated more by in vivo experiments.
     ZO1PDZ2 could be converted to a monomeric form by inserting three or more residues in the middle of its secondβstrand, which implied the mechanism of the domain-swapping in ZO1PDZ2. FPLC issue and SV-AUC issue were employed to measure the molecular weight of ZO1PDZ2 and its mutants. the monomer mutant could bind the C-terminal peptide of Cx43, but in a weaker way. Furthermore, the interaction between ZO1PDZ2 and ZO2PDZ2 or ZO3PDZ2 was also abolished by the insertion mutation.
     A ZO1 mutant with an insertion into its PDZ2 domain was generated and in vivo investigations were carried out using transepithelial electrical resistance experiments in Madin-Darby canine kidney cells. The result indicated that, unlike expression of wild-type ZO1, expression of the ZO1 mutant could not rescue the delay of TJ assembly caused by endogenous ZO1 knockdown. This is the first direct experimental evidence for the important role of the ZO1 PDZ2 domain in the formation of TJs and these data strongly suggest that the domain-swapping of PDZ2 in vivo is essential for ZO1 functionality in TJ assembly.
引文
1. Cereijido M, Contreras RG, Shoshani L, Flores-Benitez D, Larre I. Tight junction and polarity interaction in the transporting epithelial phenotype. Biochimica et biophysica acta 2008;1778(3):770-793.
    2. Furuse M, Tsukita S. Claudins in occluding junctions of humans and flies. Trends in cell biology 2006;16(4):181-188.
    3. Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE. Structure and function of claudins. Biochimica et biophysica acta 2008;1778(3):631-645.
    4. Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annual review of physiology 2006;68:403-429.
    5. Aijaz S, Balda MS, Matter K. Tight junctions: molecular architecture and function. International review of cytology 2006;248:261-298.
    6. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL. High-throughput mapping of a dynamic signaling network in mammalian cells. Science (New York, NY 2005;307(5715):1621-1625.
    7. Wang Z, Mandell KJ, Parkos CA, Mrsny RJ, Nusrat A. The second loop of occludin is required for suppression of Raf1-induced tumor growth. Oncogene 2005;24(27):4412-4420.
    8. Yu AS, McCarthy KM, Francis SA, McCormack JM, Lai J, Rogers RA, Lynch RD, Schneeberger EE. Knockdown of occludin expression leads to diverse phenotypic alterations in epithelial cells. American journal of physiology 2005;288(6):C1231-1241.
    9. Gonzalez-Mariscal L, Lechuga S, Garay E. Role of tight junctions in cell proliferation and cancer. Progress in histochemistry and cytochemistry 2007;42(1):1-57.
    10. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S. Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. The Journal of cell biology 2005;171(6):939-945.
    11. Riazuddin S, Ahmed ZM, Fanning AS, Lagziel A, Kitajiri S, Ramzan K, Khan SN, Chattaraj P, Friedman PL, Anderson JM, Belyantseva IA, Forge A, Riazuddin S, Friedman TB. Tricellulin is a tight-junction protein necessary for hearing. American journal of human genetics 2006;79(6):1040-1051.
    12. Bazzoni G. The JAM family of junctional adhesion molecules. Current opinion in cell biology 2003;15(5):525-530.
    13. Bazzoni G, Martinez-Estrada OM, Orsenigo F, Cordenonsi M, Citi S, Dejana E. Interaction of junctional adhesion molecule with the tight junction components ZO-1, cingulin, and occludin. The Journal of biological chemistry 2000;275(27):20520-20526.
    14. Ebnet K, Aurrand-Lions M, Kuhn A, Kiefer F, Butz S, Zander K, Meyer zu Brickwedde MK, Suzuki A, Imhof BA, Vestweber D. The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity. Journal of cell science 2003;116(Pt 19):3879-3891.
    15. Ebnet K, Schulz CU, Meyer Zu Brickwedde MK, Pendl GG, Vestweber D. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. The Journal of biological chemistry 2000;275(36):27979-27988.
    16. Raschperger E, Engstrom U, Pettersson RF, Fuxe J. CLMP, a novel member of the CTX family and a new component of epithelial tight junctions. The Journal of biological chemistry 2004;279(1):796-804.
    17. Wegmann F, Ebnet K, Du Pasquier L, Vestweber D, Butz S. Endothelial adhesion molecule ESAM binds directly to the multidomain adaptor MAGI-1 and recruits it to cell contacts. Experimental cell research 2004;300(1):121-133.
    18. Bradfield PF, Nourshargh S, Aurrand-Lions M, Imhof BA. JAM family and related proteins in leukocyte migration (Vestweber series). Arteriosclerosis, thrombosis, and vascular biology 2007;27(10):2104-2112.
    19. Ebnet K, Suzuki A, Ohno S, Vestweber D. Junctional adhesion molecules (JAMs): more molecules with dual functions? Journal of cell science 2004;117(Pt 1):19-29.
    20. Weber C, Fraemohs L, Dejana E. The role of junctional adhesion molecules in vascular inflammation. Nature reviews 2007;7(6):467-477.
    21. Lemmers C, Michel D, Lane-Guermonprez L, Delgrossi MH, Medina E, Arsanto JP, Le Bivic A. CRB3 binds directly to Par6 and regulates the morphogenesis of the tight junctions in mammalian epithelial cells. Molecular biology of the cell 2004;15(3):1324-1333.
    22. Makarova O, Roh MH, Liu CJ, Laurinec S, Margolis B. Mammalian Crumbs3 is a small transmembrane protein linked to protein associated with Lin-7 (Pals1). Gene 2003;302(1-2):21-29.
    23. Roh MH, Fan S, Liu CJ, Margolis B. The Crumbs3-Pals1 complex participates in the establishment of polarity in mammalian epithelial cells. Journal of cell science 2003;116(Pt 14):2895-2906.
    24. Hurd TW, Gao L, Roh MH, Macara IG, Margolis B. Direct interaction of two polarity complexes implicated in epithelial tight junction assembly. Nature cell biology 2003;5(2):137-142.
    25. Fan S, Fogg V, Wang Q, Chen XW, Liu CJ, Margolis B. A novel Crumbs3 isoform regulates cell division and ciliogenesis via importin beta interactions. The Journal of cell biology 2007;178(3):387-398.
    26. Osler ME, Chang MS, Bader DM. Bves modulates epithelial integrity through an interaction at the tight junction. Journal of cell science 2005;118(Pt 20):4667-4678.
    27. Yamada S, Nelson WJ. Synapses: sites of cell recognition, adhesion, and functional specification. Annual review of biochemistry 2007;76:267-294.
    28. Guillemot L, Paschoud S, Pulimeno P, Foglia A, Citi S. The cytoplasmic plaque of tight junctions: a scaffolding and signalling center. Biochimica et biophysica acta 2008;1778(3):601-613.
    29. Matter K, Balda MS. Epithelial tight junctions, gene expression and nucleo-junctional interplay. Journal of cell science 2007;120(Pt 9):1505-1511.
    30. Paris L, Tonutti L, Vannini C, Bazzoni G. Structural organization of the tight junctions. Biochimica et biophysica acta 2008;1778(3):646-659.
    31. Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 2006;126(4):741-754.
    32. Meyer TN, Schwesinger C, Denker BM. Zonula occludens-1 is a scaffolding protein for signaling molecules. Galpha(12) directly binds to the Src homology 3 domain and regulates paracellular permeability in epithelial cells. The Journal of biological chemistry 2002;277(28):24855-24858.
    33. Assemat E, Bazellieres E, Pallesi-Pocachard E, Le Bivic A, Massey-Harroche D. Polarity complex proteins. Biochimica et biophysica acta 2008;1778(3):614-630.
    34. Wang Q, Margolis B. Apical junctional complexes and cell polarity. Kidney international 2007;72(12):1448-1458.
    35. Michel D, Arsanto JP, Massey-Harroche D, Beclin C, Wijnholds J, Le Bivic A. PATJ connects and stabilizes apical and lateral components of tight junctions in human intestinal cells. Journal of cell science 2005;118(Pt 17):4049-4057.
    36. Roh MH, Liu CJ, Laurinec S, Margolis B. The carboxyl terminus of zona occludens-3 binds and recruits a mammalian homologue of discs lost to tight junctions. The Journal of biological chemistry 2002;277(30):27501-27509.
    37. Yeaman C, Grindstaff KK, Nelson WJ. Mechanism of recruiting Sec6/8 (exocyst) complex to the apical junctional complex during polarization of epithelial cells. Journal of cell science 2004;117(Pt 4):559-570.
    38. Balda MS, Matter K. Tight junctions and the regulation of gene expression. Biochimica et biophysica acta 2009;1788(4):761-767.
    39. McKenzie JA, Ridley AJ. Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. Journal of cellular physiology 2007;213(1):221-228.
    40. Nusrat A, Turner JR, Madara JL. Molecular physiology and pathophysiology of tight junctions. IV. Regulation of tight junctions by extracellular stimuli: nutrients, cytokines, and immune cells. Am J Physiol Gastrointest Liver Physiol 2000;279(5):G851-857.
    41. Utech M, Bruwer M, Nusrat A. Tight junctions and cell-cell interactions. Methods in molecular biology (Clifton, NJ 2006;341:185-195.
    42. Balda MS, Matter K. Transmembrane proteins of tight junctions. Seminars in cell & developmental biology 2000;11(4):281-289.
    43. Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. American journal of physiology 2004;286(6):C1213-1228.
    44. Shen L, Weber CR, Turner JR. The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. The Journal of cell biology 2008;181(4):683-695.
    45. Huber D, Balda MS, Matter K. Occludin modulates transepithelial migration of neutrophils. The Journal of biological chemistry 2000;275(8):5773-5778.
    46. Sourisseau T, Georgiadis A, Tsapara A, Ali RR, Pestell R, Matter K, Balda MS. Regulation of PCNA and cyclin D1 expression and epithelial morphogenesis by the ZO-1-regulated transcription factor ZONAB/DbpA. Molecular and cellular biology 2006;26(6):2387-2398.
    47. Huerta M, Munoz R, Tapia R, Soto-Reyes E, Ramirez L, Recillas-Targa F, Gonzalez-Mariscal L, Lopez-Bayghen E. Cyclin D1 is transcriptionally down-regulated by ZO-2 via an E box and the transcription factor c-Myc. Molecular biology of the cell 2007;18(12):4826-4836.
    48. Traweger A, Fuchs R, Krizbai IA, Weiger TM, Bauer HC, Bauer H. The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor-B. The Journal of biological chemistry 2003;278(4):2692-2700.
    49. Aijaz S, D'Atri F, Citi S, Balda MS, Matter K. Binding of GEF-H1 to the tight junction-associated adaptor cingulin results in inhibition of Rho signaling and G1/S phase transition. Developmental cell 2005;8(5):777-786.
    50. Guillemot L, Citi S. Cingulin regulates claudin-2 expression and cell proliferation through the small GTPase RhoA. Molecular biology of the cell 2006;17(8):3569-3577.
    51. Katsuno T, Umeda K, Matsui T, Hata M, Tamura A, Itoh M, Takeuchi K, Fujimori T, Nabeshima Y, Noda T, Tsukita S, Tsukita S. Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Molecular biology of the cell 2008;19(6):2465-2475.
    52. Xu J, Kausalya PJ, Phua DC, Ali SM, Hossain Z, Hunziker W. Early embryonic lethality of mice lacking ZO-2, but Not ZO-3, reveals critical and nonredundant roles for individual zonula occludens proteins in mammalian development. Molecular and cellular biology 2008;28(5):1669-1678.
    53. Shin K, Fogg VC, Margolis B. Tight junctions and cell polarity. Annual review of cell and developmental biology 2006;22:207-235.
    54. Helfrich I, Schmitz A, Zigrino P, Michels C, Haase I, le Bivic A, Leitges M, Niessen CM. Role of aPKC isoforms and their binding partners Par3 and Par6 in epidermal barrier formation. The Journal of investigative dermatology 2007;127(4):782-791.
    55. Wu X, Li S, Chrostek-Grashoff A, Czuchra A, Meyer H, Yurchenco PD, Brakebusch C. Cdc42 is crucial for the establishment of epithelial polarity during early mammalian development. Dev Dyn 2007;236(10):2767-2778.
    56. Chen X, Macara IG. Par-3 controls tight junction assembly through the Rac exchange factor Tiam1. Nature cell biology 2005;7(3):262-269.
    57. Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, Schlingmann KP, Schmid M, Rodriguez-Soriano J, Ariceta G, Cano F, Enriquez R, Juppner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhauss SC, Nurnberg P, Weber S. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. American journal of human genetics 2006;79(5):949-957.
    58. Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari G, Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science (New York, NY 1999;285(5424):103-106.
    59. Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN, Ploplis B, Belyantseva I, Ben-Yosef T, Liburd NA, Morell RJ, Kachar B, Wu DK, Griffith AJ, Riazuddin S, Friedman TB. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 2001;104(1):165-172.
    60. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacological reviews 2005;57(2):173-185.
    61. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science (New York, NY 2001;293(5532):1107-1112.
    62. Kahle KT, Macgregor GG, Wilson FH, Van Hoek AN, Brown D, Ardito T, Kashgarian M, Giebisch G, Hebert SC, Boulpaep EL, Lifton RP. Paracellular Cl- permeability is regulated by WNK4 kinase: insight into normal physiology and hypertension. Proceedings of the National Academy of Sciences of the United States of America 2004;101(41):14877-14882.
    63. Yamauchi K, Rai T, Kobayashi K, Sohara E, Suzuki T, Itoh T, Suda S, Hayama A, Sasaki S, Uchida S. Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proceedings of the National Academy of Sciences of the United States of America 2004;101(13):4690-4694.
    64. Richardson C, Alessi DR. The regulation of salt transport and blood pressure by the WNK-SPAK/OSR1 signalling pathway. Journal of cell science 2008;121(Pt 20):3293-3304.
    65. Chlenski A, Ketels KV, Korovaitseva GI, Talamonti MS, Oyasu R, Scarpelli DG. Organization and expression of the human zo-2 gene (tjp-2) in normal and neoplastic tissues. Biochimica et biophysica acta 2000;1493(3):319-324.
    66. Chlenski A, Ketels KV, Tsao MS, Talamonti MS, Anderson MR, Oyasu R, Scarpelli DG. Tight junction protein ZO-2 is differentially expressed in normal pancreatic ducts compared to human pancreatic adenocarcinoma. International journal of cancer 1999;82(1):137-144.
    67. Hoover KB, Liao SY, Bryant PJ. Loss of the tight junction MAGUK ZO-1 in breast cancer: relationship to glandular differentiation and loss of heterozygosity. The American journal of pathology 1998;153(6):1767-1773.
    68. Kleeff J, Shi X, Bode HP, Hoover K, Shrikhande S, Bryant PJ, Korc M, Buchler MW, Friess H. Altered expression and localization of the tight junction protein ZO-1 in primary and metastatic pancreatic cancer. Pancreas 2001;23(3):259-265.
    69. Martin TA, Watkins G, Mansel RE, Jiang WG. Loss of tight junction plaque molecules in breast cancer tissues is associated with a poor prognosis in patients with breast cancer. Eur J Cancer 2004;40(18):2717-2725.
    70. Morita K, Tsukita S, Miyachi Y. Tight junction-associated proteins (occludin, ZO-1, claudin-1, claudin-4) in squamous cell carcinoma and Bowen's disease. The British journal of dermatology 2004;151(2):328-334.
    71. Resnick MB, Konkin T, Routhier J, Sabo E, Pricolo VE. Claudin-1 is a strong prognostic indicator in stage II colonic cancer: a tissue microarray study. Mod Pathol 2005;18(4):511-518.
    72. Glaunsinger BA, Weiss RS, Lee SS, Javier R. Link of the unique oncogenic properties of adenovirus type 9 E4-ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2. The EMBO journal 2001;20(20):5578-5586.
    73. Latorre IJ, Roh MH, Frese KK, Weiss RS, Margolis B, Javier RT. Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. Journal of cell science 2005;118(Pt 18):4283-4293.
    74. Arakawa Y, Kajino K, Kano S, Tobita H, Hayashi J, Yasen M, Moriyama M, Arakawa Y, Hino O. Transcription of dbpA, a Y box binding protein, is positively regulated by E2F1: implications in hepatocarcinogenesis. Biochemical and biophysical research communications 2004;322(1):297-302.
    75. Gotoh K, Nonoguchi K, Higashitsuji H, Kaneko Y, Sakurai T, Sumitomo Y, Itoh K, Subjeck JR, Fujita J. Apg-2 has a chaperone-like activity similar to Hsp110 and is overexpressed in hepatocellular carcinomas. FEBS letters 2004;560(1-3):19-24.
    76. Hayashi J, Kajino K, Umeda T, Takano S, Arakawa Y, Kudo M, Hino O. Somatic mutation and SNP in the promoter of dbpA and human hepatocarcinogenesis. International journal of oncology 2002;21(4):847-850.
    77. Dhawan P, Singh AB, Deane NG, No Y, Shiou SR, Schmidt C, Neff J, Washington MK, Beauchamp RD. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. The Journal of clinical investigation 2005;115(7):1765-1776.
    78. Tiwari-Woodruff SK, Buznikov AG, Vu TQ, Micevych PE, Chen K, Kornblum HI, Bronstein JM. OSP/claudin-11 forms a complex with a novel member of the tetraspanin super family and beta1 integrin and regulates proliferation and migration of oligodendrocytes. The Journal of cell biology 2001;153(2):295-305.
    79. Runswick S, Mitchell T, Davies P, Robinson C, Garrod DR. Pollen proteolytic enzymes degrade tight junctions. Respirology (Carlton, Vic 2007;12(6):834-842.
    80. Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, Tsukita S. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: Evidence for direct involvement of claudins in tight junction barrier. The Journal of cell biology 1999;147(1):195-204.
    81. Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod DR, Cannell MB, Robinson C. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. The Journal of clinical investigation 1999;104(1):123-133.
    82. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM. Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 2007;446(7137):801-805.
    83. Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermody TS. Junction adhesion molecule is a receptor for reovirus. Cell 2001;104(3):441-451.
    84. Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proceedings of the National Academy of Sciences of the United States of America 2001;98(26):15191-15196.
    85. Walters RW, Freimuth P, Moninger TO, Ganske I, Zabner J, Welsh MJ. Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell 2002;110(6):789-799.
    86. Nava P, Lopez S, Arias CF, Islas S, Gonzalez-Mariscal L. The rotavirus surface protein VP8 modulates the gate and fence function of tight junctions in epithelial cells. Journal of cell science 2004;117(Pt 23):5509-5519.
    87. Pritchard DM, Crabtree JE. Helicobacter pylori and gastric cancer. Current opinion in gastroenterology 2006;22(6):620-625.
    88. Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science (New York, NY 2003;300(5624):1430-1434.
    89. Gumbiner BM. Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 2005;6(8):622-634.
    90. Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes & development 2006;20(23):3199-3214.
    91. Nishimura T, Takeichi M. Remodeling of the adherens junctions during morphogenesis. Current topics in developmental biology 2009;89:33-54.
    92. Farquhar MG, Palade GE. Junctional complexes in various epithelia. The Journal of cell biology 1963;17:375-412.
    93. Hirokawa N, Heuser JE. Quick-freeze, deep-etch visualization of the cytoskeleton beneath surface differentiations of intestinal epithelial cells. The Journal of cell biology 1981;91(2 Pt 1):399-409.
    94. Miyaguchi K. Ultrastructure of the zonula adherens revealed by rapid-freeze deep-etching. Journal of structural biology 2000;132(3):169-178.
    95. Yonemura S, Itoh M, Nagafuchi A, Tsukita S. Cell-to-cell adherens junction formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. Journal of cell science 1995;108 ( Pt 1):127-142.
    96. Uchida N, Honjo Y, Johnson KR, Wheelock MJ, Takeichi M. The catenin/cadherin adhesion system is localized in synaptic junctions bordering transmitter release zones. The Journal of cell biology 1996;135(3):767-779.
    97. Takeichi S, Otsuka H, Kimura S. Studies on tumors produced by cells transformed with herpes simplex virus type 2. Gann = Gan 1977;68(5):653-661.
    98. Yoshida C, Takeichi M. Teratocarcinoma cell adhesion: identification of a cell-surface protein involved in calcium-dependent cell aggregation. Cell 1982;28(2):217-224.
    99. Yoshida-Noro C, Suzuki N, Takeichi M. Molecular nature of the calcium-dependent cell-cell adhesion system in mouse teratocarcinoma and embryonic cells studied with a monoclonal antibody. Developmental biology 1984;101(1):19-27.
    100. Nakanishi H, Takai Y. Roles of nectins in cell adhesion, migration and polarization. Biological chemistry 2004;385(10):885-892.
    101. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science (New York, NY 1991;251(5000):1451-1455.
    102. Pokutta S, Weis WI. Structure and mechanism of cadherins and catenins in cell-cell contacts. Annual review of cell and developmental biology 2007;23:237-261.
    103. Perez-Moreno M, Fuchs E. Catenins: keeping cells from getting their signals crossed. Developmental cell 2006;11(5):601-612.
    104. Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development (Cambridge, England) 1988;102(4):639-655.
    105. Overduin M, Harvey TS, Bagby S, Tong KI, Yau P, Takeichi M, Ikura M. Solution structure of the epithelial cadherin domain responsible for selective cell adhesion. Science (New York, NY 1995;267(5196):386-389.
    106. Pokutta S, Herrenknecht K, Kemler R, Engel J. Conformational changes of the recombinant extracellular domain of E-cadherin upon calcium binding. European journal of biochemistry / FEBS 1994;223(3):1019-1026.
    107. Troyanovsky S. Cadherin dimers in cell-cell adhesion. European journal of cell biology 2005;84(2-3):225-233.
    108. Zhang Y, Sivasankar S, Nelson WJ, Chu S. Resolving cadherin interactions and binding cooperativity at the single-molecule level. Proceedings of the National Academy of Sciences of the United States of America 2009;106(1):109-114.
    109. Nose A, Nagafuchi A, Takeichi M. Expressed recombinant cadherins mediate cell sorting in model systems. Cell 1988;54(7):993-1001.
    110. Oda H, Tagawa K, Akiyama-Oda Y. Diversification of epithelial adherens junctions with independent reductive changes in cadherin form: identification of potential molecular synapomorphies among bilaterians. Evolution & development 2005;7(5):376-389.
    111. Oda H, Uemura T, Harada Y, Iwai Y, Takeichi M. A Drosophila homolog of cadherin associated with armadillo and essential for embryonic cell-cell adhesion. Developmental biology 1994;165(2):716-726.
    112. Iwai Y, Usui T, Hirano S, Steward R, Takeichi M, Uemura T. Axon patterning requires DN-cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron 1997;19(1):77-89.
    113. Cox EA, Tuskey C, Hardin J. Cell adhesion receptors in C. elegans. Journal of cell science 2004;117(Pt 10):1867-1870.
    114. Wheeler GN, Buxton RS, Parker AE, Arnemann J, Rees DA, King IA, Magee AI. Desmosomal glycoproteins I, II and III: novel members of the cadherin superfamily. Biochemical Society transactions 1991;19(4):1060-1064.
    115. Buxton RS, Magee AI. Structure and interactions of desmosomal and other cadherins. Seminars in cell biology 1992;3(3):157-167.
    116. Redies C, Vanhalst K, Roy F. delta-Protocadherins: unique structures and functions. Cell Mol Life Sci 2005;62(23):2840-2852.
    117. Morishita H, Yagi T. Protocadherin family: diversity, structure, and function. Current opinion in cell biology 2007;19(5):584-592.
    118. Saburi S, McNeill H. Organising cells into tissues: new roles for cell adhesion molecules in planar cell polarity. Current opinion in cell biology 2005;17(5):482-488.
    119. Tanoue T, Takeichi M. New insights into Fat cadherins. Journal of cell science 2005;118(Pt 11):2347-2353.
    120. Takeichi M. The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 2007;8(1):11-20.
    121.Holthofer B, Windoffer R, Troyanovsky S, Leube RE. Structure and function of desmosomes. International review of cytology 2007;264:65-163.
    122. Chen X, Gumbiner BM. Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity. The Journal of cell biology 2006;174(2):301-313.
    123. Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. Journal of molecular biology 2000;299(3):551-572.
    124. Strutt H, Strutt D. Long-range coordination of planar polarity in Drosophila. Bioessays 2005;27(12):1218-1227.
    125. Usui T, Shima Y, Shimada Y, Hirano S, Burgess RW, Schwarz TL, Takeichi M, Uemura T. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 1999;98(5):585-595.
    126. Tachibana K, Nakanishi H, Mandai K, Ozaki K, Ikeda W, Yamamoto Y, Nagafuchi A, Tsukita S, Takai Y. Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins. The Journal of cell biology 2000;150(5):1161-1176.
    127. Martinez-Rico C, Pincet F, Perez E, Thiery JP, Shimizu K, Takai Y, Dufour S. Separation force measurements reveal different types of modulation of E-cadherin-based adhesion by nectin-1 and -3. The Journal of biological chemistry 2005;280(6):4753-4760.
    128. Togashi H, Miyoshi J, Honda T, Sakisaka T, Takai Y, Takeichi M. Interneurite affinity is regulated by heterophilic nectin interactions in concert with the cadherin machinery. The Journal of cell biology 2006;174(1):141-151.
    129. Meng W, Takeichi M. Adherens junction: molecular architecture and regulation. Cold Spring Harbor perspectives in biology 2009;1(6):a002899.
    130. Lecuit T, Lenne PF. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat Rev Mol Cell Biol 2007;8(8):633-644.
    131. Nakao S, Platek A, Hirano S, Takeichi M. Contact-dependent promotion of cell migration by the OL-protocadherin-Nap1 interaction. The Journal of cell biology 2008;182(2):395-410.
    118. Saburi S, McNeill H. Organising cells into tissues: new roles for cell adhesion molecules in planar cell polarity. Current opinion in cell biology 2005;17(5):482-488.
    119. Tanoue T, Takeichi M. New insights into Fat cadherins. Journal of cell science 2005;118(Pt 11):2347-2353.
    120. Takeichi M. The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 2007;8(1):11-20.
    121.Holthofer B, Windoffer R, Troyanovsky S, Leube RE. Structure and function of desmosomes. International review of cytology 2007;264:65-163.
    122. Chen X, Gumbiner BM. Paraxial protocadherin mediates cell sorting and tissue morphogenesis by regulating C-cadherin adhesion activity. The Journal of cell biology 2006;174(2):301-313.
    123. Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. Journal of molecular biology 2000;299(3):551-572.
    124. Strutt H, Strutt D. Long-range coordination of planar polarity in Drosophila. Bioessays 2005;27(12):1218-1227.
    125. Usui T, Shima Y, Shimada Y, Hirano S, Burgess RW, Schwarz TL, Takeichi M, Uemura T. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 1999;98(5):585-595.
    126. Tachibana K, Nakanishi H, Mandai K, Ozaki K, Ikeda W, Yamamoto Y, Nagafuchi A, Tsukita S, Takai Y. Two cell adhesion molecules, nectin and cadherin, interact through their cytoplasmic domain-associated proteins. The Journal of cell biology 2000;150(5):1161-1176.
    127. Martinez-Rico C, Pincet F, Perez E, Thiery JP, Shimizu K, Takai Y, Dufour S. Separation force measurements reveal different types of modulation of E-cadherin-based adhesion by nectin-1 and -3. The Journal of biological chemistry 2005;280(6):4753-4760.
    128. Togashi H, Miyoshi J, Honda T, Sakisaka T, Takai Y, Takeichi M. Interneurite affinity is regulated by heterophilic nectin interactions in concert with the cadherin machinery. The Journal of cell biology 2006;174(1):141-151.
    129. Meng W, Takeichi M. Adherens junction: molecular architecture and regulation. Cold Spring Harbor perspectives in biology 2009;1(6):a002899.
    130. Lecuit T, Lenne PF. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat Rev Mol Cell Biol 2007;8(8):633-644.
    131. Nakao S, Platek A, Hirano S, Takeichi M. Contact-dependent promotion of cell migration by the OL-protocadherin-Nap1 interaction. The Journal of cell biology 2008;182(2):395-410.retina results in decreased gap junctional communication between AII amacrine cells. The Journal of biological chemistry 2006;281(44):33163-33171.
    146. Kothmann WW, Li X, Burr GS, O'Brien J. Connexin 35/36 is phosphorylated at regulatory sites in the retina. Visual neuroscience 2007;24(3):363-375.
    147. Segretain D, Falk MM. Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. Biochimica et biophysica acta 2004;1662(1-2):3-21.
    148. Solan JL, Lampe PD. Key connexin 43 phosphorylation events regulate the gap junction life cycle. The Journal of membrane biology 2007;217(1-3):35-41.
    149. Laird DW, Castillo M, Kasprzak L. Gap junction turnover, intracellular trafficking, and phosphorylation of connexin43 in brefeldin A-treated rat mammary tumor cells. The Journal of cell biology 1995;131(5):1193-1203.
    150. Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Hori M, Tada M. Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. The Journal of biological chemistry 1998;273(21):12725-12731.
    151. Hunter AW, Barker RJ, Zhu C, Gourdie RG. Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Molecular biology of the cell 2005;16(12):5686-5698.
    152. Weidmann S. The electrical constants of Purkinje fibres. The Journal of physiology 1952;118(3):348-360.
    153. Furshpan EJ, Potter DD. Mechanism of nerve-impulse transmission at a crayfish synapse. Nature 1957;180(4581):342-343.
    154. Stumpel F, Ott T, Willecke K, Jungermann K. Connexin 32 gap junctions enhance stimulation of glucose output by glucagon and noradrenaline in mouse liver. Hepatology (Baltimore, Md 1998;28(6):1616-1620.
    155. Subak-Sharpe H, Burk RR, Pitts JD. Metabolic co-operation between biochemically marked mammalian cells in tissue culture. Journal of cell science 1969;4(2):353-367.
    156. Wong CW, Christen T, Roth I, Chadjichristos CE, Derouette JP, Foglia BF, Chanson M, Goodenough DA, Kwak BR. Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nature medicine 2006;12(8):950-954.
    1. Balda MS, Matter K. Tight junctions at a glance. Journal of cell science 2008;121(Pt 22):3677-3682.
    2. Balda MS, Matter K. Tight junctions and the regulation of gene expression. Biochimica et biophysica acta 2009;1788(4):761-767.
    3. Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE. Tight junction proteins. Progress in biophysics and molecular biology 2003;81(1):1-44.
    4. Schneeberger EE, Lynch RD. The tight junction: a multifunctional complex. American journal of physiology 2004;286(6):C1213-1228.
    5. Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. The Journal of cell biology 1986;103(3):755-766.
    6. Anderson JM, Fanning AS, Lapierre L, Van Itallie CM. Zonula occludens (ZO)-1 and ZO-2: membrane-associated guanylate kinase homologues (MAGuKs) of the tight junction. Biochemical Society transactions 1995;23(3):470-475.
    7. Gonzalez-Mariscal L, Betanzos A, Avila-Flores A. MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol 2000;11(4):315-324.
    8. Willott E, Balda MS, Fanning AS, Jameson B, Van Itallie C, Anderson JM. The tight junction protein ZO-1 is homologous to the Drosophila discs-large tumor suppressor protein of septate junctions. Proc Natl Acad Sci U S A 1993;90(16):7834-7838.
    9. Cereijido M, Contreras RG, Shoshani L, Flores-Benitez D, Larre I. Tight junction and polarity interaction in the transporting epithelial phenotype. Biochimica et biophysica acta 2008;1778(3):770-793.
    10. Li X, Olson C, Lu S, Kamasawa N, Yasumura T, Rash JE, Nagy JI. Neuronal connexin36 association with zonula occludens-1 protein (ZO-1) in mouse brain and interaction with the first PDZ domain of ZO-1. Eur J Neurosci 2004;19(8):2132-2146.
    11. Huber TB, Schmidts M, Gerke P, Schermer B, Zahn A, Hartleben B, Sellin L, Walz G, Benzing T. The carboxyl terminus of Neph family members binds to the PDZ domain protein zonula occludens-1. The Journal of biological chemistry 2003;278(15):13417-13421.
    12. Itoh M, Morita K, Tsukita S. Characterization of ZO-2 as a MAGUK family member associated with tight as well as adherens junctions with a binding affinity to occludin and alpha catenin. The Journal of biological chemistry 1999;274(9):5981-5986.
    13. Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR. ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. The Journal of cell biology 1998;141(1):199-208.
    14. Giepmans BN, Moolenaar WH. The gap junction protein connexin43 interacts with the second PDZ domain of the zona occludens-1 protein. Curr Biol 1998;8(16):931-934.
    15. Penes MC, Li X, Nagy JI. Expression of zonula occludens-1 (ZO-1) and the transcription factor ZO-1-associated nucleic acid-binding protein (ZONAB)-MsY3 in glial cells and colocalization at oligodendrocyte and astrocyte gap junctions in mouse brain. Eur J Neurosci 2005;22(2):404-418.
    16. Nielsen PA, Beahm DL, Giepmans BN, Baruch A, Hall JE, Kumar NM. Molecular cloning, functional expression, and tissue distribution of a novel human gap junction-forming protein, connexin-31.9. Interaction with zona occludens protein-1. The Journal of biological chemistry 2002;277(41):38272-38283.
    17. Nielsen PA, Baruch A, Shestopalov VI, Giepmans BN, Dunia I, Benedetti EL, Kumar NM. Lens connexins alpha3Cx46 and alpha8Cx50 interact with zonula occludens protein-1 (ZO-1). Molecular biology of the cell 2003;14(6):2470-2481.
    18. Li X, Ionescu AV, Lynn BD, Lu S, Kamasawa N, Morita M, Davidson KG, Yasumura T, Rash JE, Nagy JI. Connexin47, connexin29 and connexin32 co-expression in oligodendrocytes and Cx47 association with zonula occludens-1 (ZO-1) in mouse brain. Neuroscience 2004;126(3):611-630.
    19. van Zeijl L, Ponsioen B, Giepmans BN, Ariaens A, Postma FR, Varnai P, Balla T, Divecha N, Jalink K, Moolenaar WH. Regulation of connexin43 gap junctional communication by phosphatidylinositol 4,5-bisphosphate. The Journal of cell biology 2007;177(5):881-891.
    20. Tsapara A, Matter K, Balda MS. The heat-shock protein Apg-2 binds to the tight junction protein ZO-1 and regulates transcriptional activity of ZONAB. Molecular biology of the cell 2006;17(3):1322-1330.
    21. Schmidt A, Utepbergenov DI, Krause G, Blasig IE. Use of surface plasmon resonance for real-time analysis of the interaction of ZO-1 and occludin. Biochemical and biophysical research communications 2001;288(5):1194-1199.
    22. Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal;8:8.
    23. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley LC. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science (New York, NY 1997;275(5296):73-77.
    24. Aasland R, Abrams C, Ampe C, Ball LJ, Bedford MT, Cesareni G, Gimona M, Hurley JH, Jarchau T, Lehto VP, Lemmon MA, Linding R, Mayer BJ, Nagai M, Sudol M, Walter U, Winder SJ. Normalization of nomenclature for peptide motifs as ligands of modular protein domains. FEBS letters 2002;513(1):141-144.
    25. Vaccaro P, Dente L. PDZ domains: troubles in classification. FEBS letters 2002;512(1-3):345-349.
    26. Hillier BJ, Christopherson KS, Prehoda KE, Bredt DS, Lim WA. Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science (New York, NY 1999;284(5415):812-815.
    27. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, Froehner SC, Bredt DS. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha1-syntrophin mediated by PDZ domains. Cell 1996;84(5):757-767.
    28. Gee SH, Sekely SA, Lombardo C, Kurakin A, Froehner SC, Kay BK. Cyclic peptides as non-carboxyl-terminal ligands of syntrophin PDZ domains. The Journal of biological chemistry 1998;273(34):21980-21987.
    29. Penkert RR, DiVittorio HM, Prehoda KE. Internal recognition through PDZ domain plasticity in the Par-6-Pals1 complex. Nat Struct Mol Biol 2004;11(11):1122-1127.
    30. Lee HJ, Wang NX, Shao Y, Zheng JJ. Identification of tripeptides recognized by the PDZ domain of Dishevelled. Bioorganic & medicinal chemistry 2009;17(4):1701-1708.
    31. Kimple ME, Siderovski DP, Sondek J. Functional relevance of the disulfide-linked complex of the N-terminal PDZ domain of InaD with NorpA. The EMBO journal 2001;20(16):4414-4422.
    32. Cheyette BN, Waxman JS, Miller JR, Takemaru K, Sheldahl LC, Khlebtsova N, Fox EP, Earnest T, Moon RT. Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation. Developmental cell 2002;2(4):449-461.
    33. Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh JH, Reva B, Held HA, Appleton BA, Evangelista M, Wu Y, Xin X, Chan AC, Seshagiri S, Lasky LA, Sander C, Boone C, Bader GD, Sidhu SS. A specificity map for the PDZ domain family. PLoS biology 2008;6(9):e239.
    34. Young L, Dong Q. Two-step total gene synthesis method. Nucleic Acids Res 2004;32(7):e59.
    35. Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophysical journal 2000;78(3):1606-1619.
    36. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 1995;6(3):277-293.
    37. Goddard TD, Kneller DG. SPARKY 3. University of California, San Francisco.
    38. Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 2009;44(4):213-223.
    39. Cornilescu G, Delaglio F, Bax A. Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 1999;13(3):289-302.
    40. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 1998;54(Pt 5):905-921.
    41. Sayle RA, Milner-White EJ. RASMOL: biomolecular graphics for all. Trends in biochemical sciences 1995;20(9):374.
    42. Koradi R, Billeter M, Wuthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 1996;14(1):51-55, 29-32.
    43. Delano WL. The PyMOL Molecular Graphics System. ; 2008.
    44. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 1996;8(4):477-486.
    45. Fanning AS, Lye MF, Anderson JM, Lavie A. Domain swapping within PDZ2 is responsible for dimerization of ZO proteins. The Journal of biological chemistry 2007;282(52):37710-37716.
    46. Wu J, Yang Y, Zhang J, Ji P, Du W, Jiang P, Xie D, Huang H, Wu M, Zhang G, Wu J, Shi Y. Domain-swapped dimerization of the second PDZ domain of ZO2 may provide a structural basis for the polymerization of claudins. The Journal of biological chemistry 2007;282(49):35988-35999.
    47. Chen J, Pan L, Wei Z, Zhao Y, Zhang M. Domain-swapped dimerization of ZO-1 PDZ2 generates specific and regulatory connexin43-binding sites. The EMBO journal 2008;27(15):2113-2123.
    48. Chen H, Tong S, Li X, Wu J, Zhu Z, Niu L, Teng M. Structure of the second PDZ domain from human zonula occludens 2. Acta crystallographica 2009;65(Pt 4):327-330.
    49. Grembecka J, Cierpicki T, Devedjiev Y, Derewenda U, Kang BS, Bushweller JH, Derewenda ZS. The binding of the PDZ tandem of syntenin to target proteins. Biochemistry 2006;45(11):3674-3683.
    50. Hunter AW, Barker RJ, Zhu C, Gourdie RG. Zonula occludens-1 alters connexin43 gap junction size and organization by influencing channel accretion. Molecular biology of the cell 2005;16(12):5686-5698.
    51. Nielsen PA, Baruch A, Giepmans BN, Kumar NM. Characterization of the association of connexins and ZO-1 in the lens. Cell communication & adhesion 2001;8(4-6):213-217.
    52. Bouvier D, Kieken F, Kellezi A, Sorgen PL. Structural changes in the carboxyl terminus of the gap junction protein connexin 40 caused by the interaction with c-Src and zonula occludens-1. Cell communication & adhesion 2008;15(1):107-118.
    53. Sorgen PL, Duffy HS, Sahoo P, Coombs W, Delmar M, Spray DC. Structural changes in the carboxyl terminus of the gap junction protein connexin43 indicates signaling between binding domains for c-Src and zonula occludens-1. The Journal of biological chemistry 2004;279(52):54695-54701.
    54. Tsukita S, Furuse M. Occludin and claudins in tight-junction strands: leading or supporting players? Trends in cell biology 1999;9(7):268-273.
    55. Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. The Journal of cell biology 1999;147(6):1351-1363.
    56. Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S. ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 2006;126(4):741-754.
    57. Umeda K, Matsui T, Nakayama M, Furuse K, Sasaki H, Furuse M, Tsukita S. Establishment and characterization of cultured epithelial cells lacking expression of ZO-1. The Journal of biological chemistry 2004;279(43): 44785-44794.
    58. McNeil E, Capaldo CT, Macara IG. Zonula occludens-1 function in the assembly of tight junctions in Madin-Darby canine kidney epithelial cells. Molecular biology of the cell 2006;17(4):1922-1932.
    59. Utepbergenov DI, Fanning AS, Anderson JM. Dimerization of the scaffolding protein ZO-1 through the second PDZ domain. The Journal of biological chemistry 2006;281(34):24671-24677.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700