用户名: 密码: 验证码:
大针茅质膜水通道蛋白基因(SgPIPs)全长cDNA序列的克隆及序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水通道蛋白不但为水分跨细胞膜的运输提供了一条选择性通道,而且水通道蛋白在植物种子萌发、细胞伸长、气孔运动、受精及植物逆境应答中起重要作用。研究以亚洲中部特有的典型草原种大针茅(Stipa grandis P.Smirn)为材料,通过反转录聚合酶链式反应(RT-PCR)和快速分离cDNA末端技术(RACE),克隆得到大针茅的质膜水通道蛋白基因(SgPIPs)的全长cDNA序列,并对其进行生物信息学分析。主要结果如下:
     共获得SgPIPs的9个中间片段cDNA序列,22个3′端cDNA序列,9个5′端cDNA序列。克隆到3个SgPIPs的cDNA全长序列,分别为SgPIP1-1、SgPIP1-2和SgPIP1-3。
     SgPIP1-1全长cDNA序列为991bp,包含15bp的5′非翻译区,870bp的开放阅读框,106bp的3′非翻译区,编码289个氨基酸。SgPIP1-2全长cDNA序列为1248bp,包含15bp的5′非翻译区,870bp的开放阅读框,363bp的完整3′非翻译区,编码289个氨基酸;SgPIP1-3全长cDNA序列为1068bp,包含58bp的5′非翻译区,867bp的开放阅读框,143bp的完整3′非翻译区,编码288个氨基酸。
     SgPIP1-1、SgPIP1-2、SgPIP1-3推导氨基酸序列表明:它们不但具有MIP家族的信号序列SGXHXNPAVT,而且具有质膜水通道蛋白的特征信号序列GGGANXXXXGY和TGI/TNPARSI/FGAAI/VI/VF/YN。同时具有水通道蛋白典型的6个跨膜区和两个NPA盒单元。
     SgPIP1-1、SgPIP1-2、SgPIP1-3的核苷酸序列和禾本科物种构建的系统进化树表明:SgPIP1-1和SgPIP1-3进化关系最近,之后与玉米、甘蔗、水稻聚为一类。SgPIP1-2与大麦、小麦的进化关系最近。SgPIP1-1、SgPIP1-2、SgPIP1-3推导的氨基酸序列和大麦PIPs基因家族的PIP1和PIP2构建系统进化树,结果表明:SgPIP1-1、SgPIP1-2、SgPIP1-3均为PIP1类基因亚家族成员。
Aquaporin represent an important selective pathway for water to move across cellular membrane, and involved in seed germination,cell elongation,stomatal movement,fertilization, and even some plant aquaporin that play an important role in response to stress. A typical grassland plants, Stipa grandis P.Smirn, growing in the steppe region of central Asia was collected and cultured. Full-length cDNA sequence of plasma membrane aquaporin genes from Stipa grandis was acquired by RT-PCR and RACE technology. Their structure of sequence of nucleotide and amino acid were analyzed by bioinformatics software. The mainly results as follows:
     The experiment obtained a total of nine core fragment cDNA sequences of SgPIPs, twenty-two 3′end cDNA sequences of SgPIPs, nine 5′end cDNA sequences of SgPIPs. The experiment cloned three full-length cDNA sequences of SgPIPs, named SgPIP1-1, SgPIP1-2 and SgPIP1-3.
     SgPIP1-1 full-length cDNA sequence consists of 991bp, which includes the length of 15bp of the 5′untranslated region, followed by 870bp of the open reading frame encoding 289 amino acids, and finally a 106bp of 3′untranslated region. SgPIP1-2 full-length cDNA sequence consists of 1248bp, which includes the length of 15bp of the 5′untranslated region, followed by 870bp of the open reading frame encoding 289 amino acids, and finally a 363bp of 3′untranslated region. SgPIP1-3 full-length cDNA sequence consists of 1068bp, which includes the length of 58bp of the 5′untranslated region, followed by 867bp of the open reading frame encoding 288 amino acids, and finally a 143bp of 3′untranslated region.
     SgPIP1-1, SgPIP1-2, and SgPIP1-3 amino acid sequence analysis showed that their not only have the MIP family of signal sequence SGXHXNPAVT, but also the characteristics of plasma membrane water channel protein signal sequence GGGANXXXXGY and TGI/TNPARSI/FGAAI/VI/VF/YN. Besides their have the typical six transmembrane domains and two NPA units.
     phylogenetic tree constructed by nucleotide sequences Between SgPIP1-1, SgPIP1-2, and SgPIP1-3 and gramineous species which are very closer in relationship showed that SgPIP1-1 and SgPIP1-3 the most closest in evolution, and then with Zea mays、Saccharum officinarum、Oryza sative clustered together. SgPIP1-2, Hordeum vulgare, and Triticum aestivum have the closest relationship in evolution. Phylogenetic tree constructed by amino acids sequences between SgPIP1-1, SgPIP1-2, and SgPIP1-3 and all PIPs of barley showed that SgPIP1-1, SgPIP1-2, and SgPIP1-3 were PIP1 subfamily members.
引文
1章祖同,刘起.中国重点牧区草地资源及其开发利用[M].北京:中国科学技术出版社,1992.
    2韩冰,王艳芳,杨劼,苏婧.针茅水孔蛋白基因多态性分析及其地理分布[J].生态学杂志,2008,27(3):349-354.
    3河北植被编辑委员会,河北省农业区划委员会办公室.河北植被[M].北京:科学出版社,1996,160-163.
    4中国科学院内蒙古宁夏综合考察队.内蒙古植物志[M].呼和浩特:内蒙古人民出版社,1989.
    5张红梅,赵萌莉,李青丰,韩冰,索培芬.内蒙古地区大针茅群体遗传多样性RAPD研究[J].草地学报,2003,11(2):170-178.
    6卢生莲,吴珍兰.中国针茅属植物的地理分布[J].植物分类学报,1996,34(3):242-253.
    7王艳芳,韩冰,张占雄.锡林郭勒草原克氏针茅抗旱生理变化的研究[J].草业科学,2006,23(2):22-26.
    8李银鹏.大针茅生态生物学特性的研究[C].内蒙古农牧学院,1994.
    9李银鹏,陈世璜.大针茅繁殖的生态生物学特性的研究[J].内蒙古农牧学院学报,1996,17(1):7-13.
    10陈世璜,李银鹏.内蒙古几种针茅特性和生态地理分布的研究[J].内蒙古农牧学院学报,1997,18(1):25-29.
    11郭本兆,孙永华.中国针茅属分类、分布和生态的初步研究[J].植物分类学报,1984,20(1):34-43.
    12卢生莲,吴珍兰.中国针茅属植物的地理分布[J].植物分类学报,1996,34(3):242-253.
    13韩冰,王俊,赵萌莉,徐志信,索培芬.退化梯度对克氏针茅种群遗传分化的影响[J].草地学报,2003,11(2):146-153.
    14白永飞,李德新,许志信,魏志军.牧压梯度对克氏针茅生长和繁殖的影响[J].生态学报,1999,19(4):479-484.
    15王金龙,高玉葆,白宇,赵念席.大针茅(Stipa grandis)和克氏针茅(S.Krylovii)对PEG渗透胁迫适应性反应的比较研究[J].生态学报,2005,24(4):131-135.
    16韩冰,赵萌莉,珊丹.不同退化梯度克氏针茅种群形态及等位酶的分析[J].草业科学,2004,21(12):31-35.
    17珊丹,赵萌莉,韩冰,韩国栋.不同放牧压力下大针茅种群的遗传多样性[J].生态学报,2006,10(2):19-27.
    18宋涛,林枫,赵念席.利用RAPD技术分析内蒙古中东部草原三种针茅的遗传关系[J].草地学报,2006,14(3):328-332.
    19赵萌莉,韩冰.过牧对种群生态和遗传特性的影响[C].草业科学(中国国际草业发展大会论文集),2002增刊:332-336.
    20杨允菲,祝廷成.松嫩平原大针茅群落种子雨动态的研究[J].植物生态学与地植物学学报,1991,17(1):7-13.
    21王炜,梁存柱,刘钟龄,郝敦元.羊草+大针茅草原群落退化演替机理的研究[J].植物生态学报,2000,24(3):468-472.
    22李永宏,汪诗平.放牧对草原植物的影响[J].中国草地,1999,3:11-19.
    23雷琴,夏敦岭,任小林.水孔蛋白与植物的水分运输[J].水土保持研究,2005,12(3):81-85.
    24 Denker B M, Smith B L, Kuhajda F P, Agre P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules[J]. J Biol Chem, 1988, 263: 15634-15642.
    25程天印,刘洵.水孔蛋白与生理学理论的更新[J].邵阳学院学报(自然科学版),2007,4(1):93-95.
    26 Maurel C, Reizer J, Schroeder J I, Chrispeels M J. The vacuolar membrane protein g-TIP creates water specific channels in Xenopus oocytes[J]. EMBO J., 1993, 12(6): 2241-2247.
    27 Kammerloher W, Fischer U, Piechotta G P, Sch?ffner A R. Water channels in the plant plasma membrane cloned by immunoselection from a mammalian expression system[J]. Plant J., 1994, 6(2): 187-199.
    28于秋菊,林忠平,李景富.植物水孔蛋白研究进展[J].北京大学学报(自然科学版),2002,38(6):854-854.
    29 Tyerman S D, Niemietz C M, Bramley H. Plant aquaporins: multifunctional water and solute channels with expanding roles[J]. Plant Cell Environ., 2002, 25: 173-194.
    30 Ishibashi K, Kuwahara M, Kageyama Y, Sasaki S, Suzuki M, Imai M. Molecular cloning of a new aquaporin superfamily in mammals. In: Hohmann S., Nielsen S., ed. Molecular biology and physiology of water and solute transport[M]. New York, NY: Kluwer Academic/Plenum Publishers, 2000: 123-126.
    31 King L S, Kozono D, Agre P. From structure to disease: the evolving tale of aquaporin biology[J]. Nature Rev. Mol. Cell Biol., 2004, 5: 687-698.
    32李红梅,万小荣,何生根.植物水孔蛋白最新研究进展[J].生物化学与生物物理进展,2010,37(1):29-35.
    33 Johanson U, Karlsson M, Johansson I, Gustavsson S, Sj?vall S, Fraysse L, Weig A R, Kjellbom P. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants[J]. Plant Physiol., 2001, 126: 1358-1369.
    34 Quigley F, Rosenberg J M, Shachar-Hill Y, Bohnert H J. From genome to function: the Arabidopsis aquaporins[J]. Genome Biol., 2002, 3: 1-17.
    35 Chaumont F, Barrieu F, Wojcik E, Chrispeels M J, Jung R. Aquaporins constitute a large and highly divergent protein family in maize[J]. Plant Physiol., 2001, 125: 1206-1215.
    36 Danielson J A H, Johanson U. Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens[J]. BMC Plant Biol., 2008, 8: 45.
    37 Gustavsson S, Lebrun A S, Nordén K, Chaumont F, Johanson U. A novel plant major intrinsic protein in Physcomitrella patens most similar to bacterial glycerol channels[J]. Plant Physiol., 2005, 139(1): 287-295.
    38 Postaire O, Verdoucq L, Maurel C. Aquaporins in plants: from molecular structures to integrated functions[J]. Adv. Bot. Res., 2007, 46: 75-136.
    39 Wudick M M, Luu D T, Maurel C. A look inside: localization patterns and functions of intracellular plant aquaporins[J]. New Phytol., 2009, 184(2): 289-302.
    40 Moshelion M, Becker D, Biela A, Uehlein N, Hedrich R, Otto B, Levi H, Moran N, Kaldenhoff R. Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation[J]. Plant Cell, 2002, 14: 727-739.
    41 Fetter K, Wilder V V, Moshelion M, Chaumont F. Interactions between plasma membrane aquaporins modulate their water channel activity[J]. Plant Cell, 2004, 16: 215-228.
    42 Maurel C. Plant aquaporins: novel functions and regulation properties[J]. FEBS Lett., 2007, 581: 2227-2236.
    43 T?rnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P. Structural mechanism of plant aquaporin gating[J]. Nature, 2006, 439: 688-694.
    44 Wallace I S, Roberts D M. Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter[J]. Plant Physiol., 2004, 135: 1059-1068.
    45 Jung J S, Preston G M, Smith B L, Guggino W B, Agre P. Molecular structure of the water channel through aquaporin CHIP. the hourglass model[J]. J. Biol. Chem., 1994, 269: 14648-14654.
    46于秋菊,吴锜,林忠平.植物水孔蛋白研究进展[J].北京大学学报(自然科学版),2002,
    38(06):865-876.
    47 Uehlein N, Kaldenhoff R. Aquaporins ans plant leaf movements[J]. Ann. Bot., 2008, 101: 1-4.
    48雷琴,夏敦岭,任小林.水孔蛋白与植物的水分运输[J].水土保持研究,2005,12(3):81-85.
    49 Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann B, Engel A, Fujiyoshi Y. Structural determinants of water permeation through aquaporin-1[J]. Nature, 2000, 407: 599-605.
    50 Kaldenhoff R, Fischer M. Aquaporins in plants[J]. Acta Physiol., 2006, 187: 169-176.
    51 Liénard D, Durambur G, Kiefer-Meyer M C, NoguéF, Menu-Bouaoulche L, Charlot F, Gomord V, Lassalles J P. Water transport by aquaporins in the extant plant Physcomitrella patens[J]. Plant Physiol., 2008, 146: 1207-1218.
    52 Azad A K, Sawa Y, Ishikawa T, Shibata H. Phosphorylation of plasma membrane aquaporin regulates temperature-dependent opening of tulip petals[J]. Plant Cell Physiol., 2004b, 45: 608-617.
    53 North G B, Nobel P S. Heterogeneity in water avaiability alters cellular development and hydraulic conductivity along roots of a desert Succulent[J]. Ann. Bot., 2000, 85: 247-255.
    54 Li L, Li S, Tao Y, Kitagawa Y. Molecular cloning of a novel water channel from rice: its products expression in Xenopus oocytes and involvement in chilling tolerance[J]. Plant Sci., 2000: 154: 43-51.
    55 Bozhko K N, Zhestkova I M, Trofimova M S, Kholodova V P, Kuznetsov V V. Aquaporin content in cell membranes of mesembryanthemum crystallinum as affected by plant transition from C3 to CAM type of photosynthesis[J]. Russ. J. Plant Physiol., 2004, 51: 798-805.
    56 Macrobbie E A C. Osmotic effects on vacuolar ion release in guard cells[J]. Proc. Natl. Acad. Sci., 2006, 103: 1135-1140.
    57 Hanba Y T, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M. Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants[J]. Plant Cell Physiol., 2004, 45: 521-529.
    58梅杨,李海蓝,杨尚元,罗红艺.植物水孔蛋白的功能[J].植物生理学通讯,2007,43(3):563-568.
    59 Bienert G P, Schjoerring J K, Jahn T P. Membrane transport of hydrogen peroxide[J]. BBA-Biomembranes, 2006, 1758: 994-1003.
    60 Bienert G P, Moller A L B, Kristiansen K A, Schulz A, Moller I M, Schjoerring J K, Jahn T P. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes[J]. J. Biol. Chem., 2007, 282: 1183-1192.
    61白永飞,许志信,李德新.内蒙古高原针茅草原群落土壤水分和碳、氮分布的小尺度空间异质性[J].生态学报,2002,22(8):1215-1223.
    62杜睿,陈冠雄,吕达仁,王庚辰.土壤含水量与温度对羊草、大针茅典型草原土壤-植物系统温室气体收支影响的初步研究[J].气候与环境研究,1997,2(3):273-279.
    63李绍良,陈有君.西林河流域栗钙土及其物理性状与水分动态的研究[J].中国草地,1999,(3):71-76.
    64李绍良.锡林河流域土壤持水特性的评价[J].干旱区资源与环境,1988,2(2):52-61.
    65李绍良.栗钙土水分状况与牧草生长[C].草原生态系统研究,第2集,北京:科学出版社,1998:10-19.
    66韩冰,王艳芳,杨劼,苏婧.针茅属水孔蛋白基因多态性分析及其地理分布[J].生态学杂志,2008,27(3):349-354.
    67 Shiota H, Sudoh T, Tanaka I. Expression analysis of genes encoding plasma membrane aquaporins during seed and fruit development in tomato[J]. Plant Sci., 2006, 171: 277-285.
    68王艳芳.针茅属植物水孔蛋白基因多态性分析及分子进化的研究[D].内蒙古农业大学,2007.
    69王海霞,王莹,刘定干.真核生物mRNA 3′非翻译区的功能[J].生物化学与生物物理进展,2008,35(9):980-985.
    70江元清,凌毅,赵武玲.真核mRNA的3′非翻译区转录后水平[J].植物学通报,2001,18(1):3-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700