用户名: 密码: 验证码:
低温胁迫过程中入侵植物紫茎泽兰热激蛋白基因的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫茎泽兰(Ageratina adenophora)是一种外来入侵杂草,分布于我国西南部,危害严重。紫茎泽兰喜温暖湿润的环境,但其适应能力极强,可对生存地的纬度或海拔等环境梯度作出适应成为紫茎泽兰成功入侵的主要原因。但目前对紫茎泽兰低温适应性以及入侵扩张的分子机理方面的相关研究较少,因此入侵物种的分子机理研究已经成为生物学界关注的热点。热激蛋白(Heat Shock Proteins, HSPs)是原核和真核生物在应激状态下被诱导表达的一类具有重要生理功能的高度保守多肽类蛋白质,是植物对逆境胁迫短期适应的必需组成,它们以分子伴侣的形式减轻逆境胁迫引起的伤害。
     本研究针对紫茎泽兰的低温反应采集高海拔的紫茎泽兰种群,通过模拟自然条件的实验方法鉴定紫茎泽兰高海拔种群的耐寒性,通过测定生理生化指标分析明确高海拔紫茎泽兰种群在低温胁迫过程中的耐性强弱。重点采用了分子生物学手段研究紫茎泽兰在高温与低温逆境下四种分子量(hsp17.6、hsp60、hsp70和hsp90)热激蛋白基因表达特性及其在紫茎泽兰低温胁迫过程中的作用。
     采用人工模拟气候鉴定了采自四川和云南的高海拔紫茎泽兰种群对低温的不同适应性,从生理生化角度表明紫茎泽兰种群在入侵我国过程中对温度表现出的适应性差异。结果表明丙二醛(MDA)、可溶性糖、抗氧化酶指标(SOD、CAT、APX)在低温下均出现不同程度的升高,不同种群指标变化幅度说明紫茎泽兰高海拔种群对低温适应性存在差异,其中采自四川西昌的磨盘山和泸山的种群耐寒性最强,西昌的大青山种群和云南的龙陵种群则为低温敏感种群,从而为干扰或是抑制其保护机制来降低其适应能力提供思路,控制其进一步向北部地区扩散。
     根据植物热激蛋白高度的保守性对紫茎泽兰的hsp17.6、hsp60、hsp70和hsp90的全长进行同源克隆,命名为Aahsp17.6、Aahsp60、Aahs70和Aahsp90。序列全长分别为691、1581、2074和2094bp,登陆Genebank注册号为EU209067、EU209068、EU209069和EU209070。运用生物信息学软件对这四个热激蛋白的氨基酸序列同源性以及结构的分析充分表明了所克隆的hsps编码的氨基酸是属于热激蛋白家族的。进化树分析结果表明在进化上这四类HSPs与拟南芥、烟草、番茄的HSPs表现较近的遗传距离。
     半定量PCR结果显示紫茎泽兰的四个热激蛋白基因中Aahsp17.6、Aahsp60、Aahs70和Aahsp90均在幼苗茎、叶中的表达受热激的诱导,该基因的表达在植物器官中可能具有普遍性。Northern杂交检测到在高、低温逆境下紫茎泽兰的这四类热激蛋白在mRNA水平上发生明显的变化。一般需要适当时间达到转录的最高水平和最大表达量的恢复才达到最大表达量,而且高温胁迫下并不是在胁迫过程中或胁迫刚结束时即消失,合成还会持续在恢复后的一段时间内,并且紫茎泽兰Aahsp70和Aahsp90对高温和低温的表达模式相似,二者协同表达。Southern结果显示Aahsp17.6和Aahsp60为单拷贝,Aahsp70和Aahsp90为3-4个拷贝数。
     通过分析异源表达的紫茎泽兰的HSPs在高温和低温下对大肠杆菌生存能力的影响,初步研究在高温和低温条件下紫茎泽兰Aahsp17.6、Aahsp60、Aahsp70和Aahsp90基因在活体中的功能。用pET-30a表达载体与Aahsp17.6、Aahsp60、Aahsp70和Aahsp90基因进行重组并在大肠杆菌BL21(DE3)中进行诱导表达。高温处理后,重组细胞的存活力较对照相比有明显的提高;并且对热激后的重组菌的可溶性蛋白SDS-PAGE检测表明热激蛋白的表达延缓了可溶性蛋白的降解。在4°C处理8d后,重组细胞的存活力较对照相比有明显的提高。据此推测这四个热激蛋白对低温条件下保护大肠杆菌的功能。
     采用染色体步移方法的两个技术获得紫茎泽兰hsp90长864bp的启动子序列(GenBank No. FJ434253)和hsp17.6长1485bp的启动子序列(GenBank No. FJ434252),序列分析得出两个启动子的序列均含有HSPs特异应答元件HSE(nGAAn)以及其它保守的启动子元件。在紫茎泽兰hsp90和hsp17.6启动子中分别存在2个重复以上的,尤其是hsp17.6启动子序列中存在10个此类的重复,因而在响应温度等胁迫时可以快速的与HSF结合,激活hsp基因的表达。
     通过体外实验检测了紫茎泽兰HSP17.6和HSP17.7的重组蛋白作为分子伴侣对柠檬酸合酶(CS)的热聚集和热降解的抑制作用。对异源表达的重组蛋白进行Ni-NTA柱纯化后,从1L的菌液中得到浓度为33.6mg的HSP17.6和20.2mg的HSP17.7重组蛋白。体外实验表明HSP17.6与HSP17.7均可减慢45°C处理下CS的热变性,抑制热聚集的最佳比例为HSP17.6/HSP17.7-to-CS为5:1,说明紫茎泽兰的sHSPs具有分子伴侣的活性。此外HSP17.6与HSP17.7均加速热变性CS的复性,38°C处理后的CS活性仅为12%,处理60min后恢复到25°C,加入纯化的重组蛋白后CS活性可以恢复到60%以上。两种sHSPs进行等比例混合后检测其保护功能也被观察到。根据紫茎泽兰的HSP17.6和HSP17.7体外分子伴侣功能推测其在低温胁迫下保护了功能蛋白的活性进而增强了低温适应能力。
     将Aahsp17.6定向克隆于带有组成性表达启动子CaMV35S和NPTⅡ基因(带有卡那霉素抗性基因)的植物表达载体pBI121中,冻融法转化农杆菌LBA4404,利用叶圆盘法对番茄进行Ti质粒介导的遗传转化,PCR与Sourthern杂交鉴定出阳性转基因植株。在低温处理下,转基因植株小苗表现出明显优于野生型植株的耐寒性状。转基因植株MDA含量明显低于野生型植株,可溶性糖的含量比野生型植株高出0.5倍,但测定的SOD的活性没有显著差异。结果说明sHSPs提高了植物的耐寒性。
     在本研究中紫茎泽兰高海拔种群低温适应性的差异为紫茎泽兰在我国的适应性进化提供了参考价值。对于紫茎泽兰而言,其体内HSPs的多样性、基因结构的特点可能是其对温度逆境尤其是低温的适应能力的重要内在因素,因而对紫茎泽兰sHSP或是其它分子量HSPs的研究提供了紫茎泽兰面临温度胁迫时内在基因表达变化的一个线索,有利于从分子水平解释紫茎泽兰对温度逆境的适应性。
An invasive aline weed, Ageratina adenophora,has become widespread in Southwest of China due to its high environmental adaptation. The invasion of A. adenophora in China, is due to the gradual acclimation of active factor induced by temperature conditions. The alien plants evolutionarily adapt to environmental changes related to different latitudes and altitudesin introduced ranges. However, little is known about the low temperature response of A. adenophora and molecular and genetic aspects that influence resistance to environmental variability. Heat shock proteins genes (hsps) have an essential role in stress resistance and adaptation to the environment. The gene provides an accessible and useful tool for generating insights about molecular mechanisms by how the weeds become successfully invaders.
     In this study, with respect to adaptation to abiotic environments, we collected and compared response of A. adenophora populations to low temperature from different high altitude in Sichuan Yunnan of China where the infestation of A. adenophora is quite severe. Meanwhile, we have studied hsps genes that are important in relation to stress resistance and adaptation to the environment to reveal their contribution to invasion of A. adenophora in China.
     The physiological responses to low temperature were determined to elucidate mechanisms chilling tolerance. The study made use of artificial climate chamber to compare the A. adenophora chilling tolerance from different high altitude populations from Sichuan and Yunnan province of China. With the decrease of temperature, the physiological changes including increases in malondialdehyde (MDA) and total soluble protein contents, reductions in total soluble sugar, fluctuation of superoxide dismutase (SOD) activity, and catalase activity (CAT) were observed among all the eight populations. However, different extents of low temperature sensitivities were found among the high altitude populations. The results revealed that after the trestment with gradually decreasing temperature, the A. adenophora from the population of Mopanshan and Lushan of Sichuan showed the lowest chilling damage and high tolerance. The populations from Daqingshan of Sichuan and Longling of Yunnan both presented a higher chilling damage and lower tolerance. These indicated that A. adenophora populations from high altitudes were insensitive to chilling tolerance. These data indicate that the invasive plant from high altitude populations with different chilling tolerance reflected a higher capacity to its infested environments. These results may be a manifest A. adenophora expanded to Northern China much faster.
     In order to know molecular and genetic aspects of adaption, we cloned full length of coding sequences of invasive alien weed A. adenophora heat shock proteins by the combination of homology cloning in the present study, renamed as Aahsp17.6, Aahsp60, Aahsp70 and Aahsp90. Full-length of Aahsp17, Aahsp60, Aahsp70 and Aahsp90 were 691, 1,581, 2,074 and 2,094 bases of nucleotide sequence, which have been deposited in Genebank database (Accession no. EU209067, EU209068, EU209069, EU209070). The four genes were found highly to be conserved when compared at the amino acid level with the corresponding HSPs from other plants. Sequence analysis, identification, alignments and phylogenetic analyses of the hsps showed that these HSPs shared high levels of identity with corresponding proteins from other species. The phylogenetic analysis suggested that the four hsps were present closed to some other HSPs from Arabidopsis thaliana, Nicotiana tabacum, Lycopersicon esculentum et al.
     We investigated the characterization and expression of Aahsp17.6, Aahsp60, Aahsp70 and Aahsp90 of A. adenophora. After heat treatment, Aahsp17.6, Aahsp60, Aahsp70 and Aahsp90 transcripts were not detected in roots, but high levels were found in the stems and leaves. Tissue specificity showed a similar pattern of response to heat shock. The kinetics of regulation of Aahsps was analysed by Northern blot hybridisation, which revealed the significantly changes at mRNA level for Aahsp17.6, Aahsp60, Aahsp70 and Aahsp90. Transcripts of these genes were considerably induced underheat and cold stress. Although the gene expression responses induced by high and low temperture stress shared several common features, there we still observed some differences among Aahsps. The four hsps expression response to heat exposure was robust, and differed from the response to low temperture stress. These results indicate that all of the genes are stress-inducible forms or cognate forms that are constitutively expressed. The sourthern results show that Aahsp17.6 and Aahsp60 appear to be present as a single copy and Aahsp70 and Aahsp90 are encoded by a multi-gene family.
     We made investigations on the possible function of Aahsp17.6, Aahsp60, Aahsp70 and Aahsp90 in vivo under heat and cold sress, and SDS-PAGE analysis of cell lysates revealed their protective effect is associated with an increase in the thermo stability of soluble proteins. The PCR products of ORF sequences encoding Aahsp17.6, Aahsp60, Aahsp70 and Aahsp90 were inserted into the same digested pET-30a vector to generate pET-30a-Aahsps. These plasmids were transformed into Escherichia coli BL21 (DE3) plyss competent cells. Aahsps were expressed in E. coli cells. The recombinant Aahsps proteins produced in bacterial expression were separated by 12% SDS-PAGE.The recombinant Aahsp17.6, Aahsp60, Aahsp70 and Aahsp90 over-expression improved viability in comparison with control cultures in E. coli under heat stress conditions. SDS-PAGE analysis of cell lysates suggested that the protective effect in vivo was due to increased thermol stability of soluble cytosolic proteins. The recombinant Aahsp17.6, Aahsp60, Aahsp70 and Aahsp90 over-expression improved viability in comparison with control cultures in E. coli under cold stress conditions.
     Cloning and sequence analysis of promoters in hsp90 and hsp17.6 genes from A. adenophora by two skills of chromosome walking from a known sequence to an unknown region based on PCR methods. The promoter region of hsp90 with 864bp (GenBank No. FJ434253), from invasive weed A.adenophora was amplified based on PCR methods. Another promoter region of hsp17.6 with 1,485 bp (GenBank No. FJ434252) was cloned by TAIL-PCR. Both of the 5′-flanking regions of hsp90 and hsp17.6 contained specific heat shock element (HSE) (nGAAn) and several cis-acting elements, such as TATA-box, CAAT-box. Especially, the promoter region of hsp17.6 has ten of HSE, which could be bound to heat shock transcription factors (HSFs). Then hsp17.6 of A. adenophora wae robustly induced and accumilated in response to low temperture stress.
     The recombinant HSP17.6 and HSP17.7 from A.adenophora were applied to determine their chaperone function. The recombinant HSP17.6 and HSP17.7 were applied to determine their chaperone function. 33.6 mg of HSP17.6 and 20.2 mg of HSP17.7 was purified from 1l of each respective cell culture using a Ni-NTA column. In vitro, HSP17.6 and HSP17.7 actively participated in the refolding of the model substrate citrate synthase (CS) and effectively prevented the thermal aggregation of CS at 45°C HSP17.6 and HSP17.7 prevented this process at different ratios. The maximal suppression by the HSP17.6/HSP17.7-to-CS monomer was also observed at a ratio of 5:1. The effect of the recombinant HSP17.6 and HSP17.7 on the thermal inactivation of CS was investigated. When the CS was incubated at 38°C alone or in presence of 50μg/ml lysozyme, less than 12% of CS activity remained after 60min. After shifting the temperature of the samples to 25°C, the CS activity remained low after 60min in the presence or absence of 50μg/ml lysozyme. They both prevented the irreversible inactivation of CS at 38°C at stoichiometric levels. Therefore, this report confirms the chaperone activity of HSP17.6 and HSP17.7 and their potential as a protectant for active proteins.
     To confirm the role of Aahsp17.6 in low temperture condition, an integratedvector pBI121of the Aahsp17.6 and NPTⅡgene(a kanamycin resistant gene)with CaMV35S promoter was constructed and introduced into tobacco mediated by Agrobacterium tumefaciens LBA4404. At low-temperature, the soluble sugar content of transgenic seedlings was higher than that of wild-type plants, whereas the MDA content and the SOD activity were lower than that of wild-type plants. Based on these results, the Aahsp17.6 transgenic tomato plants were more tolerable against low temperture stress than the wild-type plants. Thus, we suggest that Aahsp17.6 may play a pivotal role in chilling tolerance and has potential consequences in this invasive plant for expansion to non-freezing low temperatures zones.
     In conculsion, these results may be important for analysis that A. adenophora from high altitude in southwest regions of China has evolved into different ecotypes through physiological adaptation. And the inducible hsps provide a unique system to measure the molecular mechanism by which the invasive alien plants respond to changing environmental and developmental cues. Moreover we could evaluate the molecular capacity of A. adenophora to acclimatise to high and low temperatures in the future according to the results.
引文
1.崔旭红. B型烟粉虱和温室粉虱热胁迫适应性极其分子生态机制(博士学位论文).北京:中国农业科学院, 2007.
    2.邓家术,段彬江,刘中来.植物热激蛋白的研究进展及其应用.生命的化学, 2003, 23 (3): 226~228.
    3.段惠,强胜,苏秀红,吴海荣,朱云枝,刘琳莉.用AFLP技术分析紫茎泽兰的遗传多样性.生态学报, 2005, 25 (8) : 2109~2114.
    4.耿宇鹏,张文驹,李博,陈家宽.表型可塑性与外来植物的入侵能力.生物多样性, 2004, 12(4) : 447~455.
    5.顾渝娟.紫茎泽兰低温应答转录因子EaCBF1的克隆及不同地理种群的遗传差异分析(硕士学位论文).北京:中国农业科学院, 2007.
    6.桂富荣.紫茎泽兰的遗传多样性及其种群结构分析(博士学位论文).北京:中国农业科学院,2006.
    7.郭建英,崔旭红.外来入侵生物对我国经济的影响.大自然, 2004, 2 : 30~31.
    8.郭尚敬,陈娜,郭鹏,孟庆伟.甜椒细胞质小分子量热激蛋白基因(CaHSP18)的cDNA克隆与表达植物.生理与分子生物学学报, 2005, 31 (4): 409~416.
    9.贺俊英,强胜,宋小玲,金海玉.外来植物紫茎泽兰18个种群的茎叶形态结构比较研究.西北植物学报, 2005, 25(6): 1089~1095.
    10.黄祥富,黄上志,傅家瑞.植物热激蛋白的功能及其基因表达的调控.植物学通报, 1999, 16 (5) :530~536.
    11.梁小玉,张新全.紫茎泽兰发生特点、防治及其利用.四川草原, 2004, (2): 13~15.
    12.刘博,苏乔,汤敏谦,袁晓东,安利佳.应用于染色体步移的PCR扩增技术的研究进展.遗传, 2006, 28 (5):587~595.
    13.刘箭,庄野真理子.高温下线粒体小分子热激蛋白对柠檬酸合成酶、线粒体和化粉粒的保护作用.植物生理学报, 2001, 27(5): 375~380.
    14.刘伦辉,刘文耀,郑征,荆桂芬.紫茎泽兰个体生物生态学特性研究.生态学报, 1989, 9(1): 66~70.
    15.刘文耀,刘伦辉,郑征.紫茎泽兰的光合作用特征及其生态学意义.云南植物研究, 1988, (2) :175~181.
    16.刘晓静,王海燕,张根良,夏志强,王文泉.改良CTAB法提取益智基因组DNA。江西农业学报, 2007, 19 (8):111~114.
    17.鲁萍.外来入侵种紫茎泽兰生理生态学研究(博士学位论文).北京:中国科学院研究生院,2006.
    18.卢志军,马克平.地形因素对外来入侵种紫茎泽兰的影响.植物生态学报, 2004, 28: 761~767.
    19.罗丽娟,施季森.一种DNA侧翼序列分离技术~TAIL~PCR.南京林业大学学报(自然科学版), 2003,27 (4):87~90.
    20.罗娅,汤浩茹,张勇.低温胁迫对草莓叶片SOD和AsA~GSH循环酶系统的影响.园艺学报, 2007, 34 (6): 1405~1410.
    21.潘晓云,梁汉钊,Alejandro Sosa,耿宇鹏,李博,陈家宽.喜旱莲子草茎叶解剖结构从原产地到入侵地的变异式样.生物多样性, 2006, 14 (3) : 232~240.
    22.潘云祥,丁福先.大理州关于紫茎泽兰的调查报告.云南畜牧兽医, 2003, (3): 26.
    23.强胜.世界恶性杂草~紫茎泽兰研究的历史及现状.武汉植物学研究, 1998, 16 (4): 366~372.
    24.苏秀红,强胜,宋小玲.不同地理种群紫茎泽兰耐热性差异的比较分析.西北植物学报, 2005, 25(9): 1766~1771.
    25.孙同虎.过量表达大分子热激蛋白HSP84对烟草抗逆性的影响(硕士论文).青岛:山东师范大学. 2007.
    26.万方浩,高尚宾,杨国庆.外来入侵生物的预防、控制与管理.大自然, 2004, 2 : 32~34.
    27.万方浩,郭建英,王德辉.中国外来生物入侵的现状及其外来入侵生物的研究与管理对策[J].生物多样性, 2002, 10 (1) : 119~125.
    28.万方浩,郑小波,郭建英.重要农林外来入侵物种的生物学与控制.北京:科学出版社,北京东黄城根北街16号, 2005 : 5~54.
    29.王丽,赵春梅,王义菊,刘箭.过量表达叶绿体小粉子热激蛋白提高番茄的抗寒性.植物生理与分子生物学报, 2005, 31(2): 167~174.
    30.王满莲,冯玉龙.紫茎泽兰和飞机草的形态、生物量分配和光合特性对氮营养的响应[J].植物生态学报, 2005, 29 (5) : 697~705.
    31.王满莲,冯玉龙,李新.紫茎泽兰和飞机草的形态和光合特性对磷营养的响应[J].应用生态学报, 2006, 17(4) : 602~606.
    32.王峥峰,张军丽,王伯荪.厚壳桂种群在不同群落中的分子生态研究.应用生态学报, 2000, 11(3) : 342~344.
    33.翁伯琦,林嵩,王义祥.空心莲子草在我国的适应性及入侵机制.生态学报, 2006, 26(7) : 2373~2381.
    34.向业勋.紫茎泽兰的分布、危害及防除意见.杂草科学, 1991, 4: 10~11.
    35.杨国庆.紫茎泽兰淋溶物主效化感物质的分离鉴定及其对旱稻幼苗的作用机理(博士学位论文).北京:中国农业科学院, 2006.
    36.叶陈亮,柯玉琴,陈伟.大白菜耐热性的生理研究.叶片水分和蛋白质代谢与耐热性.福建农业大学学报,1996, 25(4): 490~493.
    37.伊淑莹,孙爱清,赵春梅,刘箭.番茄多胁迫诱导型LeMTshsp启动子的分子克隆及其功能分析.云南植物研究, 2007, 29 (2) : 223~230.
    38.俞峻,马康涛,张蘅.热激分子伴侣的多重功能.生物化学与生物物理进展. 1998, 25 (1): 106~110.
    39.于景华.喜树热激反应的分子生态学研究(博士学位论文).哈尔滨,东北林业大学,2007.
    40.云叶.外源PHSP1基因在大肠杆菌和烟草中的表达分析及研究(硕士学位论文).厦门,厦门大学, 2007.
    41.张常隆,李扬苹,冯玉龙,郑玉龙,类延宝.表型可塑性和局域适应在紫茎泽兰入侵不同海拔生境中的作用.生态学报, 2009: 29 (4):
    42.张治安,张美善,蔚荣海.植物生理学实验指导. 2004.农业科技出版社.
    43.赵国晶,马云萍.云南省紫茎泽兰的分布与危害的调查研究.杂草学报,1989, 3(2) : 37~40.
    44.郑文俊.六种菊属植物的耐热性研究(研究生学位论文).武汉:华中农业大学,2004.
    45.朱世江,季作梁.热激蛋白与园艺植物的耐冷性.园艺学报, 2002 , 29 (增刊) : 607~612.
    46.祖元刚,孙梅,康乐.生态适应与生态进化的分子机理.北京,高等教育出版社;海德堡,施普林格出版社,2000.12.祖元刚,于景华,生态适应与分子进化机理的现状与发展趋势;李玉花,沈海龙,植物对胁迫生态环境适应的分子机制.
    47. Ahrman E., Lambert W., Aquilina J.A., Robinson C.V., and Emanuelsson C.S. Chemical cross linking of the chloroplast localized small heat shock protein, Hsp21, and the model substrate citrate synthas. Protein sci. 2007, 16: 1464~1478.
    48. Ainley W.M., and Key J.L. Development of a heat shock inducible expression cassette for plants: characterization of parameters for its use in transient expression assays. Plant Mol. Biol. 1990, 14: 949~967
    49. Almoguera C., PrietoDapena P., and Jordano J. Dual regulation of a heat shock promoter during embryogenesis: stage~dependent role of heat shock elements. Plant J. 1998, 13: 437~446
    50. Alexander J.M., Edwards P.J., Poll M., Parks C.G., and Dietz H. Establishment of parallel altitudinal clines in traits of native and introduced forbs. Ecology 2009, 90: 612~622
    51. Allan R.K., Mok D., Ward B.K., and Ratajczak T. Modulation of chaperone function and cochaperone Interaction by novobiocin in the C terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization. J Biol Chem 2006 11 (281): 7161~7171
    52. Allen R.D., Webb R.P., and Schake S.A. Use of transgenic plants to study antioxidant defences. Free Radical Biology an d Medicine 1997, 23: 473~479
    53. Almoguera C., Rojas A, DiazMartin J., Dapena P.P., Carranco R., and Jordano J. A seed specific heatshock transcription factor involved in developmental regulation during embryogenesis in sunflower. J. Biol. Chem. 2002, 277: 43866~43872
    54. Amin J., Ananthan J., and Voellmy R. Key features of heat shock regulatory elements. Mol. Cell. Biol. 1988, 8 (9): 3761~3769
    55. Anderson A.R., Collinge J.E., Hoffmann A.A., Kellett M., and McKechnie S.W. Thermal tolerance trade offs associated with the right arm of chromosome and marked by the hsromega gene in Drosophila melanogaster. Heredity 2003, 90: 195~201
    56. Antonsson C., Whitelaw M.L., McGuire J., Gustafsson J.A., and Poellinger L. Distinct roles of the molecular chaperone hsp90 in modulating dioxin receptor function via the basic helix-loop-helix and PAS domains. Mol. Cell. Biol. 1995 , 15 (2) : 756~765
    57. Baker H.G. Characteristics and modes of origin of weeds. In: Baker H G and Stebbins G L, (eds). The genetics of colonizing species. New York, Academic Press, 1965, 147~168.
    58. Baniwal S.K., Bharti K., Chan K.Y., Fauth M., Ganguli A., Kotak S., Mishra S.K., Nover L., Port M., Scharf K.D., Tripp J., Weber C., Zielinski D., and von Koskull D.P. Heat stress response inplants: a complex game with chaperones and more than twenty heat stress transcription factors. J. Biosci. 29(4), 2004, 471~487
    59. Barry P., Chrisostomos P., and Roe S.M. ATP binding and hydrolysis are essential to the function of the Hsp90 molecular chaperone in vivo.The EMBO Journal 1998, 17(16): 4829~4
    60. Baruch Z., Pattison R.R., and Goldstein G. Responses to light and water availability of four invasive Melastomataceae in the Hawaiian islands. International Journal Plant Science 2000, 161 (1) :107~118
    61. Basha S.E., Friedrich L.K., and Vierling E. The N-terminal arm of small heat shock proteins is important for both chaperone activity and substrate specificity. J. Biol. Chenmistry 2006, 281: 39943~39952
    62. Baumann G., Raschke E., Bevan M., and Sch?ff F. Functional analysis of sequences required for transcriptional activation of a soybean heat shock gene in transgenic tobacco plants. EMBO J 1987, 6 (5) : 1161~1166
    63. Beckmann R.P., Mizaen L.A., and Welch W.J. Interaction of Hsp 70 with newly synthesized proteins: implications for protein folding and assembly. Science 1990, 248 : 850~854
    64. Blossey B., and Notzold R. Evolution of increased competitive ability in invasive non~indigenous plants: a hypothesis. Journal of Ecology 1995, 83 : 887~889
    65. Blossey B.R., and Notzold R. Evolution of increased competitive ability in invasivenon indigenous plants: a hypothesis. Journal of Ecology 1995, 83: 887~889
    66. Bor M., Ozdemir F., and Turkan I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta maritime. Plant Sci. 2003, 164: 77~84
    67. Bossdorf O., Lipowsky A., and Prati D. Selection of preadapted populations allowed Senecio inaequidens to invade Central Europe. Diversity and Distributions 2008, 14: 676~685
    68. Boston R.S., Vitanen P.V., and Vierling E. Molecular chaperones and protein folding in plants .Plant Molecular Biology 1996, 32: 191~222
    69. Bradshaw A.D. Evolutionary significance of phenotypic plasticity in plant. Advance Genet, 1965, 13 :115~155
    70. Brock M.T., Weinig C., and Galen C. A comparison of phenotypic plasticity in the native and exotic Taraxacum ceratophorum and its invasive congener T. Officinale. New Phytologist 2005, 166 : 173~183
    71. Burns J.H. A comparison of invasive and non~invasive dayflowers (Commelinaceae) across experimental nutrient and water gradients. Diversity and Distributions, 2004, 10 : 387~397.
    72. Burns J.H., Alice A., and Winn A. Comparison of plastic responses to competition by invasive and non~invasive congeners in the Commelinaceae. Biological Invasions 2006, 8 : 797~807
    73. Caban M., Calvet P., Vincens P., and Boudet A.M. Characterization of chilling acclimation related proteins in soybean and identification of one as a member of the heat shock protein (HSP 70) family. Plant Physiol. 1999, 120: 521~528
    74. Chen Q., and Vierling L. Analysis of conserved domains identifies pique structural feature of achloroplast heat shock protein. Gen Genet. 1991, 226: 425~31
    75. Chen S.Y., Sullivan W.P., Toft D.O., and Smith D.F. Differential interactions of p23 and the TPR containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress Chaperones 1998, 3: 118~129
    76. Clonetech. SMART? RACE cDNA Amplification Kit User Manual Cat. No. 634914 PT3269~1 (PR661862)
    77. Coca M.A., Almoguera C., Thomas T.L., and Jordano J. Differential regulation of small heat~shock genes in plants: analysis of water stress inducible and developmentally activated sunflower promoter. Plant Mo.l Biol. 1996, 31:863~876
    78. Colautti R.I., Ricciardi A., Grigorovich I.A., and MacIsaac H.J. Is invasion success explained by the enemy release hypothesis? Ecology Letters 2004, 7: 721~733
    79. Craig E.A., Gambill B.D., and Nelson R.J. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol. Rev. 1993, 57: 402~417
    80. Cui X.H., Wan F.H., Xie M., and Liu T.X. Effects of heat shock on survival and fecundity of two whitefly (Homoptera:Aleyrodidae) species: Trialeurodes vaporariorum and Bemisla tabaci B biotype . Journal of Insect Science 2008, 24: 1~10
    81. Dewalt S.J., Denslow J.S., and Hamrick J.L. Biomass allocation, growth, and photosynthesis of genotypes from native and introduced ranges of the tropical shrub Clidemia hirta. Oecologia 2004b, 138: 521~531
    82. Dlugosch K.M, and Parker I.M. Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecology Letters 2008a, 11: 701~709
    83. Dlugosch K.M., and Parker I.M. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology 2008b, 17: 431~449
    84. Downs C.A., Ryan S.L., and Heckathorn S.A. The chloroplast small heat shock protein: Evidence for a general role in protecting photosystem II against oxidation stress and photoinhibition. J. Plant Physiol. 1999, 155: 488~496
    85. Eltoum K., Aradaib I., and Sanousi S.E. PCRbased radomly amplified polymorphic DNA (RAPD finger peinting for detection of genetic diversity among Sudanese isolates of Haemophilus somnus. Veterinarski Arhiv 2003, 73 (6): 315~321
    86. Etterson J.R., Delf D.E., Craig T.P., Ando Y., and Ohgushi T. Parallel patterns of clinal variation in Solidago altissima in its native range in central USA and its invasive range in Japan. Botany 2008, 86: 91~97
    87. Feng Y.L., Auge H., and Ebeling S.K. Invasive Buddleja davidii allocates more nitrogen to its photosynthetic machinery than five native woody species. Oecologia 2007, 153 : 501~510
    88. Feng Y.L., Wang J.F., and Sang W.G. Irradiance acclimation, capture ability, and efficiency in invasive and non-invasive alien plant species. Photosynthetica 2007b, 45 (2): 245~253.
    89. Fernandez P., Rienzo J.D., Fernandez L., Hopp H.E., Paniego N., and Heinz R.A. Transcriptomic identification of candidate genes involved insunflower responses to chilling and salt stresses basedon cDNA microarray analysis. BMC Plant Biology 2008, 8:11
    90. Fitzpatrick M.J., BenShahar Y., Smid H.M, Vet L.E.M, Robinson G.E., and Sokolowski M.B. Candidate genes for behavioural ecology. Trends in Ecology and Evolution 2005, 20: 96~104
    91. Frohman M.A., Dush M.K., and Martin G.R. Rapid production of full length cDNA from rare transcripts: Amplification using a single gene specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 1988, 85: 8998~9002
    92. Fu X.M., Zhang H., Zhang X., Cao Y., Jiao W., Liu C., Song Y., Abulimiti A., and Chang Z.. A dual role for the N-terminal region of Mycobacterium tuberculosis Hsp16.3 in self oligomerization and binding denaturing substrate proteins. J. Biol. Chem. 2005, 280: 6337~6348
    93. Gabi J., Ewald W., and Peter J.E. Introduced plants of the invasive Solidago gigantean (Asteraceae) are larger and grow denser than conspecifics in the native range. Diversity and Distributions 2004, 10 : 11~19
    94. Geng Y.P., Xu C.Y., Zhang W.J., Li B., Chen J.K., Lu B.R., and Song Z.P. Phenotypic plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize a wide range of habitats. Biological Invasions 2007, 9 : 245~256
    95. Gerlach J.D., Rice K.J. Testing life history correlates of invasiveness using congeneric plant species. Ecological Applications 2003, 13 : 167~179
    96. Griffith T., and Sultan S.E. Shade tolerance plasticity in response to neutral versus green shade cues in Polygonum species of contrasting ecological breadth. New Phytologist 2005, 141~148
    97. Gui F.R., Wan F.H., and Guo J.Y. Determination of Population Genetic Structure of the Invasive Weed Ageratina adenophora using ISSR-PCR Markers. Russian Journal of Plant Physiology 2009,56(3): 453-459
    98. Gui F.R., Wan F.H., and Guo J.Y. Population genetics of Ageratina adenophora using intersimple sequence repeat (ISSR) molecular markers in China. Plant Biosystems 2008, 142(2): 255~263
    99. Gulen H., and Eris A. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Science 2004, 166: 739~744
    100. Gulli M., Rampino P., Lupotto E., Marmiroli N., and Perrotta C. The effect of heat stress and cadmium ions on the expression of a small hsp gene in barley and maize. J Cereal Science 2005, 42: 25~31
    101. Guo S.J., Zhou H.Y., Zhang X.S., Li X.G., and Meng Q.W. Overexpression of CaHSP26 in transgenic tobacco alleviates photoinhibition of psii and psi during chilling stress under low irradiance. Plant Physiol 2007, 164: 126~136
    102. Guo Y.L., Guettouche T., Fenna M., Boellmann F., Pratt W.B., Toft D.O., Smith D.F., and Voellmy R. Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J. Biol. Chem. 2001, 276 : 45791~45799
    103. Guy C.L. Cold acclimation and freezing stress tolerance : role of protein metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1990, 41 : 187~223
    104. Harris S.F., Shiau A.K., Agard D.A. The crystal structure of the carboxy terminal dimerizationdomain of htpG, the Escherichia coli Hsp90, reveals a potential substrate binding site. Structure 2004, 12:1087~1097
    105. Haslbeck M., Franzmann T., Weinfurtner D., and Buchner J. Some like it hot: the structure and function of small heatshock proteins. Nat. Struct. Mol. Biol. 2005, 12: 842~846
    106. Haslbeck M., Ignatiou A., Saibil H., Helmich S., Frenzl E., Stromer T., and Buchner J. A domain in the N-terminal part of Hsp26 is essential for chaperone function and oligomerization. J. Mol. Biol. 2004, 343: 445~455
    107. Hawle P., Siepmann M., Harst A., Siderius M., Reusch H.P., and Obermann W.M.J. The middle domain of Hsp90 acts as a discriminator between different types of client proteins. Mol.Cell.Biol. 2006, 26(22): 8385~8395
    108. Heckathorn S.A., Downs C.A., Sharkey T.D., and Coleman J.S. The small, methionine rich chloroplast heat shock protein protects photosystem II electron transport during heat stress. Plant Physiol. 1998, 116: 439~444
    109. Helm K.W., and Abernathy R.H. Heat shock proteins and their mRNAs in dry and early imbibing embryos of wheat. Plant Physiol. 1990, 93: 1626~1633
    110. Hernandez J.A., Ferrer M.A., Jimenez A., BarcelóA.R., and Sevilla F. Antioxidant systems and O2.-/H2O2 production in the apoplast of pea leaves. Its relation with salt induced necrotic lesions in minor veins, Plant Physiol. 2001, 127: 817~831
    111. Hertling U.M., and Lubke R.A. Assessing the potential for biological invasion the case Ammophlia arenaria L. in the South Africa. South African Journal of Science, 2000, 96 (9~10) : 520~527.
    112. Hinz H.L., and Schwarzlaender M.. Comparing Invasive Plants from Their Native and Exotic Range: What Can We Learn for Biological Control? Weed Technology, 2004, 18:1533~1541
    113. Holt R. Demographic constraints in evolution: towards unifying the evolutionary theories of senescence and niche conservatism. Evolutionary ecology 1996, 10: 1~10
    114. Honing F, Lamkemeyer P., Konnig J.,Finkemeier I., Kandlbinder A., Baier M., and Dietz K.J. Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol. 2003, 131: 317~325
    115. Horvath I., Glatz A., Varvasovski V., Torok Z., Pali T., Balogh G., Kovacs E., Nadasdi L., Benko S., Joo F., and Vigh L. Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a“fluidity gene.”Proc. Nat. Acad. Sci. 1998, 95: 3513~3518
    116. Imai J., and Yahara I. Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin. Molecular and cellular biology 2000, 9262~9270
    117. Jakob U., Lilie H., Meyer I., and Buchner J. Transient interaction of hsp90 with early unfolding intermediates of citrate synthase-implications for heat shock in vivo. J. Biol. Chem. 1995, 270: 7288~7294.
    118. Jakobs G., Weber E., and Edwards P.J. Introduced plants of the invasive Solidago gigantean (Asteraceae) are larger and grow dense than conspecifics in the native range. Diversity andDistributions 2004a, 10: 11~19
    119. Jan Jong Hung, Chung CheSheng, and Chang Wen. Molecular Chaperone Hsp90 Is Important for Vaccinia Virus Growth in Cells. Journal of Virology 2002, 76(3):1379~1390
    120. Jinn T.L., Chen Y.M., and Lin C.Y. Characterization and physiological function of class I low molecular mass, heat shock protein complex in soybean. Plant Physiol. 1995, 108: 693~701
    121. Jinn T.L., Wu S.H., Yeh C.H., Hsieh M.H., Yeh Y.C., Chen Y.M., and Lin C.Y. Immunologicai kinship of class I low molecular weight heat shock proteins and thermostabilization of soluble proteins in vitro among plants. Plant Cell Physiol. 1993, 34: 1055~1062
    122. Kadyrzhanova D.K., Vlachonasios K.E., Ververidis P., and Dilley D.R. Molecular cloning of a novel heat induced/chilling tolerance elated cDNA in tomato fruit by use of mRNA differential display. Plant Mol. Biol. 1998, 36: 885~895
    123. Katherine A.B., Farrelly F.W., Finkelstein D.B., Taulien J., and Lindquist S. Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Molecular and Cellular Biology 1989, 9(9): 3919~3930
    124. Keane R.M., and Crawley M. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution 2002, 17 (4): 164~169
    125. Kim B.H., and Sch?ffl F. Interaction between Arabidopsis heat shock transcription factor 1 and 70 kDa heat shock proteins. J. Exp. Bot. 2002, 53: 371~375
    126. Kim K.K., Kim R., and Kim S.H. Crystal structure of a small heat shock protein. Nature 1998, 394: 595~599
    127. Kimpel J.A., Nagao R.T., Goekjian V., and Keyet J.L. Regulation of the heat shock response in soybeans. Plant Physiol. 1989, 79 : 672~678
    128. Krishna P., Sacco M., Cherutti J.F., and Hill S. Cold induced accumulation of Hsp90 transcripts in Brassica napus. Plant Physiol.1995, 107: 915~923
    129. Lee B.H., Won S.H., Lee H.S., Miyao M., Chung W., Kim I.J., and Jo J. Expression of the chloroplast localized small heat shock protein by oxidative stress in rice. Gene 2000, 245: 283~290
    130. Lee C.E., Jane L.R., and Chang Y.M. Response to selection and evolvability of invasive populations. Genetica 2007, 129 (2) : 179~19.
    131. Lee G.J., Pokala N., and Vierling E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem. 1995, 270: 10432~10438.
    132. Lee G.J., Roseman A.M., Saibil H.R., and Vierling E. A small heat shock protein stably binds heat denatured model substrates and can maintain a substrate in a folding competent state. EMBO J. 1997, 16: 659~671
    133. Lee G.J., and Vilerling E. A small heat shock protein cooperated with heat shock protein systems to reactivate a heat~denatured protein. Plant Physiol. 2000, 122: 189~197.
    134. Lee J.H., Hubel A., and Schofl F. Derepression of the activity of genetically engineered heat shock factor causes constitutive synthesis of heat shock proteins and increased thermotolerance intransgenic Arabidopsis. Plant J. 1995, 18 : 603~612
    135. Leger E.A., and Rice K.J. Invasive California poppies (Eschscholzia californica Cham.) grow larger than native individuals under reduced competition. Ecology Letters 2003, 6 : 257~264
    136. Lerman D.N., Michalak P., Helin A.B., Bettencourt B.R., and Feder M.E. Modification of heatshock gene expression in Drosophila melanogaster populations via transposable elements. Mol Biol Evol. 2003, 20 (1): 135~44
    137. Li H., Qiang S., and Qiang Y.L. Physiological response of different croftonweed (Eupatorium adenophora ) populations to low temperature. Weed Science 2008, 56 (2): 196~202.
    138. Li Y.P, Feng Y.L. Differences in seed morphometric and germination traits of crofton weed (Eupatorium adenophora) from different elevations. Weed Science 2009, 57: 26~30
    139. Lindquist S., and Craig E.A. The heat shock protein. Ann. Rev. Genet. 1988, 22: 631~677
    140. Liu F.H., Wu S.J., Hu S.M., Hsiao C.D., and Wang C. Specific interaction of the 70kDa heat shock cognate protein with the tetratricopeptide repeats. J. Biol. Chem. 1999, 48(274): 34425~34432
    141. Liu J., and Shono M. Molecular cloning the gene of small heat shock protein in the mitochomdria and endoplasmic reticulum of tomato. Acta. Bot. Sin. 2001, 43 (2): 138~145
    142. Liu Y.G., Mitsukawa N., Oosumi T., and Whittier R.F. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 1995, 8: 457~463.
    143. Liu Y.G., and Whittier R.F. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 1995, 25: 674~681
    144. Lindquist S., and Craig E.A. The heat shock protein. Ann. Rev. Genet 1988, 22: 631~677.
    145. L?w D., Nover L., and Forreiter C. Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in?vivo. Planta 2000, 211 (4): 575~582
    146. Mack R.N., Simberloff D., Lonsdale W.M., Evans H.4, Clout M., and Bazzaz F.A. Biotic invasions, causes, epidemiology, global consequences, and control. Ecological Applications 2000, 10 : 689~710
    147. Maestri E., Klueva N., Perrotta C., Gulli M., Nguyen H.T., and Marmiroli N. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol. Biol. 2002, 48: 667~681
    148. Mamedov T.G., and Shono M. Molecular chaperone activity of tomato (Lycopersicon esculentum) endoplasmic reticulum-located small heat shock protein.J. Plant Res. 2008, 121: 235~241
    149. Maron J.L., Vilue M., Bommarco R, Elmendorf S., and Beardsley P. Rapid evolution of an invasive plant. Ecoogical Monographs 2004, 74 : 261~280
    150. Marta B., Garcia A., Cubas P., Almoguera C., Jordano J., Fenoll C., and Escobar C. Distinct heat shock element arrangements that mediate the heat shock, but not the late embryogenesis induction of small heat shock proteins, correlate with promoter activation in root knot nematode feeding cells. Plant Mol. Biol. 2008, 66: 151~164
    151. Matz M., Lukyanov S., Bogdanova E., Diatchenko L., and Chenchik A. Amplification of cDNAends based on template switching effect and step out PCR. Nucleic Acids Res. 1999, 27(6): 1558~1560
    152. Morimoto R.I. Cells in stress: transcriptional activation of heat shock genes. 1993, Science 259 : 1409~1450
    153. Montague J.L., Barrett S.C.H., and Eckert C.G. Re establishment of clinal variation in flowering time among introduced populations of purple loosestrife (Lythrum salicaria, Lythraceae). Journal of Evolutionary Biology 2008, 21: 234~245
    154. Nakano A.K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22:867~880
    155. Narberhaus F. A crystalline type heat shock proteins: Socializing minichaperones in the context of a multichaperone network. Microbiol. Mol.Biol. Rev. 2002. 6: 64~93
    156. Neuffer B., and Hurka H. Variation of growth form parameters in Capsella (Cruciferae). Plant Systematics and Evolution 1986, 153: 265~279
    157. Neven L., Haskel D.W., Guy C.L., Denslow N., Klein P.A., Green L.G., and Silverman A. Association of HSP70 with acclimation to cold. Plant Physiol. 1992, 99: 1362~1369
    158. Newsome A.E, and Noble I.R. Ecological and physiological characters of invading species. In Ecology of Biological Invasions, ed. R H Groves, J J Burdon, pp. 1~20. 1986, Cambridge: Cambridge Univ. Press. pp:166
    159. Noble I.R. Attributes of invaders and the invading process: terrestrial and vascular plants. Biological invasions (eds J. A. Drake, H. A. Mooney, F. di Castri, R. H. Groves, F. J. Kruger, M. Rejmanek & M. Williamson), pp: 301~313. John Wiley and Sons, Chichester. 1989,
    160. Nover L., Bharti K., Do¨ring P., Mishra S.K., Ganguli A., and Scharf K.D. Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 2001, 6:177~189.
    161. Parsell D.A., and Lindquist S. The function of heat shock proteinsin stress tolerance: degradation and reactivation of damaged proteins. Annu.Rev.Genet. 1993, 27: 437~496
    162. Pigliucci M. Evolution of phenotypic plasticity, where are we going now? Trends in Ecology Evolution, 2005, 20 (9) : 480~486.
    163. Pigliucci M. Phenotypic plasticity, beyond nature and nurture. Baltimore and London, The Johns Hopkings University Press, 2001.
    164. Port M., Tripp J., Zielinski D., Weber C., Heerklotz D., Winkelhaus S., BublaK D., and Scharf K.D. Role of Hsp17.4 CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2. Plant Physiol. 2004, 135: 1457~1470
    165. Queitsch C., Sangster T.A., and Lindquist S. Hsp90 as a capacitor of phenotypic variation. Nature 2002, 417: 618~624.
    166. Radford I.J., and Cousens R.D. Invasiveness and comparative life history traits of exotic and indigenous Senecio species in Australia. Oecologia 2000, 125(4) : 531~542.
    167. Ramsey A.J., Russell L.C., Whitt S.R., and Chinkers M. Overlapping sites of tetratricopeptiderepeat protein binding and chaperone activity in heat shock protein 90. J. Biol. Chem. 2000, 275: 17857~17862
    168. Renier N.K.K., Yang W.J., and Rao K.R. Cloning and characterization of a 70 kDa heat shock cognate gene (HSC70) from two species of Chironomus. Insect Mol. Biol. 2003, 12: 19~26
    169. Richards C.L., Oliver B., Muth N.Z., Gurevitch J., and Pigliucci M. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters 2006, 9 : 981~993
    170. Richards C.L., Pennings S.C., and Donovan L.A. Habitat range and phenotypic variation in salt marsh plants. Plant Ecology 2005, 176 : 263~273
    171. Rogers W.E., and Siemann E. Invasive ecotypes tolerate herbivory more effectively than native ecotypes of the Chinese tallow tree. Journal of Applied Ecology 2004, 41 : 561~570.
    172. Rogers W.E, Siemann E. Herbivory tolerance and compensatory differences in native and invasive ecotypes of Chinese tallow tree (Sapium sebiferum). Plant Ecology 2005, 181: 57~68
    173. Rutherford S.L. Between genotype and phenotype: protein chaperones and evolvability. Nat. Rev. Genet 2003, 4: 263~74
    174. Rutherford S.L., and Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature 1998, 396: 336~342
    175. Rutherford S.L., and Zuker C.S. Protein folding and the regulation of signaling pathways. Cell 1994, 79 ( 7) : 1129~1132
    176. Sabehat A., Lurie S., and Weiss D. Isolation and characterization of a coincides with heat induced tolerance to chilling stress. Plant Mol. Biol. 1998b, 36 : 935~939
    177. Sabehat A., Lurie S., and Weiss D. Expression of small heat shock proteins at low temperatures. Plant Physiol. 1998a, 117: 651~658
    178. Saidi Y., Andrija F., Mickhail C., Jean P. Z., Didier G.S., and Pierre G. Controlled expression of recombinant proteins in Physcomitrella patensby a conditional heat shock promoter: a tool for plant research and biotechnology. Plant Mol. Biol. 2005, 59:697~711
    179. Sallaud C. Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor. Appl. Gent. 2003, 106 (8): 1396~408
    180. Sangster T.A., and Queitsch C. The Hsp90 chaperone complex,an emerging force in plant development and phenotypic plasticity. Current Opinion in Plant Biology 2005, 8: 86~92
    181. Scheiner S.M. Genetics and evolution of phenotypic plasticity. Annual Review of Ecology Evolution and Systematics 1993, 24 : 35~68
    182. Scheufler C., Brinker A., Bourenkov G., Pegoraro S., Moroder L., Bartunik H., Hartl F.U., and Moarefi I. Structure of TPR domain peptide complexes: critical elements in the assembly of the Hsp70- Hsp90 multichaperone machine. Cell 2000, 101: 199~210
    183. Schlesinger 1990. Heat shock proteins. J Biol Chem, 265. (21): 12111 12114
    184. Schlichting C.D. The evolution of phenotypic plasticity in plants. Annual Review of Ecology Evolution and Systematics 1986, 17 : 667~693
    185. Schmitt J., Dudley S.A., and Pigliucci M. Manipulative approaches to test adaptive plasticity,Phytochrome~mediated shade~avoidance response in plants. American Naturalist 1999, 154 : S43~S54
    186. Sharir I.N., Isaacson T., Lurie S., and Weissa D. Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. Plant Cell 2005, 17: 1829~1838
    187. Siddique M., Gernhard S., von Koskull D.P., Vierling E., and Scharf K.D. The plant sHSP superfamily: Five new members in Arabidopsis thaliana with unexpected properties. Cell Stress & Chaperones 2008, 13: 183~187
    188. Singla S.L., Pareek A., and Grover A. Yeast HSP104 homologue rice HSP110 is developmentally2 and stress regulated. Plant Sci. 1997, 125 (2) : 211~219
    189. Smykal P., Masín J., Hrdy I., Konopasek I., and Zarsky V. Chaperone activity of tobacco HSP18, a small heat shock protein, is inhibited by ATP. Plant J. 2000, 23: 703~712
    190. Smykal P., Hrdy I., and Pechan P.M.. High molecularmass complexes formed in vivo contain smHSPs and HSP70 and displayed chaperone like activity. Eur. J .Biochem. 2000, 267: 2195~2207
    191. Sorensen J.G., Kristensen T.N., and Loeschcke V. The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 2003, 6: 1025~1037
    192. Sorensen J.G., Loeschcke V. Natural adaptation to environmental stress via physiological clock~regulation of stress resistance in Drosophila. Ecol. Lett. 2002, 5: 16~19
    193. Sorensen J.G., Dahlgaard J., and Loeschcke V., Genetic variation in thermal tolerance among natural populations of Drosophila buzzatii: down regulation of Hsp70 expression and variation in heat stress resistance traits. Funct. Ecol., 2001, 15: 289~296.
    194. Soto A., Allona I., Collada C., Guevara M.A., Casado R., Rodriguez C.E., Aragoncillo C., and Gomez L. Heterologous expression of a plant small heat shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol. 1999, 120: 521~528
    195. Stevenson M.A., and Calderwood S.K. Members of the 70 kilodalton heat shock protein family contain a highly conserved calmodulin binding domain. Mol Cell Biol. 1990, 10: 1234~1238
    196. Stromer T., Fischer E., Richter K., Haslbeck M., and Buchner J. Analysis of the interaction of small heat shock proteins with unfolding proteins. J. Biol. Chem. 2004, 279: 11222~11228
    197. Sultan S.E., and Bazzaz F.A. Phenotypic plasicitytion. New Jerse 1993: 71~204
    198. Sultan S.E. Phenotypic plasticity and plant adaptation. Acta Boatnic Neerlandica 1995, 63 : 383
    199. Sultan S.E. Phenotypic plasticity for fitness components in Polygonum species of contrasting ecological breadth. Ecology 2001, 82 : 328~343
    200. Sun A.Q., Yi S.Y, Yang J.Y., Zhao C.M., and Liu J. Identification and characterization of a heat~inducible ftsH gene from tomato (Lycopersicon esculentum Mill).Plant Science 2006, 170: 551~562.
    201. Sun W., Van Montagu M., and Verbruggen, N. Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta. 2002, 1577: 1~9
    202. Sun X.Y., Lu Z.H., and Sang W.G. Review on studies of Eupatorium adenophora an important invasive species in China. Journal of Forestry Research 2004, 15(4) : 319~322.
    203. Sun Y., and MacRae T.H. Small heat shock proteins: Molecular structure and chaperone function. Cell. Mol. Life Sci. 2005, 62: 2460~2476.
    204. Sun Y., and MacRae T.H. The small heat shock proteins and their role in human disease. FEBS J. 2005, 272: 2613~2627
    205. Suzuki T.C., Krawitz D.C., and Vierling E. The chloroplast small heat shock protein oligomer is not phosphorylated and does not dissociateduring heat stress in vivo. Plant Physiol. 1998, 116:1151~1161. Teri C.S.
    206. Tarun K.M., and Jon L.D. Phenotypic plasticity in vegetative and reproduction trite in an invasive weed, Lythrum Salicaria (Lythraceae), in response to soil moisture. American Journal of Botany 2005, 92 (5) : 819~825
    207. Terauchi R., and Kahl G. Rapid isolation of promoter sequences by TAIL-PCR: the 5’flanking regions of Pal and Pgi genes from yams (Dioscorea). Mol. Gen. Genet. 2000, 263: 554~560
    208. Thebaud C., and Simberloff D. Are plants really larger in their introduced ranges? American Naturalist 2001, 157 : 231~236.
    209. Tissieres A., Mttchell H.K., and Tracy U.M. Protein synthesis in salivary glands of Drosophila melanogaster : relation to chromosome puffs. J. Mol. Biol. 1974, 84 : 389~398
    210. Tripathi R.S., Singh R.S., and Rai J.P.N. Allelopathic potential of Eupatorium adenophora: A domainant ruderal weed of Meghalaya India. PNAS USA 1981, 47(3): 458~465
    211. Van Montfort R., Slingsby C., and Vierling E. Structure and function of the small heat shock protein/a~crystallin family of molecular chaperone. Adv. Protein Chem. 2002, 59: 105~156
    212. Velazquez J.M., Sonoda S., Bugaisky G., and Lindquist L. Is the major Drosophila heat shock protein present in cells that have not been heat shocked? J. Cell Biol. 1983, 96: 286~290
    213. Vierling E.The roles of heat shock proteins in plants. Annu. Rev. Plant. Physiol. P1ant Mol Bio1. 1991, 42: 579~620
    214. Vierling, E., and Kimpel J.A. Plant responses to environmental stress. Curr. Opin. Biotechnol. 1992, 3: 164~170
    215. Wang J.Y., Zhang H.W., and Huang R.F. Expression analysis of low temperature responsive genes in Eupatorium Adenophora Spreng using cDNA-AFLP. Plant Molecular Biology Reporter 2007, 25 (1-2): 37~44
    216. Wang L., Zhao C.M., Wang Y.J., and Liu J. Overexpression of chloroplast-localized small molecular heat-shock protein enhance chilling tolerance in tomato plant. J. Plant Physiol Mol. Biol. 2005, 31: 167~174
    217. Wang W., Vinocur B., Shoseyov O., and Altman A. Role of heat shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004, 9(5): 244~252
    218. Wang Z., Landry S.J., Gierasch L.M., and Srere P.A.. Renaturation of citrate synthase: Influence of denaturant and folding assistants. Protein Sci. 1992, 1: 522~529
    219. Waters E.R., Lee G.J., and Vierling E. Evolution, structure and function of the small best shock proteins in plants. J. Exp. Bot. 1996, 47: 325~338
    220. Waters E.R., and Rioflorido I. Evolutionary Analysis of the small heat shock proteins in five complete algal genomes. J. Mol. Evol. 2007, 65: 162~174
    221. Waters E.R., Aevermann B.D., and Reed Z.S. Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell & Stress Chaperones 2008, 13: 127~142
    222. Wehmeyer N., Vierling E. The expression of small heat shock protein in seeds responds to discrete developmental signals and suggest a general protective role in desiccation tolerance. Plant Physiol. 2000, 122: 1099~1108
    223. Williams J.G., Kubelik A.R., Livak K.J., Rafalski J.A., and Scott V.T. DNA polmorphisms amplified by arbitray primers are useful as genetic markers. Nuleic. Acids. Res. 1990, 18: 6531~6535
    224. Wilson S.B., Wilson C.P., and Albano J.P. Growth and development of the native Ruellia caroliniensis and invasive Ruellia tweediana. Hort Science 2004, 39 (5): 1015~1019
    225. Wu C. Two protein binding sites in chromatin implicated in the activation of heat shock genes. Nature 1984, 309: 229~234
    226. Wu C. Heat stress transcription factors. Annu. Rev. Cell Biol. 1995, 11: 441~469
    227. Yacoob R.K., and Filion W.G. Temperature stress response in maize: a comparison of several cultivars. Can. J. Genet. Cytol. 1986a, 28 : 1125~1135
    228. Yamashita N., Tanaka N., Hoshi Y. Seed and seedling demography of invasive and native trees of subtropical Pacific islands. Journal of Vegetation Science, 2003, 1: 15~24
    229. Yoshida K., Kasai T., Garcia M.R., Sawada S., Shoji T., Shimizu S., Yamazaki K., Komeda Y., and Shinmyo A. Heat inducible expression system for a foreign gene in cultured tobacco cells using the HSP18.2 promoter of Arabidopsis thaliana. Appl. Microbiol. Biotechnol. 1995, 44: 466~472
    230. Young J.C., Schneider C., and Hartl F.U. In vitro evidence that hsp90 contains two independent chaperone sites. FEBS Lett. 1997, 418: 139~143
    231. Zhu X., Zhao X., BurkholderW.F., Gragerov A., Ogata C.M., Gottesman M.E., and Hendrickson W.A. Structural Analysis of Substrate Binding by the Molecular Chaperone DnaK. Science 1996, 272: 1606~1614

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700