用户名: 密码: 验证码:
PtSEP2、PtSEP3-1、PtAP1-2和PtMCP基因启动子在烟草和毛白杨中的表达特性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对杨树存在的飞絮散粉问题,在已经获得毛白杨(Populus tomentosa Carr.)PtSEP3-1、PtAP1-2及PtMCP启动子的基础上,进一步从毛白杨基因组DNA中扩增获得了PtSEP2基因5′侧翼的一段序列,通过在烟草和毛白杨的转化研究了这4个启动子的组织表达特性,为基因工程定向调控毛白杨散粉飞絮性状奠定工作基础。主要研究结果如下:
     1本研究利用PCR技术从毛白杨基因组DNA中扩增获得花器官发育相关的SEPALLATA2类似基因PtSEP2 5侧翼约2.3kb的一段序列,经PlantCARE序列分析表明,该序列中含有启动子特征的保守序列及多种光应答元件,初步推测其为PtSEP2基因启动子。进一步以GUS为报告基因,构建了pPtSEP2 promoter::GUS的植物表达载体,命名为PtSEP2::GUS。
     2以烟草根、茎、叶、花芽为受体,通过农杆菌介导转化对这4个启动子进行瞬时表达研究,GUS组织化学染色表明:PtSEP2启动子的GUS活性只存在于花药中;PtAP1-2启动子的GUS活性在花萼及花瓣中微弱表达,在根、茎及叶中均未被检测到;PtSEP3-1启动子在烟草的根、茎、叶及花各组织中都没有检测到的GUS活性;PtMCP启动子在烟草的根、茎、叶和花芽等各组织中均有GUS活性表达,但是表达强度明显弱于35S启动子,推测其属于温和组成型启动子类型。
     3将上述表达载体在毛白杨无性系TC1521和烟草中进行遗传转化,经PCR验证,共获得毛白杨阳性转化植株37株,获得烟草阳性转化植株88株。对转基因烟草的根、茎及叶进行染色,GUS染色结果与瞬时表达的染色结果一致。对转基因毛白杨小苗进行染色,结果表明,PtSEP2、PtSEP3-1和PtAP1-2启动子在整株幼苗中均未检测到GUS活性。
     4对转PtMCP启动子的烟草根、茎、叶及花各组织进行GUS酶活性测定,结果表明与pBI121相比,PtMCP启动子的GUS活性明显较低,在转基因烟草的根、茎、叶及花各组织中,转PtMCP启动子的GUS活性分别为pBI121 GUS活性的21.9%、5.3%、5.3%及17.6%。野生型烟草各组织中没有检测到GUS的活性。通过上述研究分析可以得出结论:PtSEP2启动子可以驱动GUS基因只在花药中表达,初步推测其属于花药特异性启动子;PtAP1-2启动子的GUS活性只在花萼及花瓣中微弱表达,推断其可能为花组织特异性启动子;在根、茎及叶中均未被检测到;PtMCP启动子可以驱动GUS基因在烟草的根、茎、叶及花组织中均可表达,但是表达强度明显弱于35S启动子,属于温和组成型启动子类型。
     本研究不仅对于杨树开花分子调控机理的研究具有重要的理论意义,而且对于通过基因工程改良杨树飞絮散粉问题具有潜在应用价值。
Considering problems of flying catkin and the shedding pollen with Populus tomentosa Carr., a 5' sequence fragment of PtSEP2 was cloned from its genomic DNA in this study, based on retrieval of promoters of PtSEP3-1, PtAP1-2 and PtMCP. Tissue expression character of this four promoters was researched by transforming tobacco and Populus tomentosa, laying a foundation for genetically modifying traits of flying catkin and shedding pollen. The main results are as follow.
     1. A 5'flanking sequence of SEPALLATA like gene PtSEP2, with a length of 2.3 kb was amplified from genomic DNA of Populus tomentosa. Sequence analysis on PlantCARE showed many conserved fragment and light responded motif existing in this sequence, which was therefore predicted as PtSEP2 promoter. An expression vector was constructed using GUS as reporter gene, named PtSEP2::GUS.
     2. Transient expression research was performed by Agrobacterium-mediated transformation using four constructs which containing promoter::GUS, taking root, stem, leaf, flower as the recipient. Immunohistochemical staining indicated that GUS activity only existed in anther, PtAPl-2 weakly expressed at sepal and petal, GUS activity driven by PtSEP3-1 was detected in no tissues, GUS activity driven by PtMCP was detected in every tissue, but with an obvious weaker expressed strength than that of 35S promoter, Thus inferring PtMCP as a mild and constitutive promoter.
     3. The Populus tomentosa clone TC1521 and tobacco were used for genetic transformation.The positive results verified by PCR include respectively 37and 88.GUS Staining of root, stem and leaf from genetically modified tobacco showed a consistent result with that of transient expression. Staining of the whole plantlet of genetically modified Populus tomentosa suggested that PtSEP, PtSEP3-1 and PtAP1-2 all expressed in no tissues.
     4. GUS activity assay on root, stem, leaf and flower of transgene tobacco indicated a weaker activity of PtMCP compared with pBI121, its activity are 21.9%,5.3%,5.3%,17.6% of GUS activity with pBI 121 respectively. Whereas, GUS activity was not detected in any tissues of wild type tobacco.
     Through the above analysis, conclusions can be drawn that, PtSEP2 promoter can drive expression of GUS gene in anther only, and initially speculated that it belongs to anther-specific promoter; weak expression of GUS driven by PtAPl-2 was only found in sepals and petals only, flower tissue-specific promoter may be inferred; PtMCP promoter can drive GUS gene express in tobacco roots, stems, leaves and flower tissues, with an expression strength significantly weaker than that of 35S promoter, therefore it is a mild constitutive promoter type.
     The above-mentioned results do not only make a profound theoretical sense for illuminating molecular mechanism of poplar flowering, but also provide potential practical value for gene engineering addressing the flying catkin-caused problem.
引文
1. 常菊芹,王贤磊,杨艳等.拟南芥冷诱导型启动子CBF3的克隆及活性检测[J].生物技术,2009,19(5):5-7
    2. 陈聪.茶树花特异表达启动子-花粉壁蛋白基因启动子表达研究[D].安徽:安徽农业大学硕士论文,2009
    3. 樊荣,万小荣,张文涛.LE-ACS6启动子在LE-ACS6::GUS转基因拟南芥中的特异性[J].植物生理与分子生物学学报,2004,30(3):351
    4. 郝贵霞,朱祯,朱之悌.毛白杨遗传转化系统优化的研究[J].植物学报,1999,41:936-940
    5. 郎志宏.马铃薯花粉特异表达基因SBLR的克隆、分析及对玉米的遗传转化[D].北京:中国农业大学硕十论文,2003
    6. 李杰,张福城,王文泉等.高等植物启动子的研究进展[J].生物技术通论,2006,17(4):658-661
    7. 李科友,樊军锋,赵忠等.84K杨再生和遗传转化体系的优化[J].西北农林科技大学学报(自然科学版),2007,35(7):90-96
    8. 李明,陆长德.真核蛋白编码基因核心启动子结构研究进展[J].生命的化学,1995,15(4):5-8
    9. 李一琨,王金发.高等植物启动子研究进展[J].植物学通报,1998,15:1-6
    10.马沁沁,张金辉等.水稻花药绒毡层特异表达启动子的分离与表达载体构建[J].应用于环境生物学报,2005,11(4):399-403
    11.马同富,马宗新.杨树叶片高效离体再生系统的构建[J].中国农学通报,2007,12(23):88-92
    12.毛自朝,于秋菊,甄伟等.果实专一性启动子驱动ipt基因在番茄中的表达及其对番茄果实发育的影响[J].科学通报,2002,47(6):444
    13.任茂智.棉花nodulin-like和arfl基因及其启动子的分离和功能分析[D].北京:中国农业科学院硕士论文,2004
    14.王静澄,李吴,崔东清等.毛白杨PtSEP3-1基因启动子的克隆分析及其表达载体构建[J].基因组学与应用生物学,2010,29(2):239-244
    15.王正加.山核桃分子标记与开花基因CcLFY及其启动子克隆的研究[D].北京:北京林业大学硕士论文,2006
    16.夏江尔,程在全,吴渝生等.高等植物启动子功能和结构研究进展[J].云南农业大学学报,2006,21(1):7-14
    17.徐子勤,龚莉归,黄萱.采用玉米Ubi-1启动子获得低拷贝转基因玉米植株[J].生物工程学报,2004,24(1):120-125
    18.杨翅春.花青素调节基因Lc与黑色素基因对转基因烟草和矮牵牛花色的影响[D].北京: 中国农业大学硕士论文,2005
    19.于志水,苘胜军,赵继梅等.杨树转化受体系统再生初步研究及卡那霉素敏感性测定[J].辽宁林业科技,2003,5:9-10
    20.张志毅,黄智慧,张东方.毛白杨标本园无性系开花结实的研究[J].北京林业大学学报,1992,14(增刊3):43-51
    21.赵恢武,陈杨坚,胡鸢雷.干旱诱导性启动子驱动的海藻糖-6-磷酸合酶基因载体的构建及转基因烟草的耐旱性[J].植物学报,2000,42(6):616-619
    22. Albani D, Robert LS, Donaldson PA, et al. Characterization of a pollen-specific gene family from Brassica napus which is activated during early microspore development [J]. Plant Mol Biol.,1990,15(4):605-622
    23. An G, Costa MA, Mitra A, et al. Organ-specific and development regulation of the Nopaline synthase in promoter in transgenic tobacco [J]. Plant Phisiology,1998,88:547-552
    24. Annadana S, Beekwilder MJ, Kuipers G, et al. Cloning of the chrysanthemum UEP1 promoter and comparative expression in florets and leaves of Dendranthema grandiflora [J]. Transgenic Research,2002,11(4):437-445
    25. Ayliffe MA, Roberts JK, Mitchell HJ, et al. A plant gene up-regulated at rust infection sites [J]. Plant Physiol,2002,129(1):169-180
    26. Baron C, Zambryski PC. Plant transformation:a pilus in Agrobacterium T-DNA transfer [J]. Current Biology,1996,6:1567-1569
    27. Basehoar AD, Zanton SJ, Pugh BF. Identification and distinct regulation of box-containing genes of yeast [J]. Cell,2004,116(5):699-709
    28. Bate N, Twen D. Functional architecture of a late pollen promoter Pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements [J]. Plant Mol. Biol.,1998,37:859-869
    29. Benfy PN, Chua NH. The cauliflower mosaic virus 35S promoter:combinatorial regulation of transcription in plants [J]. Science,1990,250:956-966
    30. Brown AP, Dunn MA, Goddard N J, et al. Identification of a novel low-temperature-response element in the promoter of the barley (Hordeum vulgare L.) gene bit101.1. Planta, 2001,213(5):770-780
    31. Castillejo C, Romera-Branchat M, Pelaz S. A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression [J]. The Plant Journal,2005,43(4):586-596.
    32. Chiou CY, Wu K, Yeh KW. Characterization and promoter activity of chromoplast specific carotenoid associated gene (CHRC) from Oncidium Gower Ramsey [J]. Biotechnol Lett, 2008,30(10):1861-1866
    33. Confalonieri M, Balestrazzi A, Cella R. Genetic transformation of Populus deltoides and P. X euramericana clones using Agrobacterium tumefaciens [J]. The Plant Cell, Tissue and Organ Culture,1997,48(1):53-61
    34. Cseke LJ, Cseke SB, Ravinder N, et al. SEP-class genes in Populus tremuloides and their likely role in reproductive survival of poplar trees [J]. Gene,2005,358:1-16
    35. Cunillera N, Boronat A, Ferrer A. Spetial and temporal patterns of GUS expression directed by 5'regions of the Arabidopsis thaliana farnesy diphosphate synthase genes FPS1and FPS2 [J]. Plant Mol Biol.,2000,44:747-758
    36. Daikman J, Xu R, Kneissl ML, et al. Separation of cis-elements responsive to ethylene, fruit development, ripening in the 5'-flanking region of the ripening-related E8 gene [J]. Plant Mol Biol.1998,37:1001-1011
    37. De Buck S, Jacobs A, Van Montagu M, et al. The DNA sequences of T-DNA junctions suggest that complex T-DNA loci are formed by a recombination process resembling T-DNA integration [J]. Plant J,1999,20(3):295-304
    38. Dickinson CD, Evans RP, Nielson NC. RY repeats in the 5'-flanking region of legume seed protein genes [J]. Nucleic Acid Res,1988,16:371
    39. Ezcurra I, Ellerstrom M, Wycliffe P, et al. Interaction between composite elements in the napA promoter:Both the B-box ABA-responsive complex and the RY/G complex are necessary for seed-specific expression [J]. Plant Mol Biol.,1999,40 (4):699-709
    40. Faktor O, Kooter JM, Dixon RA. Functional dissection of a bean chalcone synthase gene promoter in transgenic tobacco plant reveals sequence motifs essential for floral expression [J]. Plant Mol Biol.,1996,32:849-859
    41. Gheysen G, Villarroel R, Van Montage M. Illegitimate recombination in plants:a model for T-DNA integration [J].Genes Dev,1991,5:287-297
    42. Gittins JR, Pellny TK, Hiles ER, et al. Transgene expression driven by heterologous ribulose-1,5-bisphosphate carboxylase/oxygenase small-subunit gene promoter in the vegetative tissues of apple(Malus pumila Mill) [J]. Planta,2000,210(2):232-240
    43. Hauffe KD, Paszkowski U, Lefert PS. A parsly 4CL-1 promoter fragment specifies complex expression patterns in transgenic tobacco [J]. The Plant Cell,1991,3:435-443
    44. Hiraga S, Ito H, Sasaki K, et al. Wound-induced expression of a tobacco peroxidase is not enhanced by ethephon and suppressed by methyl jasmonate and coronatine [J]. Plant Cell Physiol,2000,41(2):165-170
    45. Igawa T, Hoshino Y, Yanagawa Y. Isolation and characterization of the plant glsA promoter from Alstroemeria [J]. Plant Biol (Stuttg),2009,11 (6):878-885
    46. Jafari MA, Kiss J, Gergacz J, et al. High efficiency callus induction and plant regeneration in petiole cultures of four poplar genotypes [J]. Acta Biol Hungarica,1995,46:51-59
    47. Karthikeyan AS, Ballachanda DN, Raghothama KG. Promoter deletion analysis elucidates the role of cis elements and 5'UTR intron in spatiotemporal regulation of AtPht1;4 expression in Arabidopsis [J]. Physiol Plant,2009,136 (1):10-18
    48. Kasajima I, Ide Y, Yokota Hirai M, et al. WRKY6 is involved in the response to boron deficiency in Arabidopsis thaliana [J]. Physiol Plant,2010,139(1):80-92
    49. Kim MJ, Kim H, Shin JS, et al. Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5'UTR intron. Mol Genet Genomics,2006, 276(4):351-368
    50. Koltunow AM, Truettner J, Cox KH, et al. Different temporal and spatial gene expression patterns occur during anther development [J]. Plant Cell,1990,2(12):1201-1224
    51. Leebens-Mack J, Soltis DE, Soltis PS. Plant reproductive genomics at the plant and animal genome conference [J]. Comp Funct Genomics,2005,6(3):159-169
    52. Levine M, Manley JL. Transcriptional repression of eukaryotic promoters [J]. Plant Cell, 1989,59:405-408
    53. Liu QQ,Wang ZY,Chen XH. Stable inheritance of the antisense waxy gene in transgenic rice with reduced amylase level and improved quality [J].Transgenic Res.,2003,12(1):71-82
    54. Mariani C, Gossele V, De Beuckeleer M. A chimaeric ribonuclease-inhibit or gene restores fertility to male-sterile plants [J]. Nature,1992,357:384-387
    55. Mariani C, De Beuckeleer M, Truettner J. Induction of male sterility in plants by a chimaeric ribonuclease gene [J]. Nature.1990,347:737-741
    56. Martinez-Hernandez A, Lopez-Ochoa L, Arguello-Astorga G, et al. Functional properties and regulatory complexity of a minimal RBCS light-responsive unit activated by phytochrome, crytochrome, and plastid signals [J]. Plant Physiol,2002,128(4):1223-1233
    57. Mayerhofer R, Koncz-Kalman Z, Nawrath C, et al. T-DNA integration:a mode of illegitimate recombination in plants [J]. EMBO J,1991,10(3):697-704
    58. Meyer W, Mitchell TG. Polymerase chain reaction fingerprinting in fungi using single primers specific to minisatellites and simple repetitive DNA sequences:strain variation in Cryptococcus neoformans [J]. Electrophoresis,1995,16:1648-1656
    59. Mizukami Y, Ma H. Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity [J]. Cell,1992,71 (1):119-131.
    60. Morris SH, Adley CC. Irish public perceptions and attitudes to modern biotechnology:an overview with a focus on GM foods [J]. Trends Biotechnol,2001,19(2):43
    61. Paul W, Hodge R, Smartt S, et al. The isolation and characterisation of the tapetunr specific Arabidopsis thaliana A9 gene [J]. Plant Mol Biol.,1992,19(4):611-622
    62. Potrykus I. Gene transfer to plants:assessment of published approaches and results Annu Rev Plant Physiol [J]. Plant Mol Biol.,1991,42:205-225
    63. Rainer M, Giinter T. Reconstitution of "floral quartets" in vitro involving class B and class E floral homeotic proteins[J]. Nucleic Acids Res.,2009,37(8):2723-2736
    64. Rieping M, Schoffl F. Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock gene in transgenic tobacco [J]. Mol Gen Genet,1992,231(2):226-232
    65. Sablowski RW, Baulcombe DC, Bevan M. Expression of a flower-speeiflc Myb protein in leaf cells using a viral vector Causes ectopic activation of a target promoter [J]. Proc Natl Acad Sci USA,1995,92:6901-6905
    66. Schell J, Holhn B, Koncz C. T-DNA integration:a mode of illegitimate recombination in plants [J]. EMBO J.,1991,10(3):697-704
    67. Schernthaner JP, Matzke MA, Matzke AJM. Endorspem-specific activity of a zero gene promoter in transgenic tobacco plants [J]. EMBO J.,1988,7:1249-1256
    68. Seagull RW.The Plante cytoskeleton.Crit. Rev Palnt Sci.,1989,80:131-167
    69. Singh M, Bhalla PL, Xu H, et al. Isolation and characterization of a flowering plant male gametic cell-specific promoter [J]. FEBS Lett.,2003,542:47-52
    70. Solano R, Nieto C, Avila J. Dual DNA binding specificity of a petal epidemis-specifc MYB transcfiption factor (MYB.Ph3) from Petunia hybrid [J]. EMBO J.,1995,14(8):1773-1784
    71. Takakura Y, Ito T, Saito H. Flower-predominant expression of a gene encoding a novel class I chitinase in rice [J]. Plant Mol Biol.,2000,42(6):883-897
    72. Van Haaren MJ, Houck CM. A functional map of the fruit-specific promoter of the tomato 2AlI gene [J]. Plant Mol Biol.,1993,21(4):625-640
    73. Verelst W, Saedler H, Munster T. MIKC* MADS-protein complexes bind motifs enriched in the proximal region of late pollen-specific Arabidopsis promoters [J]. Plant Physiol, 2007,143(1):447-460
    74. Wan L, Xia X, Hong D, et al. Molecular analysis and expression of a floral organ-specific polygalacturonase gene isolated from rapeseed (Brassica napus L.) [J]. Mol Biol Rep., 2010,37(8):3851-3862
    75. Watts FZ, Butt N, Layfield P, et al. Floral expression of a gene encoding an E2-related ubiquitin-conjugating protein from Arabidopsis thaliana [J]. Plant Mol Biol.,1994,26(1): 445-451
    76. Wei H, Meilan R., Brunner AM., et al. Transgenic sterility in Populus:expression properties of the poplar PTLF, Agrobacterium NOS and two minimal 35S promoters in vegetative tissues [J]. Tree Physiol,2006,26(4):401-410
    77. Yoshida K, Shinmyo A. Transgene expression systems in plant, a natural bioreactor [J]. JBiosci Bioeng,2000,90(4):353-356
    78. Yu H, Goh CJ. Identification of three orchid MADs-box genes of the APl/AGL9 subfamily during floral transition [J]. Plant Physiology,2000,123(4):1325-1336
    79. Zheng H, Lin S, Zhang Q, et al. Functional identification and regulation of the PtDrl02 gene promoter from triploid white poplar [J]. Plant Cell Rep.,2010,29(5):449-460
    80. Zhou Q, Dabi T, Beeche A, et al. Cloning and properties of a rice gene encoding phenylalanine ammonia-lyase [J]. Plant Mol Biol.,1995,29(3):535-550

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700