用户名: 密码: 验证码:
中国畜养产污综合区划方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是水资源严重不足的国家,目前也面临着水资源短缺和水环境污染的双重压力。点源污染和非点源污染共同作用导致了水环境的恶化,而随着点源污染防治水平的提高,非点源污染尤其是农业非点源污染已成为水环境污染的主要污染源之一。2010年公布的第一次全国污染源普查公报表明,畜禽养殖污染源是我国农业非点源污染的主要来源之一。
     然而,在中国的农业非点源污染管理与控制工作中存在着基础数据缺乏、实地实验区域覆盖不全、流域尺度定量化分析不足等突出问题。因此,在中国畜禽养殖污染研究中,基本数据获取与核算、结合土地利用方式特别是耕地进行产污分析、全国畜禽养殖产污规律等是研究的核心环节。鉴于此,本文尝试基于空间分析、数据驱动的中国畜养产污综合区划方法研究。研究目的是提出一种借助现有统计和调查资料进行全国范围畜养产污的分区方法,并进一步选择典型区探索区域影响因素及二级分区划分的方法。
     在国内外文献综述的基础上,本文的研究思路是:首先分析农业非点源污染机理,并构建畜养产污综合区划指标体系;然后,采用等值图分级、分布图系、重心曲线及分级合并的方法,参考中国自然区划、中国畜牧业综合区划、中国综合农业区划和畜养污染减排核算分区进行中国畜养产污的区域区划;最后,以东北区为典型区核算多尺度的指标数据,借助数理统计和空间分析方法进行主要影响因素研究,并探索基于主导因素的类型区划方法。研究取得了以下成果:
     (1)构建了中国畜养产污综合区划指标体系,包括自然条件、农业基础条件、农业社会经济条件、农业种养情况和产污情况等五类,其中共12个二级指标和31个三级指标;
     (2)设计了定量分析与定性分析相结合、区域区划与类型区划相结合的产污综合区划方案;
     (3)得到了产污综合区划一级分区方案,包括甘新蒙区、北蒙黑区、青藏区、东北区、黄土高原区、内蒙及长城沿线区、黄淮海区、西南区、长江中下游区、华南区等十个一级区;
     (4)以东北区为例,采用多尺度指标数据,通过多种统计方法筛选了东北区畜养产污的影响因素,并探索了各种因素的空间分异规律。
     基于以上研究成果,本文形成了下述结论:
     (1)本研究构建的中国畜养产污综合区划指标体系是合理的。在进行中国畜养产污综合区划及相关研究时,应综合考虑自然条件、农业基础条件、农业社会经济条件、农业种养情况和产污情况指标。
     (2)本研究设计的中国畜养产污综合区划方案是可行的。在进行全国综合区划研究时,建议结合定量分析与定性分析,在宏观尺度的区域区划中参考自然因素,在中观尺度的类型区划中参考经济因素。
     (3)采用多尺度指标数据,借助多种统计和分析方法能够进行影响因素和区划指标空间分异规律的研究。在进行畜养产污综合区划研究时,可根据不同的研究范围和不同的研究目标,选择合适的研究尺度进行分区规律的探索。
China is one of the countries with a serious shortage of water resources. It is also facing the dual pressuresof both water shortage and water pollution. The water environment deterioration caused by non-pointsource (NPS) pollution as well as point source (PS) pollution, and with the PS pollution under control, NPSpollution, especially agricultural NPS (AGNPS) pollution has become one of the major source of waterenvironment pollution. The first national pollution census bulletin published in2010shows us the livestockand poultry sources is one of the main source of AGNPS pollution.
     However, there exist some prominent problems in the AGNPS pollution management and control works,such as lack of basic data, insufficient regional coverage of the field experiments, inadequate watershedscale quantitative analysis, and so on. Therefore, core part of the livestock and poultry breeding(LPB)pollution researches are coming, such as the basic data acquisition and calculation, and considering landuse patterns in pollutant generation analysis, especially arable land, and the spatial patterns of the nationallivestock and poultry breeding pollutant generation, and so on. In view of this, this paper focuses on thecomprehensive regionalization method of LPB pollutant generation in China, attempts to use spatialanalysis and data-driven approach. The objective of the study is to propose a regionalization method forLPB pollutant generation at a nationwide level. The method is based on existing statistics and survey data.And then it uses a typical region to explore the region's influencing factors and influencing-factors-basedregionalization method.
     On the basis of literature review in domestic and international, the research mentality of this paper are:First analyse the mechanism of the AGNPS pollution, and constructs the indicator system for LPB pollutant generation regionalization; then using contour maps, thematic map series, related gravity centers curve andclassification merge methods, and reference the physical regionalizaiton of China, the comprehensiveregionalization of livestock in China, the comprehensive agricultural regionalization of China and thecurrent districting scheme of pollutants emission reduction and calculation, to support the regionalization ofLPB pollutant generation in China; And then, this paper analyse the dominant factors in a typicalregion(Northeast region), with a variety statistical and spatial analysis methods, calculating data at differentscales. Finally, the dominant factors are used to explore the type districting scheme of the typical region.The study achieves the following results:
     (1) This paper constructs the indicator system for LPB pollutant generation regionalization, includingfive categories of natural environment, basic agricultural environment, agricultural socio-economicenvironment, agricultural planting and breeding situation, and AGNPS pollution generation situation indexsystem. The five index system has12secondary indicators and31third-level indicators.
     (2) This paper design a research scheme for comprehensive regionalization of LPB pollutant generation,combining quantitative analysis with qualitative analysis, and combining regional districting with typedistricting.
     (3) First-level comprehensive regionalization scheme, including ten regions as followings:Gansu-Xinjiang-Inner Mongolia region, Northern Inner Mongolia-Heilongjiang region, Qinghai-Tibetregion, Northeast region, Loess Plateau region, Inner Mongolia and along the Great Wall region,Huang-Huai-Hai region, Southwest region, the Middle and Lower Reaches of the Yangtze River region andSouth China region.
     (4) This paper select the Northeast region as a typical region, and utilizes multi-scale data and manystatistical method to screen the influencing factors of LPB pollution in this region. In the end, this paper explores the districting scheme of the Northeast region by use of the dominant factors' GWR coefficient.
     Based on the above research results, this paper's conclusions as follows:
     (1) The comprehensive regionalization indicator system constructed in this study is suitable for the actualsituation in China. When carrying out comprehensive regionalization of LPB pollution in China and relatedresearch, the natural environment, basic agricultural environment, agricultural socio-economic environment,agricultural planting and breeding situation, and AGNPS pollution generation situation indicators should betaken into account.
     (2) The comprehensive regionalization scheme of LPB pollutant generation designed in this research ispracticable. When carrying out a comprehensive nationwide regionalization, it is recommended thatcombining with quantitative analysis and qualitative analysis, and reference to natural factors in themacro-scale regionalization, and reference to economic factors in meso-scale type districting.
     (3) Using multi-scale indicators data, and with the help of a variety of statistical and analytical methods,it can be able to carry out a study of the influencing factors and spatial patterns of regionalizationindex.When carrying out comprehensive regionalization of LPB pollution research, it is recommended thataccording to the different regional scale and different research objective to choose a suitable scale.
引文
[1] Aarnink A., Van Ouwerkerk E., Verstegen M. A mathematical model for estimating the amount andcomposition of slurry from fattening pigs[J]. Livestock Production Science,1992,31(1):133-147.
    [2] Acosta-Martinez V., Zobeck T., Allen V. Soil microbial, chemical and physical properties incontinuous cotton and integrated crop-livestock systems[J]. Soil Sci Soc Am J,2004,68(6):1875-1884.
    [3] Al-Adamat R.A.N., Foster I.D.L., Baban S.M.J. Groundwater vulnerability and risk mapping for theBasaltic aquifer of the Azraq basin of Jordan using GIS, Remote sensing and DRASTIC[J]. ApplGeogr,2003,23(4):303-324.
    [4] Aldstadt J. Spatial clustering[M]. Berlin: Springer,2010.
    [5] Anselin L. Local indicators of spatial association—LISA[J]. Geographical analysis,1995,27(2):93-115.
    [6] Anselin L. GIS research infrastructure for spatial analysis of real estate markets[J]. Journal of HousingResearch,1998,9(1):113-133.
    [7] Arnold J.G., Allen P.M., Bernhardt G. A Comprehensive Surface-Groundwater Flow Model[J]. JHydrol,1993,142(1-4):47-69.
    [8] Atkinson P.M., German S.E., Sear D.A., et al. Exploring the relations between riverbank erosion andgeomorphological controls using geographically weighted logistic regression[J]. Geographicalanalysis,2003,35(1):58-82.
    [9] Basnet B.B., Apan A.A., Raine S.R. Geographic information system based manure application plan[J].J Environ Manage,2002,64(2):99-113.
    [10] Birant D., Kut A. ST-DBSCAN: An algorithm for clustering spatial-temp oral data[J]. Data KnowlEng,2007,60(1):208-221.
    [11] Blaha D., Bartlett K., Czepiel P., et al. Natural and anthropogenic methane sources in New England[J].Atmos Environ,1999,33(2):243-255.
    [12] Boers P.C.M. Nutrient emissions from agriculture in the Netherlands, causes and remedies[J]. Waterscience and technology,1996,33(4-5):183-189.
    [13] Bogaert P., D'Or D. Estimating soil properties from thematic soil maps: the Bayesian maximumentropy approach[J]. Soil Sci Soc Am J,2002,66(5):1492-1500.
    [14] Bohm M., Palphramand K.L., Newton-Cross G., et al. The spatial distribution of badgers, setts andlatrines: the risk for intra-specific and badger-livestock disease transmission[J]. Ecography,2008,31(4):525-537.
    [15] Boxall A.B.A., Fogg L.A., Pemberton E.J., et al. Prioritization, modeling and monitoring of veterinarymedicines in the UK environment.[J]. Abstr Pap Am Chem S,2004,228: U617-U617.
    [16] Bragato G. Fuzzy continuous classification and spatial interpolation in conventional soil survey forsoil mapping of the lower Piave plain[J]. Geoderma,2004,118(1-2):1-16.
    [17] Brandjes P., Wit J.d., Keulen H.v., et al. Environmental impact of manure management. Impactdomain study for the FAO/WB study on livestock and the environment[M]. The Netherlands; FinalDraft. Wageningen, The Netherlands: International Agricultural Centre.1995.
    [18] Bricker S.B., Center for Coastal Monitoring and Assessment (U.S.), United States. National Oceanicand Atmospheric Administration., et al. National estuarine eutrophication assessment: effects ofnutrient enrichment in the nation's estuaries[M]. Silver Spring, MD: U.S. Dept. of Commerce,National Oceanic and Atmospheric Administration, National Ocean Service, Special Projects Office,1999.
    [19] Bridges T., Turner L., Cromwell G., et al. Modeling the effects of diet formulation on nitrogen andphosphorus excretion in swine waste[J]. Applied Engineering in Agriculture,1995,11:
    [20] Bruulsema T., Nutrients and their impacts on the Canadian Environment[R],2004.
    [21] Budiansky S. Dispersion Modeling[J]. Environ Sci Technol,1980,14(4):370-374.
    [22] Bull L., Sandretto C. Crop residue management and tillage system trends[J]. StatisticalBulletin-United States Department of Agriculture,1996,(930):
    [23] Narrod C.A., Reynnells R.D., Wells H.. Potential options for poultry waste utilization: a focus on theDelmarva peninsula[M]. Washington, D.C: United States Department of Agriculture and theEnvironmental Protection Agency,1994.
    [24] Candela L. Diffused Pollution of Groundwater by Agriculture-a Study in the Maresme Area ofBarcelona, Spain[J]. Proceedings of International Conference on Environmental Pollution, Vols1and2,1991:841-848.
    [25] Cang L., Wang Y., Zhou D., et al. Heavy metals pollution in poultry and livestock feeds and manuresunder intensive farming in Jiangsu Province, China[J]. Journal of Environmental Sciences,2004,(03):371-374.
    [26] Carpenter S.R., Caraco N.F., Correll D.L., et al. Nonpoint pollution of surface waters with phosphorusand nitrogen[J]. Ecol Appl,1998,8(3):559-568.
    [27] Cecchi G., Wint W., Shaw A., et al. Geographic distribution and environmental characterization oflivestock production systems in Eastern Africa[J]. Agr Ecosyst Environ,2010,135(1-2):98-110.
    [28] Chee-Sanford J.C., Aminov R.I., Krapac I.J., et al. Occurrence and diversity of tetracycline resistancegenes in lagoons and groundwater underlying two swine production facilities[J]. Appl Environ Microb,2001,67(4):1494-1502.
    [29] Chen T., Liu X.M., Zhu M.Z., et al. Identification of trace element sources and associated riskassessment in vegetable soils of the urban-rural transitional area of Hangzhou, China[J]. EnvironPollut,2008,151(1):67-78.
    [30] Clanton C.J., Gilbertson C.B., Schulte D.D., et al. Model for Predicting the Effect of Nitrogen Intake,Body-Mass, and Dietary Calcium and Phosphorus on Manure Nitrogen-Content[J]. T Asae,1988,31(1):208-214.
    [31] Cliff A.D., Ord J.K. Spatial processes: models&applications[M]. Pion London,1981.
    [32] Cochran M.J., Govindasamy R. The Feasibility of Poultry Litter Transportation from EnvironmentallySensitive Areas to Delta-Row Crop Production[J]. Am J Agr Econ,1994,76(5):1250-1250.
    [33] Corwin D.L., Loague K., Ellsworth T.R. GIS-based modeling of non-point source pollutants in thevadose zone[J]. J Soil Water Conserv,1998,53(1):34-38.
    [34] Crook F.W., China's grain production economy: a
    [35] review by regions[R]. Washington,1993.
    [36] Delgado C.L. Livestock to2020: The next food revolution[M]. Intl Food Policy Res Inst,1999.
    [37] DeVisser P., H V.K., A L.E. Efficient resource management in dairy farming on peat and heavy laysoils[J]. Neth J Agr Sci,2001,(49):255-276.
    [38] Dodd V.A., Grace P.M. Agricultural engineering: proceedings of the Eleventh International Congresson Agricultural Engineering, Dublin,4-8September1989[M]. A.A. Balkema,1989.
    [39] Dolliver H., Kumar K., Gupta S. Sulfamethazine uptake by plants from manure-amended soil[J].Journal of environmental quality,2007,36(4):1224-1230.
    [40] Douaik A., Van Meirvenne M., Toth T. Soil salinity mapping using spatio-temporal kriging andBayesian maximum entropy with interval soft data[J]. Geoderma,2005,128(3-4):234-248.
    [41] Dunn S.M., Vinten A.J.A., Lilly A., et al. Modelling nitrate losses from agricultural activities on anational scale[J]. Water science and technology,2005,51(3-4):319-327.
    [42] Dzikiewicz M. Activities in nonpoint pollution control in rural areas of Poland[J]. Ecol Eng,2000,14(4):429-434.
    [43] Eghball B., Power J. Beef cattle feedlot manure management[J]. J Soil Water Conserv,1994,49(2):113-122.
    [44] Engelbrecht T.H. Die landbauzonen der aussertropischen lander[M]. Berlin,: D. Reimer (E. Vohsen),1898.
    [45] Eratosthenes, Roller D.W. Eratosthenes' Geography[M]. Princeton University Press,2010.
    [46] Estivill-Castro V., Lee I. Multi-level clustering and its visualization for exploratory spatial analysis[J].Geoinformatica,2002,6(2):123-152.
    [47] Everitt B., Landau S., Leese M. Cluster analysis.2001[J]. Arnold, London,2001:
    [48] Facchinelli A., Sacchi E., Mallen L. Multivariate statistical and GIS-based approach to identify heavymetal sources in soils[J]. Environ Pollut,2001,114(3):313-324.
    [49] Faruqui N.I., Raschid L. Wastewater use in irrigated agriculture[J]. Appropriate Technology,2005,32(2):52-53.
    [50] Foster S.A., Gorr W.L. An Adaptive Filter for Estimating Spatially-Varying Parameters-Applicationto Modeling Police Hours Spent in Response to Calls for Service[J]. Manage Sci,1986,32(7):878-889.
    [51] Fotheringham A.S., Brunsdon C., Charlton M. Geographically Weighted Regression: The Analysis ofSpatially Varying Relationships[M]. John Wiley&Sons,2003.
    [52] Fotheringham A.S., Charlton M., Brunsdon C. The geography of parameter space: An investigation ofspatial non-stationarity[J]. International Journal of Geographical Information Systems,1996,10(5):605-627.
    [53] Fotheringham A.S., Charlton M.E., Brunsdon C. Geographically weighted regression: a naturalevolution of the expansion method for spatial data analysis[J]. Environ Plann A,1998,30(11):1905-1927.
    [54] Foy R.H., Withers P.J.A. The contribution of agricultural phosphorus to Eutrophication, F,1995[C].Peterborough: Fertiliser Society,1995.
    [55] Fraser R.H., Barten P.K., Pinney D.A.K. Predicting stream pathogen loading from livestock using ageographical information system-based delivery model[J]. Journal of environmental quality,1998,27(4):935-945.
    [56] Geary R.C. The contiguity ratio and statistical mapping[J]. The incorporated statistician,1954,5(3):115-146.
    [57] Gerared-Marchant P., Walter M.T., Steenhuis T.S. Simple models for phosphorus loss from manureduring rainfall[J]. Journal of environmental quality,2005,34(3):872-876.
    [58] Gerber P., Chilonda P., Franceschini G., et al. Geographical determinants and environmentalimplications of livestock production intensification in Asia[J]. Bioresource Technol,2005,96(2):263-276.
    [59] Getis A., Ord J.K. The analysis of spatial association by use of distance statistics[J]. Geographicalanalysis,1992,24(3):189-206.
    [60] Giupponi C., Vladimirova I. Ag-PIE: A GIS-based screening model for assessing agriculturalpressures and impacts on water quality on a European scale[J]. Science of the Total Environment,2006,359(1-3):57-75.
    [61] Giusquiani P., Concezzi L., Businelli M., et al. Fate of pig sludge liquid fraction in calcareous soil:agricultural and environmental implications[J]. Journal of environmental quality,1998,27(2):364-371.
    [62] Goktepe A.B., Altun S., Sezer A. Soil clustering by fuzzy c-means algorithm[J]. Adv Eng Softw,2005,36(10):691-698.
    [63] Goldstein H. Multilevel statistical models[M].4th ed. Chichester, West Sussex: Wiley,2011.
    [64] Gondwe N., Marcotty T., Vanwambeke S.O., et al. Distribution and Density of Tsetse Flies(Glossinidae: Diptera) at the Game/People/Livestock Interface of the Nkhotakota Game ReserveHuman Sleeping Sickness Focus in Malawi[J]. Ecohealth,2009,6(2):260-265.
    [65] Goovaerts P., Jacquez G.M. Accounting for regional background and population size in the detectionof spatial clusters and outliers using geostatistical filtering and spatial neutral models: the case of lungcancer in Long Island, New York[J]. International Journal of Health Geographics,2004,3(1):14.
    [66] Gorr W.L., Olligschlaeger A.M. Weighted spatial adaptive filtering: Monte Carlo studies andapplication to illicit drug market modeling[J]. Geographical analysis,1994,26(1):67-87.
    [67] Grunwald S., Frede H.G. Using the modified agricultural non-point source pollution model in Germanwatersheds[J]. Catena,1999,37(3-4):319-328.
    [68] Gupta R.K., Rudra R.P., Dickinson W.T., et al. Surface water quality impacts of tillage practices underliquid swine manure application[J]. J Am Water Resour As,1997,33(3):681-687.
    [69] Haining R., Wise S., Ma J.S. Exploratory spatial data analysis in a geographic information systemenvironment[J]. J Roy Stat Soc D-Sta,1998,47:457-469.
    [70] Hanesch M., Scholger R., Dekkers M.J. The application of fuzzy c-means cluster analysis andnon-linear mapping to a soil data set for the detection of polluted sites[J]. Phys Chem Earth Pt A,2001,26(11-12):885-891.
    [71] Henkens P.L.C.M., van Keulen H. Mineral policy in the Netherlands and nitrate policy within theEuropean Community[J]. Neth J Agr Sci,2001,49(2-3):117-134.
    [72] Hijmans R.J., Cameron S.E., Parra J.L., et al. Very high resolution interpolated climate surfaces forglobal land areas[J]. Int J Climatol,2005,25(15):1965-1978.
    [73] Hobololo V.L. Spatial distribution of blackfly (Diptera: Simuliildae) challenge for livestock farmersalong the Vaal River, South Africa[J]. J S Afr Vet Assoc,2009,80(2):137-137.
    [74] Hooda P.S., Truesdale V.W., Edwards A.C., et al. Manuring and fertilization effects on phosphorusaccumulation in soils and potential environmental implications[J]. Adv Environ Res,2001,5(1):13-21.
    [75] Houghton J.T., Callander B.A. Climate change1992: the supplementary report to the IPCC scientificassessment[M]. Cambridge Univ Pr,1992.
    [76] Huang G., Wu Q., Li F., et al. Chemical and Biological Evaluation of Maturity of Pig Manure Compostat Different C/N Ratios[J]. Pedosphere,2001,(03):243-250.
    [77] Hutchinson M. Anusplin version4.3. Centre for resource and environment studies[J]. Canberra: TheAustralian National University,2004:
    [78] Hutchison M.L., Avery S.M., Monaghan J.M. The air-borne distribution of zoonotic agents fromlivestock waste spreading and microbiological risk to fresh produce from contaminated irrigationsources[J]. J Appl Microbiol,2008,105(3):848-857.
    [79] Inglis G.D., Kalischuk L.D., Busz H.W. A survey of Campylobacter species shed in faeces of beefcattle using polymerase chain reaction[J]. Can J Microbiol,2003,49(11):655-661.
    [80] James E., Kleinman P., Veith T., et al. Phosphorus contributions from pastured dairy cattle to streamsof the Cannonsville Watershed, New York[J]. J Soil Water Conserv,2007,62(1):40-47.
    [81] Jerding G. Antibiotic overkill boosts risks[N]. USA today,1998-.
    [82] K ppen W. Die W rmezonen der Erde, nach der Dauer der heissen, gem ssigten und kalten Zeit undnach der Wirkung der W rme auf die organische Welt betrachtet[J]. Meteorol Z,1884,1:215-226.
    [83] Kikin K.K.K. Prospects for grain supply-demand balance and agricultural development policy inChina[M]. Overseas Economic Cooperation Fund,1995.
    [84] Knisel W.G. CREAMS: A field-scale model for chemicals, runoff and erosion from agriculturalmanagement systems[J]. USDA Conservation Research Report,1980,(26):
    [85] Kolpin D.W., Furlong E.T., Meyer M.T., et al. Pharmaceuticals, hormones, and other organicwastewater contaminants in US streams,1999-2000: A national reconnaissance[J]. Environ SciTechnol,2002,36(6):1202-1211.
    [86] Kronvang B., Graesboll P., Larsen S.E., et al. Diffuse nutrient losses in Denmark[J]. Water science andtechnology,1996,33(4-5):81-88.
    [87] Lagacherie P., Cazemier D.R., vanGaans P.F.M., et al. Fuzzy k-means clustering of fields in anelementary catchment and extrapolation to a larger area[J]. Geoderma,1997,77(2-4):197-216.
    [88] LeSage J.P. A spatial econometric examination of China's economic growth[J]. Annals of GIS,1999,5(2):143-153.
    [89] LeSage J.P. A family of geographically weighted regression models[J]. Advances in spatialeconometrics Methodology, tools and applications Springer, Berlin Heidelberg New York,2004:241-264.
    [90] Li Y., Shi Z., Li F., et al. Delineation of site-specific management zones using fuzzy clusteringanalysis in a coastal saline land[J]. Comput Electron Agr,2007,56(2):174-186.
    [91] Li Z. Algorithmic foundation of multi-scale spatial representation[M]. CRC,2007.
    [92] Liao K., Guo D. A Clustering‐Based Approach to the Capacitated Facility Location Problem1[J].Transactions in GIS,2008,12(3):323-339.
    [93] Lin Y.P., Chang T.K., Teng T.P. Characterization of soil lead by comparing sequential Gaussiansimulation, simulated annealing simulation and kriging methods[J]. Environ Geol,2001,41(1-2):189-199.
    [94] Liu F., Mitchell C.C., Odom J.W., et al. Effects of swine lagoon effluent application on chemicalproperties of a loamy sand[J]. Bioresource Technol,1998,63(1):65-73.
    [95] Liu H.C., Zhang L.P., Zhang Y.Z., et al. Validation of an agricultural non-point source (AGNPS)pollution model for a catchment in the Jiulong River watershed, China[J]. J Environ Sci-China,2008,20(5):599-606.
    [96] Liu X.M., Wu J.J., Xu J.M. Characterizing the risk assessment of heavy metals and samplinguncertainty analysis in paddy field by geostatistics and GIS[J]. Environ Pollut,2006,141(2):257-264.
    [97] Lu R.S., Lo S.L. Diagnosing reservoir water quality using self-organizing maps and fuzzy theory[J].Water Res,2002,36(9):2265-2274.
    [98] Ma K.K.Y., Ogilvie J.R. MCLONE3: A decision support system for management of liquid dairy andswine manure[J]. Computers in Agriculture,1998,1998:480-486.
    [99] Ma Y.S., Tan X.C., Shi Q.Y. The Simulation of Agricultural Non-Point Source Pollution inShuangyang River Watershed[J]. Int Fed Info Proc,2009,293:553-561.
    [100] Malele I., Nyingilili H., Msangi A. Factors defining the distribution limit of tsetse infestation andthe implication for livestock sector in Tanzania[J]. Afr J Agr Res,2011,6(10):2341-2347.
    [101] McGraw L. Animal agriculture--conception to consumption[J]. Agricultural research/,1999:
    [102] Mellon M., Benbrook C., Benbrook K.L., Hogging it: estimates of antimicrobial abuse inlivestock[R]. Cambridge, Massachusetts: Union of Concerned Scientists,2001.
    [103] Mennis J.L., Jordan L. The distribution of environmental equity: Exploring spatial nonstationarityin multivariate models of air toxic releases[J]. Ann Assoc Am Geogr,2005,95(2):249-268.
    [104] Merle R., Busse M., Rechter G., et al. Regionalisation of Germany by data of agriculturalstructures[J]. Berl Munch Tierarztl,2012,125(1-2):52-59.
    [105] Merriam C.H. Life zones and crop zones of the United States[M]. Gov't Print. Off.,1898.
    [106] Miller H.J., Han J. Geographic data mining and knowledge discovery[M].2nd ed. Boca Raton, FL:CRC Press,2009.
    [107] Mohammed H., Yohannes F., Zeleke G. Validation of agricultural non-point source (AGNPS)pollution model in Kori watershed, South Wollo, Ethiopia[J]. International Journal of Applied EarthObservation and Geoinformation,2004,6(2):97-109.
    [108] Moore P.A., Daniel T.C., Edwards D.R. Reducing phosphorus runoff and inhibiting ammonia lossfrom poultry manure with aluminum sulfate[J]. Journal of environmental quality,2000,29(1):37-49.
    [109] Moran P.A.P. The interpretation of statistical maps[J]. Journal of the Royal Statistical Society SeriesB (Methodological),1948,10(2):243-251.
    [110] Moran P.A.P. Notes on continuous stochastic phenomena[J]. Biometrika,1950,37(1/2):17-23.
    [111] Mur J., Lopez F., Angulo A. Symptoms of instability in models of spatial dependence[J].Geographical analysis,2008,40(2):189-211.
    [112] Neumann K., Elbersen B.S., Verburg P.H., et al. Modelling the spatial distribution of livestock inEurope[J]. Landscape Ecol,2009,24(9):1207-1222.
    [113] Novotny V., Chesters G. Handbook of nonpoint pollution: sources and management[M]. VanNostrand Reinhold,1981.
    [114] Novotny V. Diffuse pollution from agriculture-A worldwide outlook[J]. Water science andtechnology,1999,39(3):1-13.
    [115] Odeh I.O.A., Mcbratney A.B., Chittleborough D.J. Soil Pattern-Recognition with Fuzzy-C-Means-Application to Classification and Soil-Landform Interrelationships[J]. Soil Sci Soc Am J,1992,56(2):505-516.
    [116] Oneill D.H., Phillips V.R. A Review of the Control of Odor Nuisance from Livestock Buildings.3.Properties of the Odorous Substances Which Have Been Identified in Livestock Wastes or in the Airaround Them[J]. J Agr Eng Res,1992,53(1):23-50.
    [117] Ongley E.D. Control of water pollution from agriculture[M]. Food&Agriculture Org,1996.
    [118] Ongley E.D., Zhang X.L., Yu T. Current status of agricultural and rural non-point source Pollutionassessment in China[J]. Environ Pollut,2010,158(5):1159-1168.
    [119] Orhan H., Ozturk I., Dogan Z., et al. Examining Structural Distribution of Livestock in Eastern andSouth-Eastern Anatolia of Turkey by Multivariate Statistics[J]. J Anim Vet Adv,2009,8(3):481-487.
    [120] Ouyang Y., Nkedi-Kizza P., Wu Q.T., et al. Assessment of seasonal variations in surface waterquality[J]. Water Res,2006,40(20):3800-3810.
    [121] Pace R.K., LeSage J.P. Spatial autoregressive local estimation[J]. Recent Advances in SpatialEconometrics,2004,3:31-51.
    [122] Paez A. Exploring contextual variations in land use and transport analysis using a probit model withgeographical weights[J]. J Transp Geogr,2006,14(3):167-176.
    [123] Park N. Estimation of average annual daily traffic (AADT) using geographically weightedregression (GWR) method and geographic information system (GIS)[D]: Florida InternationalUniversity,2004.
    [124] Pei T., Jasra A., Hand D.J., et al. DECODE: a new method for discovering clusters of differentdensities in spatial data[J]. Data Min Knowl Disc,2009,18(3):337-369.
    [125] Proffitt K.M., Gude J.A., Hamlin K.L., et al. Elk distribution and spatial overlap with livestockduring the brucellosis transmission risk period[J]. J Appl Ecol,2011,48(2):471-478.
    [126] Program W.W.A. Water security: a preliminary assessment of policy progress since Rio inChinese[M]. Paris. Paris; UNESCO.2001.
    [127] Puangthongthub S., Wangwongwatana S., Kamens R.M., et al. Modeling the space/time distributionof particulate matter in Thailand and optimizing its monitoring network[J]. Atmos Environ,2007,41(36):7788-7805.
    [128] Qi H., Li Z. An approach to building grouping based on hierarchical constraints; proceedings of theThe International Archives of the Photogrammetry, Remote Sensing and Spatial InformationSciences Vol XXXVII Part B2Beijing2008, F,2008[C].
    [129] Ribaudo M., Service U.S.D.o.A.E.R. Manure Management for Water Quality: Costs to AnimalFeeding Operations of Applying Manure Nutrients to Land[M]. U.S. Department of Agriculture,Economic Research Service,2003.
    [130] Robinson A.H., Wallis H. Humboldt's map of isothermal lines: a milestone in thematiccartography[J]. Cartographic Journal, The,1967,4(2):119-123.
    [131] Rong G.W., Wei W.L. Causes and Control Countermeasures of Agricultural Non-Point SourcePollution in Shaanxi Section of Wei River Basin[J]. Proceedings of2010International Workshop onDiffuse Pollution-Management Measures and Control Technique,2010:47-51.
    [132] Rossi R.E., Mulla D.J., Journel A.G., et al. Geostatistical tools for modeling and interpretingecological spatial dependence[J]. Ecological monographs,1992,62(2):277-314.
    [133] Saam H., Powell J.M., Jackson-Smith D.B., et al. Use of animal density to estimate manure nutrientrecycling ability of Wisconsin dairy farms[J]. Agr Syst,2005,84(3):343-357.
    [134] Saizen I., Maekawa A., Yamamura N. Spatial analysis of time-series changes in livestockdistribution by detection of local spatial associations in Mongolia[J]. Appl Geogr,2010,30(4):639-649.
    [135] Sanderson M.A., Feldmann C., Schmidt J., et al. Spatial distribution of livestock concentration areasand soil nutrients in pastures[J]. J Soil Water Conserv,2010,65(3):180-189.
    [136] Savelieva E., Demyanov V., Kanevski M., et al. BME-based uncertainty assessment of theChernobyl fallout[J]. Geoderma,2005,128(3-4):312-324.
    [137] Schlesinger W.H. Biogeochemistry: an analysis of global change[J]. Geochimica et CosmochimicaActa,1997,56(2):
    [138] Scotford I.M., Cumby T.R., Han L., et al. Development of a prototype nutrient sensing system forlivestock slurries[J]. J Agr Eng Res,1998,69(3):217-228.
    [139] SCS. Soil Conservation Service[M]. United States: Soil Conservation Service, U.S. Dept. ofAgriculture,1967.
    [140] Sere C., Characterisation and Quantification of Livestock production systems[R],1994.
    [141] Sharpley A.N., Chapra S.C., Wedepohl R., et al. Managing Agricultural Phosphorus for Protectionof Surface Waters-Issues and Options[J]. Journal of environmental quality,1994,23(3):437-451.
    [142] Shekhar S., Chawla S., Ravada S., et al. Spatial databases-Accomplishments and research needs[J].Ieee T Knowl Data En,1999,11(1):45-55.
    [143] Shen Z.Y., Liao Q., Hong Q., et al. An overview of research on agricultural non-point sourcepollution modelling in China[J]. Sep Purif Technol,2012,84:104-111.
    [144] Shortle J.S., Abler D.G. Environmental policies for agricultural pollution control[M]. Wallingford,Oxon, UK; New York: CABI Pub.,2001.
    [145] Shrestha S., Kazama F. Assessment of surface water quality using multivariate statistical techniques:A case study of the Fuji river basin, Japan[J]. Environmental Modelling&Software,2007,22(4):464-475.
    [146] Shrestha S., Kazama F., Newham L.T.H. A framework for estimating pollutant export coefficientsfrom long-term in-stream water quality monitoring data[J]. Environmental Modelling&Software,2008,23(2):182-194.
    [147] Sibbesen E., Runge-Metzger A. Phosphorus balance in European agriculture: status and policy[M].Phosphorus in the global environment: transfers, cycles,and wiley. New York; In:Tiessen H.1995:43-57.
    [148] Sim W.J., Lee J.W., Lee E.S., et al. Occurrence and distribution of pharmaceuticals in wastewaterfrom households, livestock farms, hospitals and pharmaceutical manufactures[J]. Chemosphere,2011,82(2):179-186.
    [149] Smil V. China's environmental crisis: an inquiry into the limits of national development[M].Armonk, N.Y.: M.E. Sharpe,1993.
    [150] Smith J., Douglas C., Bondurant J. Microbiological quality of subsurface drainage water fromirrigated agricultural land[J]. Journal of Environment Quality,1972,1(3):308-311.
    [151] Smith K.A., Frost J.P. Nitrogen excretion by farm livestock with respect to land spreadingrequirements and controlling nitrogen losses to ground and surface waters. Part1: cattle andsheep[J]. Bioresource Technol,2000,71(2):173-181.
    [152] Smith K.A., Charles D.R., Moorhouse D. Nitrogen excretion by farm livestock with respect to landspreading requirements and controlling nitrogen losses to ground and surface waters. Part2: Pigsand poultry[J]. Bioresource Technol,2000,71(2):183-194.
    [153] Steinfeld H., De Haan C., Blackburn H.D., et al. Livestock-environment interactions: Issues andoptions[M]. European Commission Directorate-General for Development, Development PolicySustainable Development and Natural Resources,1997.
    [154] Stevens R.J., Obric C.J., Carton O.T. Estimating Nutrient Content of Animal Slurries UsingElectrical-Conductivity[J]. J Agr Sci,1995,125:233-238.
    [155] Sutton A.L. Proper Animal Manure Utilization[J]. J Soil Water Conserv,1994,49(2):65-70.
    [156] Tamminga S. Pollution due to nutrient losses and its control in European animal production[J].Livestock Production Science,2003,84(2):101-111.
    [157] Tao S. Kriging and Mapping of Copper, Lead, and Mercury Contents in Surface Soil in ShenzhenArea[J]. Water Air Soil Poll,1995,83(1-2):161-172.
    [158] Thom E.C. The discomfort index[J]. Weatherwise,1959,12(2):57-61.
    [159] Thoma D.P., Gupta S.C., Strock J.S., et al. Tillage and nutrient source effects on water quality andcorn grain yield from a flat landscape[J]. Journal of environmental quality,2005,34(3):1102-1111.
    [160] Tim U.S., Jolly R. Evaluating Agricultural Nonpoint-Source Pollution Using Integrated GeographicInformation-Systems and Hydrologic/Water Quality Model[J]. Journal of environmental quality,1994,23(1):25-35.
    [161] Tobler W. Linear operators applied to areal data[M]. New York: John Wiley.1975:14-37.
    [162] Tobler W.R. A computer movie simulating urban growth in the Detroit region[J]. Economicgeography,1970,46:234-240.
    [163] Trachtenberg E., Ogg C. Potential for Reducing Nitrogen Pollution through Improved AgronomicPractices[J]. Water Resour Bull,1994,30(6):1109-1118.
    [164] Tsou M.S., Zhan X.Y. Estimation of runoff and sediment yield in the Redrock Creek watershedusing AnnAGNPS and GIS[J]. J Environ Sci-China,2004,16(5):865-867.
    [165] USEPA. Nonpoint Source Pollution from Agriculture[M].2003.
    [166] Van Meirvenne M., Goovaerts P. Evaluating the probability of exceeding a site-specific soilcadmium contamination threshold[J]. Geoderma,2001,102(1-2):75-100.
    [167] Veldkamp A., Fresco L.O. CLUE-CR: An integrated multi-scale model to simulate land use changescenarios in Costa Rica[J]. Ecol Model,1996,91(1-3):231-248.
    [168] Verburg P.H., van Keulen H. Exploring changes in the spatial distribution of livestock in China[J].Agr Syst,1999,62(1):51-67.
    [169] Vighi M., Chiaudani G. Eutrophication in Europe: the role of agricultural activities.ln: HodgsonE.Reviews of Environmental Toxicology[M]. Amsterdam; Elsevier.1987:213-257.
    [170] Wang Q., Ni J., Tenhunen J. Application of a geographically-weighted regression analysis toestimate net primary production of Chinese forest ecosystems[J]. Global Ecol Biogeogr,2005,14(4):379-393.
    [171] Wei C.Y., Wang C., Yang L.S. Characterizing spatial distribution and sources of heavy metals in thesoils from mining-smelting activities in Shuikoushan, Hunan Province, China[J]. J EnvironSci-China,2009,21(9):1230-1236.
    [172] Wheeler D.C. Diagnostic tools and a remedial method for collinearity in geographically weightedregression[J]. Environ Plann A,2007,39(10):2464-2481.
    [173] Wheeler D.C. Simultaneous coefficient penalization and model selection in geographicallyweighted regression: the geographically weighted lasso[J]. Environ Plann A,2009,41(3):722-742.
    [174] Wheeler D.C., Calder C.A. An assessment of coefficient accuracy in linear regression models withspatially varying coefficients[J]. J Geogr Syst,2007,9(2):145-166.
    [175] Wheeler D.C., Páez A. Geographically Weighted Regression[M]. Fischer M.M., Getis, A.Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications. Springer.2010:461-486.
    [176] White D.H., Lubulwa G.A., Menz K., et al. Agro-climatic classification systems for estimating theglobal distribution of livestock numbers and commodities[J]. Environ Int,2001,27(2-3):181-187.
    [177] Whittemore R.C. The BASINS model[J]. Water environment&technology,1998,10(12):57-61.
    [178] Wilkinson J.M., Hill J., Phillips C.J.C. The accumulation of potentially-toxic metals by grazingruminants[J]. P Nutr Soc,2003,62(2):267-277.
    [179] Wilson E.J., Skeffington R.A. The Effects of Excess Nitrogen Deposition on Young Norway SpruceTrees.1. The Soil[J]. Environ Pollut,1994,86(2):141-151.
    [180] Wittwer S.H. Feeding a billion: frontiers of Chinese agriculture[M]. East Lansing: Michigan StateUniversity Press,1987.
    [181] Wong J.W.C., Ma K.K., Fang K.M., et al. Utilization of a manure compost for organic farming inHong Kong[J]. Bioresource Technol,1999,67(1):43-46.
    [182] Xiaoyan W., Xiaofeng W., Zhengang W., et al. Nutrient loss from various land-use areas in Shixiasmall watershed of Miyun County, Beijing, China[J]. Chinese Journal of Geochemistry,2003,(2):
    [183] Young R.A., Onstad C.A., Bosch D.D., et al. Agnps-a Nonpoint-Source Pollution Model forEvaluating Agricultural Watersheds[J]. J Soil Water Conserv,1989,44(2):168-173.
    [184] Zhang C.S. Using multivariate analyses and GIS to identify pollutants and their spatial patterns inurban soils in Galway, Ireland[J]. Environ Pollut,2006,142(3):501-511.
    [185] Zhang C.S., Luo L., Xu W.L., et al. Use of local Moran's I and GIS to identify pollution hotspots ofPb in urban soils of Galway, Ireland[J]. Science of the Total Environment,2008,398(1-3):212-221.
    [186] Zhang C.S., McGrath D. Geostatistical and GIS analyses on soil organic carbon concentrations ingrassland of southeastern Ireland from two different periods[J]. Geoderma,2004,119(3-4):261-275.
    [187] Zhang H.C., Cao Z.H., Shen Q.R., et al. Effect of phosphate fertilizer application on phosphorus (P)losses from paddy soils in Taihu Lake Region I. Effect of phosphate fertilizer rate on P losses frompaddy soil[J]. Chemosphere,2003,50(6):695-701.
    [188] Zhang X.D., Huang G.H., Nie X.H. Possibilistic Stochastic Water Management Model forAgricultural Nonpoint Source Pollution[J]. J Water Res Pl-Asce,2011,137(1):101-112.
    [189]蔡进忠,李春花.青海省畜禽寄生虫虫种资源与分布[J].中国动物传染病学报,2010,(01):64-67.
    [190]陈传康,伍光和,李昌文.综合自然地理学[M].北京:高等教育出版社,1993.
    [191]陈敏鹏,陈吉宁,赖斯芸.中国农业和农村污染的清单分析与空间特征识别[J].中国环境科学,2006,(06):751-755.
    [192]陈述彭.自然区划方法与制图实践[M].北京:科学出版社,1990.
    [193]陈述彭.地理科学的信息化与现代化[J].中国科学院院刊,2001,(04):289-291.
    [194]陈媛媛,王永生,易军等.黄河下游灌区河南段农业非点源污染现状及原因分析[J].中国农学通报,2011,(17):
    [195]陈勇.陕西省农业非点源污染评价与控制研究[D].杨凌:西北农林科技大学,2010.
    [196]陈永波.滑坡危险度区划研究[D].成都:西南交通大学,2002.
    [197]崔功豪,魏清泉,陈宗兴.区域分析与规划[M].北京:高等教育出版社,1999.
    [198]崔键,马友华,赵艳萍等.农业面源污染的特性及防治对策[J].中国农学通报,2006,(01):335-340.
    [199]邰义萍.珠三角地区蔬菜基地土壤中典型抗生素的污染特征研究[D].厦门:暨南大学,2010.
    [200]丁恩俊,谢德体.国内外农业面源污染研究综述; proceedings of the全国农业面源污染综合防治高层论坛,中国江苏苏州, F,2008[C].
    [201]丁永良,虞宗敢,黄一心等.畜禽粪便与河道污染的综合治理[J].渔业现代化,1999,(04):3-6.
    [202]邓敏,刘启亮,李光强等.空间聚类分析及应用[M].北京:科学出版社,2011.
    [203]邓羽,刘盛和,张文婷等.广义多维云模型及在空间聚类中的应用[J].地理学报,2009,(12):1439-1447.
    [204]董红敏,朱志平,黄宏坤等.畜禽养殖业产污系数和排污系数计算方法[J].农业工程学报,2011,(01):303-308.
    [205]段华平.农业非点源污染控制区划方法及其应用研究[D].南京:南京农业大学,2010.
    [206]范良千.流域非点源贡献率核定及总量负荷分配研究[D].杭州:浙江大学,2011.
    [207]樊霞.肉牛甲烷排放与粪便肥料成分含量快速预测方法和模型的研究[D].北京:中国农业大学,2004.
    [208]封志明,唐焰,杨艳昭等.基于GIS的中国人居环境指数模型的建立与应用[J].地理学报,2008,63(12):1327-1336.
    [209]付强,诸云强,孙九林等.中国畜禽养殖的空间格局与重心曲线特征分析[J].地理学报,2012,67(010):1383-1398.
    [210]高定,陈同斌,刘斌等.我国畜禽养殖业粪便污染风险与控制策略[J].地理研究,2006,(02):311-319.
    [211]顾朝林,张晓明,刘晋媛等.盐城开发空间区划及其思考[J].地理学报,2007,(08):787-798.
    [212]顾颖.巢湖流域地下水硝态氮时空分布格局研究[D].北京:中国农业科学院,2011.
    [213]郭鸿鹏,朱静雅,杨印生.农业非点源污染防治技术的研究现状及进展[J].农业工程学报,2008,(04):290-295.
    [214]郭金松,胡时庆.浅议畜禽养殖小区的宜与忌[J].现代农业科技,2006,(01):82.
    [215]郝芳华,程红光,杨胜天.非点源污染模型:理论方法与应用[M].北京:中国环境科学出版社,2006.
    [216]何萍,王家骥.非点源(NPS)污染控制与管理研究的现状、困境与挑战[J].农业环境保护,1999,(05):234-237+240.
    [217]洪小康李.水质水量相关法在非点源污染负荷估算中的应用[J].西安理工大学学报,2000,(04).
    [218]侯学煜,姜恕,陈昌笃等.对于中国各自然区的农、林、牧、副、渔业发展方向的意见[J].科学通报,1963,(09):8-26.
    [219]胡云峰,王倩倩,刘越等.国家尺度社会经济数据格网化原理和方法[J].地球信息科学学报,2011,13(5):573-578.
    [220]胡兆量.地理学的基本规律[J].人文地理,1991,(01):9-13.
    [221]胡峥峥.预测家禽粪便肥料成分含量的试验研究[D].北京:中国农业大学,2001.
    [222]黄秉维.中国综合自然区划草案[J].科学通报,1959,(18):594-602.
    [223]黄秉维.“中国陆地系统科学与区域可持续发展战略”预研究的结论和意见[M].北京:商务印书馆,2003.
    [224]黄秉维.新时期区划工作应当注意的几个问题[M].《黄秉维文集》编辑组.地理学综合研究——黄秉维文集.北京:商务印书馆.2003:350-352.
    [225]黄芳.水土污染空间分析及源辨析[D].杭州:浙江大学,2010.
    [226]黄芬.基于GIS与模型的小麦籽粒品质生态区划研究[D].南京:南京农业大学,2009.
    [227]黄现民,王洪涛.山东省环渤海地区农业面源污染防治对策研究[J].安徽农业科学,2008,(15).
    [228]景贵和.综合自然地理学[M].长春:东北师范大学出版社,1986.
    [229]孔源,韩鲁佳.我国畜牧业粪便废弃物的污染及其治理对策的探讨[J].中国农业大学学报,2002,(06):92-96.
    [230]赖珺.可持续发展视角下的滇池流域农业面源污染防治研究[D].成都:四川社会科学院,2010.
    [231]赖斯芸,杜鹏飞,陈吉宁.基于单元分析的非点源污染调查评估方法[J].清华大学学报(自然科学版),2004,(09):1184-1187.
    [232]李怀恩.估算非点源污染负荷的平均浓度法及其应用[J].环境科学学报,2000,(04):
    [233]李莉.预测蛋鸡粪便肥料成分含量的试验研究[D.北京:中国农业大学,2003.
    [234]李莉,王海清.地理空间数据挖掘与知识发现——地理单元数据集的研究与开发[J].测绘科学,2005,(03):24-27+23.
    [235]李健忠,庞明,叶朝霞等.我国农业非点源污染研究进展及其防治措施[J].广州化学,2008,(02):54-58+79.
    [236]李强坤.青铜峡灌区农业非点源污染负荷及控制措施研究[D].西安:西安理工大学,2010.
    [237]李帷.畜禽粪便污染风险及对土壤吸附抗生素的影响研究[D].北京:中国科学院地理科学与资源研究所,2010.
    [238]李帷,李艳霞,张丰松等.东北三省畜禽养殖时空分布特征及粪便养分环境影响研究[J].农业环境科学学报,2007,(06):2350-2357.
    [239]李帷,李艳霞,杨明等.北京市畜禽养殖的空间分布特征及其粪便耕地施用的可达性[J].自然资源学报,2010,(05):746-755.
    [240]李新艳,李恒鹏.中国大气NH_3和NO_x排放的时空分布特征[J].中国环境科学,2012,(01):37-42.
    [241]李滋睿.我国重大动物疫病区划研究[D].北京:中国农业科学院,2010.
    [242]刘常海,张明顺.环境管理[M].北京:中国环境科学出版社,1994.
    [243]柳建国.畜禽粪便污染的农业系统控制模拟及系统防控对策[D].南京:南京农业大学,2009.
    [244]刘忠,增院强.中国主要农区畜禽粪尿资源分布及其环境负荷[J].资源科学,2010,(05):946-950.
    [245]刘巽浩.中国耕作制度区划[M].北京:北京农业大学出版社,1987.
    [246]刘晓玲,宋照亮,单胜道等.畜禽粪肥施加对嘉兴水稻土总磷、有机磷和有效磷分布的影响[J].浙江农林大学学报,2011,(01):33-39.
    [247]刘燕华,郑度,葛全胜等.关于开展中国综合区划研究若干问题的认识[J].地理研究,2005,24(3):321-329.
    [248]骆剑承,梁怡,周成虎.基于尺度空间的分层聚类方法及其在遥感影像分类中的应用[J].测绘学报,1999,(04):319-324.
    [249]罗开富.中国自然地理分区草案[J].地理学报,1954,(04):379-394.
    [250]罗其友.农业区域协调评价的理论与方法研究[D].北京:中国农业科学院,2010.
    [251]马国霞,於方,曹东等.中国农业面源污染物排放量计算及中长期预测[J].环境科学学报,2012,(02):489-497.
    [252]马林,王方浩,刘东等.河北省畜禽粪尿养分资源分布及其污染潜力分析[J].河北农业大学学报,2006,(06):99-103.
    [253]马林,王方浩,马文奇等.中国东北地区中长期畜禽粪尿资源与污染潜势估算[J].农业工程学报,2006,(08):170-174.
    [254]马永喜.规模化畜禽养殖废弃物处理的技术经济优化研究[D].杭州:浙江大学,2010.
    [255]茅鼎祥.也谈等标污染负荷的概念[J].中国环境监测,1987,(05):64.
    [256]欧阳.新疆生态保育与重建区划研究[D].北京:中国科学院,2009.
    [257]欧阳克蕙,王文君,周萍芳等.江西省畜禽粪尿资源分布及其污染潜势估算[J].江西农业大学学报,2009,(04):616-620.
    [258]裴韬,周成虎,骆剑承等.空间数据知识发现研究进展评述[J].中国图象图形学报,2001,(09):42-48.
    [259]彭来真,刘琳琳,张寿强等.福建省规模化养殖场畜禽粪便中的重金属含量[J].福建农林大学学报(自然科学版),2010,(05):523-527.
    [260]彭里.重庆市畜禽粪便的土壤适宜负荷量及排放时空分布研究[D].重庆:西南大学,2009.
    [261]彭里,古文海,魏世强等.重庆市畜禽粪便排放时空分布研究[J].中国生态农业学报,2006,(04):213-216.
    [262]彭新宇,张陆彪.农村环保有法才能有治——从立法角度看我国畜禽养殖污染防治[J].环境经济,2009,(Z1):85-89.
    [263]钱晓雍.上海淀山湖区域农业面源污染特征及其对淀山湖水质的影响研究[D].上海:复旦大学,2011.
    [264]钱秀红.杭嘉湖平原农业非点源污染的调查评价及控制对策研究[D].杭州:浙江大学,2001.
    [265]秦昆,徐敏.基于云模型和FCM聚类的遥感图像分割方法[J].地球信息科学,2008,(03):302-307.
    [266]覃文忠.地理加权回归基本理论与应用研究[D].上海:同济大学,2007.
    [267]曲环.农业面源污染控制的补偿理论与途径研究[D].北京:中国农业科学院,2007.
    [268]任家琰.山西省畜禽弓形虫感染分布调查[J].中国兽医寄生虫病,1993,(01):50-52.
    [269]任美锷,包浩生.中国自然区域及开发整治[M].北京:科学出版社,1992.
    [270]沈长江.我国牧区的畜牧业[J].干旱区资源与环境,1989,(04):1-10.
    [271]沈根祥,汪雅谷,袁大伟.上海市郊大中型畜禽场数量分布及粪尿处理利用现状[J].上海农业学报,1994,(S1):12-16.
    [272]石淑芹.基于多源数据的吉林省玉米生产力区划研究[D].北京:中国农业科学院,2009.
    [273]宋福忠.畜禽养殖环境系统承载力及预警研究[D].重庆:重庆大学,2011.
    [274]苏杨.警惕农村现代化进程中的环境污染——新农村建设中一个不可忽视的问题[J].中国发展观察,2006,(05):19-21.
    [275]孙丽娜,梁冬梅,马继力.辽河源头区典型小流域农业非点源污染模拟[J].中国农村水利水电,2011,(05):
    [276]田永中,陈述彭,岳天祥等.基于土地利用的中国人口密度模拟[J].地理学报,2004,59(2).
    [277]唐莉华,张思聪,吕贤弼等.南水北调东线工程淮河流域段农业面源污染负荷估算[J].农业环境科学学报,2008,(04):
    [278]唐焰.基于GIS的中国人居环境自然适宜性评价[D].北京:中国科学院地理科学与资源研究所,2008.
    [279]谭美英,武深树,邓云波等.湖南省畜禽粪便排放的时空分布特征[J].中国畜牧杂志,2011,(14):43-48.
    [280]陶春,高明,徐畅等.农业面源污染影响因子及控制技术的研究现状与展望[J].土壤,2010,(03).
    [281]王辉,董元华,张绪美等.江苏省集约化养殖畜禽粪便盐分含量及分布特征分析[J].农业工程学报,2007,(11):229-233.
    [282]王江彦.河南境内淮河流域农业非点源污染模拟研究[D].郑州:河南农业大学,2011.
    [283]王家耀.空间信息系统原理[M].科学出版社,2001.
    [284]王劲峰,姜成晟,李连发.空间抽样与统计推断[M].北京:科学出版社,2009.
    [285]王劲峰,廖一兰,刘鑫.空间数据分析教程[M].北京:科学出版社,2010
    [286]王军,傅伯杰,邱扬等.黄土丘陵小流域土壤水分的时空变异特征[J].地理学报,2000,55(4):428-438.
    [287]汪开英,刘健,陈小霞等.浙江省畜禽业产排污测算与土地承载力分析[J].应用生态学报,2009,(12):3043-3048.
    [288]王立刚,李虎,王迎春等.小清河流域畜禽养殖结构变化及其粪便氮素污染负荷特征分析[J].农业环境科学学报,2011,(05):986-992.
    [289]汪清平,王晓燕.畜禽养殖污染及其控制[J].首都师范大学学报(自然科学版),2003,(02):96-101.
    [290]王晓燕.非点源污染及其管理[M].海洋出版社,2003.
    [291]王亚东,江立方.畜禽粪便流失对市郊水生态环境的影响初探[J].上海农业学报,1994,(S1):67-70.
    [292]王依贺,单东方,赵春江等.北京市大兴区农业面源污染普查数据应用分析[J].农机化研究,2012,(06):
    [293]王永生.甘肃公路自然区划框架体系研究[D].西安:长安大学,2008.
    [294]王远飞,何洪林.空间数据分析方法[M].北京:科学出版社,2007.
    [295]魏风华.河北省唐山市地质灾害风险区划研究[D].北京:中国地质大学(北京),2006.
    [296]魏学义,李宁.辽宁省畜禽分布定位及重大动物疫病防控调度指挥系统建设推进现代畜牧业发展[J].现代畜牧兽医,2007,(10):1-2.
    [297]温铁军.新农村建设中的生态农业与环保农村[J].环境保护,2007,(01):25-27.
    [298]吴传钧.论地理学的研究核心——人地关系地域系统[J].经济地理,1991,11(3):1-6.
    [299]吴春蕾,马友华,李英杰等. SWAT模型在巢湖流域农业面源污染研究中应用前景与方法[J].中国农学通报,2010,(18).
    [300]吴丹.太湖流域畜禽养殖非点源污染控制政策的实证分析[D].杭州:浙江大学,2011.
    [301]武继磊. Lattice数据分析方法、模型及其应用[D].北京:中国科学院,2004.
    [302]吴绍洪.综合区划的初步设想:以柴达木盆地为例[J].地理研究,1998,17(4):367-374.
    [303]吴绍洪,尹云鹤,樊杰等.地域系统研究的开拓与发展[J].地理研究,2010,(09):1538-1545.
    [304]吴淑杭,姜震方,俞清英.禽畜粪便污染现状与发展趋势[J].上海农业科技,2002,(01):9-10.
    [305]武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响[D].北京:中国农业科学院,2005.
    [306]许俊香,刘晓利,王方浩等.中国畜禽粪尿磷素养分资源分布以及利用状况[J].河北农业大学学报,2005,(04):5-9.
    [307]谢忠雷,朱洪双,李文艳等.吉林省畜禽粪便自然堆放条件下粪便/土壤体系中Cu、Zn的分布规律[J].农业环境科学学报,2011,(11):2279-2284.
    [308]熊正琴,邢光熹,沈光裕等.太湖地区湖、河和井水中氮污染状况的研究[J].农村生态环境,2002,(02):29-33.
    [309]闫丽珍,石敏俊,王磊.太湖流域农业面源污染及控制研究进展[J].中国人口资源与环境,2010,(01):
    [310]杨春成.空间数据挖掘中聚类分析算法的研究[D].郑州:解放军信息工程大学,2004.
    [311]杨建云.洱海湖区非点源污染与洱海水质恶化[J].云南环境科学,2004,(S1):104-105+126.
    [312]杨勤业,吴绍洪,郑度.自然地域系统研究的回顾与展望[J].地理研究,2002,(04):
    [313]杨青山,梅林.人地关系,人地关系系统与人地关系地域系统[J].经济地理,2001,(005):532-537.
    [314]杨文坎. GIS支持下的越南农业气候资源及其区划的研究[D].南京:南京气象学院,2004.
    [315]杨晓光.基于自然和人文因素的区域划分及其发展战略研究:对三个案例的思考[D].北京:中国科学院,2007.
    [316]杨增玲,韩鲁佳,刘依等.基于物理指标快速预测猪粪尿肥料成分含量的试验研究[J].农业工程学报,2003,(06):276-280.
    [317]叶协锋.河南省烟草种植生态适宜性区划研究[D].杨凌:西北农林科技大学,2011.
    [318]余炜敏.三峡库区农业非点源污染及其模型模拟研究[D].重庆:西南农业大学,2005.
    [319]岳超俊.中原城市群地质灾害风险区划研究[D].北京:中国地质大学(北京),2009.
    [320]张超.水土保持区划及其系统架构研究[D].北京:北京林业大学,2008.
    [321]张克强,高怀友.畜禽养殖业污染物处理与处置[M].北京:化学工业出版社,2004.
    [322]章力建,朱立志.我国“农业立体污染”防治对策研究[J].农业经济问题,2005,(02):4-7+79.
    [323]张维理,冀宏杰, H. K.等.中国农业面源污染形势估计及控制对策Ⅱ.欧美国家农业面源污染状况及控制[J].中国农业科学,2004,(07):1018-1025.
    [324]张维理,武淑霞,冀宏杰等.中国农业面源污染形势估计及控制对策I.21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,(07):1008-1017.
    [325]张维理,徐爱国,冀宏杰等.中国农业面源污染形势估计及控制对策Ⅲ.中国农业面源污染控制中存在问题分析[J].中国农业科学,2004,(07):1026-1033.
    [326]曾五一,肖红叶.统计学导论[M].北京:科学出版社,2007.
    [327]郑度,傅小锋.关于综合地理区划若干问题的探讨[J].地理科学,1999,(03):2-6.
    [328]郑度,葛全胜,张雪芹等.中国区划工作的回顾与展望[J].地理研究,2005,(03):330-344.
    [329]郑度,欧阳,周成虎.对自然地理区划方法的认识与思考[J].地理学报,2008,(06):563-573.
    [330]郑度,杨勤业,赵名茶.自然地域系统研究[M].北京:中国环境科学出版社,1997.
    [331]钟少波. GIS和遥感应用于传染病流行病学研究[D].北京:中国科学院研究生院,2006.
    [332]竺可祯.中国气候区域论[J].地理杂志,1930,3(2)。
    [333]朱梅.海河流域农业非点源污染负荷估算与评价研究[D].北京:中国农业科学院,2011.
    [334]朱兆良, Norse)诺.D.,孙波.中国农业非点源污染控制对策[M].北京:中国环境科学出版社,2006.
    [335]邹桂红.基于AnnAGNPS模型的非点源污染研究[D].青岛:中国海洋大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700