用户名: 密码: 验证码:
Ti-Zr-Si系非晶合金的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据Ti-Si二元合金相图和3d电子理论,设计并制备了可用于生物医学领域的、不含有毒元素的Ti-Zr-Si系非晶合金T17、TF14、TFM23和TFMN31。通过X射线衍射仪和透射电镜研究了Ti-Zr-Si系非晶合金的组织和形貌。利用Inoue经验理论和非晶钛合金的特征温度研究了合金的玻璃形成能力。此外,分别通过模拟体液法检测了材料的生物活性,运用电化学法测试了材料在不同介质中的耐蚀性,通过常温下合金的拉伸实验检测了合金的弹性模量和抗拉强度。
     四种非晶合金的X-射线衍射谱表明,合金元素含量变化为14%~31%的Ti-Zr-Si系非晶合金具有较好的玻璃形成能力,其基体组织均为非晶态结构。
     Inoue经验理论和各合金的特征温度表明,四种非晶合金的玻璃形成能力由强到弱依次为TFM23>T17>TF14>TFMN31。首先,按各组元之间的混合焓的负值大小将四种合金排序如下:TFM23 > T17 > TF14 > TFMN31。其次,各合金的过冷液相区(△Tx)、约化温度Trg和γ判据由大到小依次为TFM23 > T17 > TF14 > TFMN31,此结果与通过Inoue经验理论得到的结论相吻合。
     模拟体液法实验发现:在模拟体液中培养15天后,四种非晶合金表面均可以看到致密的网状涂层,这种多孔的球形网状结构可以促进骨细胞的粘附和增殖。涂层能谱分析结果表明,涂层主要由Ca、P、O和C等元素组成,且Ca与P的原子百分比n (C a)n(P)大约为1.6,此值接近羟基磷灰石中Ca与P的原子百分含量比值1.66;涂层的红外吸收光谱表明,涂层中含有OH-,PO43-等原子团,证实了涂层的主要成分为HA。
     非晶钛合金分别在NaCl和PBS溶液中的阳极极化曲线结果表明,与具有优异的耐蚀性能的非晶合金Ti60Zr10Ta15Si15相比,Ti-Zr-Si系非晶合金在3%的NaCl和PBS溶液均具有优异的耐蚀性能。其中,合金TFMN31在NaCl溶液中发生孔蚀行为,其孔蚀电位为1750mV。合金TF14在PBS溶液中发生孔蚀行为,其孔蚀电位为-699.17mV。
     Ti-Zr-Si系非晶合金的应力-应变曲线的研究表明,Ti-Zr-Si系非晶合金的弹性模量比同种成分的晶态合金低14~59%。其拉伸过程中变形特征为:弹性-塑性变形,材料的失效方式为典型的韧性断裂。
Based on the phase diagrams of Ti alloys and 3d electron theory, this dissertation deals with design and preparation of Ti-Zr-Si amorphous alloys system such as T17, TF14, TFM23 and TFMN31 without toxic elements by especially taking the applications of Ti alloys as biomaterials into account. The phase compositions were determined by X-ray diffraction patterns. The surface topography was observed using TEM. The glass forming ability (GFA) of Ti-Zr-Si amorphous alloys was evaluated by Inoue’s experimental rules and characteristic temperatures, respectively. The bioactivity of Ti-Zr-Si amorphous alloys was tested in simulated body fluid (SBF). The corrosion resisting properties of Ti-Zr-Si amorphous alloys were explained by polarization curves in NaCl and PBS solutions. And Young’s modulus and fracture strength were investigated by stress-strain curves of Ti-Zr-Si amorphous alloys.
     The X-ray diffraction patterns results showed that the T17, TF14, TFM23 and TFMN31 own amorphous structure.
     The GFA of the alloys changed more continuously in the order of TFM23 > T17 > TF14 > TFMN31. Firstly, the values of mixing enthalpy of the four alloys were all less than zero and the order from the greatest negative value to the smallest was indicated as follows: TFM23 > T17 > TF14 > TFMN31. Secondly, the region of supercooled liquid (△Tx), the reduced temperature (Trg) and theγcriterion varied in order of TFM23 > T17 > TF14 > TFMN31, which was consistent with the results of Inoue’s experiential rules.
     The bioactivity of the four amorphous alloys was tested in SBF. It was found that a compact and netlike and porous layer had been deposited on the surface of alloys after 15 days, which were helpful for the bone cell to conglutinate and proliferate. The element analysis result of the deposition tested by EDS showed that the depositions were composed of Ca, P, O and C etc., and n (C a)n(P) ratio for the deposition is about 1.6 which approached to that of Human bone of 1.66. In addition, the results of IR absorption spectra of deposition showed that the deposition contain OH- and PO_4~(3–) etc., which confirmed that the deposition consisted of HA.
     The polarization curves of T17, TF14, TFM23 and TFMN31 in NaCl and PBS solutions showed that T17, TF14, TFM23 and TFMN31 owned excellent corrosion resisting property, compared with amorphous Ti60Zr10Ta15Si15 with excellent corrosion resisting property. In 3% mass NaCl solution at 298K, pitting corrosion generated in TFMN31, whose potential of pitting corrosion was 1750 mV. And, in PBS solution at 310K, pitting corrosion generate in TF14, whose potential of pitting corrosion was -699.17 mV.
     The stress-strain curves indicated that the values of Young’s modulus of the four amorphous alloys were lower than that of crystals with identical component. Elastic-plastic deformations occurred in the four alloys when the test samples bore stress. The fracture strength and elongation ratio of the TFMN31 were the highest in the four amorphous alloys. In addition, a lot of slipping band could be seen on amorphous surface. At the same time, great deals of dimples appeared on the surface of the fracture which was typical fractography of ductile rupture.
引文
[1]郑兆勃.非晶固态材料引论.北京:科学出版社, 1987. 1-3
    [2] Luborsky F E主编(柯成,唐与谌,罗阳,何开元译).非晶态金属合金.北京:冶金工业出版社, 1989. 3-8
    [3] Klement W, Willens R H, Duwe P Z. Non-crystalline structure in solidified gold-silicon alloys. Nature, 1960, 187 (3): 869-870
    [4] Inoue A, Takeuchi A. Recent progress in bulk glassy, nonoquasicrystalline and noncrystalline alloys. Mater. Sci. Eng. A., 2004, 375-377 (1-2): 16-30
    [5] Chen H S. Thermodynamic considerations on the formation and stability of metallic glasses. Acta Metall., 1974, 22 (12): 1505-1511
    [6] Inoue A, Shen B L, Koshiba. H. Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nature Mater., 2003, 2 (10): 661-663
    [7] Kui H W, Greer A L, Turnbull D. Formation of bulk metallic glass by fFluxing. Appl. Phys. Lett., 1984, 45 (6): 615-616
    [8] Inoue A, Kita K, Zhang T, Masumoto T. Amorphous La55Al25 Ni20 alloy prepared by water quenching. Mater. Trans., JIM, 1989, 30 (9): 722-725
    [9] Inoue A, Ohtera K, Kita K, et al. New amorphous Mg-Ce-Ni Alloys with high strength and good ductility. Jpn. J. Appl. Phys., 1988, 27 (12): 2248-2251
    [10] He G, Lu J, Bian Z, Chen D, et al. Fracture morphology and quenched-in precipitates included embrittlement in a Zr-based bulk Glass. Mater. Trans., 2001, 42 (2): 356-364
    [11] Zhang T, Inoue A, Masumoto T. Amorphous Zr-Al-TM (TM=Co、Ni、Cu) alloys with significant supercooled liquid Region of over 100K. Mater. Trans. JIM, 1992, 32 (11): 1005-1010
    [12] Inoue A, Zhang T, Nishiyama N, et al. Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10 Cu17.5 alloy. Mater. Trans. JIM, 1993, 34 (12): 1234-1237
    [13] Peker A, Johnson W L. A highly processable metallic glass Zr41.2Cu12.5Ni10Ti13.8Be22.5. Appl. Phys. Lett., 1993, 63 (17): 2342-2344
    [14] Schroers J, Busch R, Bossuyt S, et al. Crystallization behavior of the bulk metallic glass formingZr41Ti14Cu12Ni10Be23 liqulid. Mater. Sci. Eng. A., 2001, 304-306 (1-2): 287-291
    [15] Gaoa Y L, Shena J, Suna J F, et al. Nanocrystallization of Zr-Ti-Cu-Ni-Be bulk metallic glass. Mater. Lett., 2003, 57 (16-17): 2341-2347
    [16] Kim S G, Inoue A, Masumoto T. High mechanical strengths of Mg-Ni-Y and Mg-Cu-Y amorphous alloys with significant supercooled liquid region. Mater. Trans. JIM, 1990, 31 (11): 929-934
    [17]张新房,王英敏,彭敏,等. Zr-Al-Co块体非晶的成分优化.金属学报, 2004, 40 (10): 1099-1105
    [18] Inoue A, Ekimoto T, Masumoto T. Production of large amorphousspheres by melt ejection into stirred water of Pd-Ni-P-B, Pd-Ni-Si-B and Pd-Cu-Si-B alloys and their thermal stability. Int. J. Rapid Solidification, 1988, 3 (1): 237-252
    [19] Inoue A, Kita K, Zhang T, et al. An amorphous La55Al25Ni20 alloy prepared by water quenching. Mater. Trans. JIM, 1989, 30 (9): 722-725
    [20] Kim K B, Warren P J, Cantor B. Metallic glass formation in multicomponent (Ti, Zr, Hf, Nb)-(Ni, Cu, Ag)-Al alloys. J. Non-cryst. Sol, 2003, 317 (1-2): 17-22
    [21] Zhang T, Inoue A. Thermal stability and mechanical properties of bulk glassy Cu-Zr-Ti-(Nb, Ta) alloys. Mater. Trans., 2002, 43 (6): 1367-1370
    [22] Inoue A, Murakami A, Zhang T, et al. Thermal stability and magnetic properties of bulk amorphous Fe-Al-Ga-P-C-B-Si alloys. Mater. Trans. JIM, 1997, 38(3): 189-196
    [23] Wang X, Yoshii I, Inoue A, et al. Bulk amorphous Ni75-XNb5MXP20-YBY (M=Cr, Mo) alloys with large supercooling and high strength. Mater. Trans. JIM, 1999, 40 (10):1130-1136
    [24] Inoue A, Zhang T, Takeuchi A, et al. Hard magnetic bulk amorphous Nd-Fe-Al Alloys of 12 mm in diameter made by suction casting. Mater. Trans. JIM, 1996, 37 (4):636-640
    [25] Inoue A, Nishiyama N, Amiya K, et al. Ti-based amorphous alloys with a wide supercooled liquid region, Mater, Lett., 2007, 61 (14-15): 2851-2854
    [26] Inoue A, Shen B. Formation and soft magnetic properties of Co-Fe-Si-B-Nb bulk glassy alloys. Mater. Trans., 2002, 43 (5): 1230-1234
    [27] Shen B, Koshiba H, Inoue A, et al. Bulk glassy Co43Fe20Ta5.5B31.5 Alloy with high glass-forming ability and good Soft magnetic properties. Mater. Trans., 2001, 42 (10):2136-2139
    [28]程天一,章守华.快速凝固技术与新型合金.北京:宇航出版社, 1990.24-25
    [29] Siemers P A, Jackson M R, Mehan R L, et al. Melbourne, General Electic Rep., No 85CRD001. 1985
    [30]殷景华,王雅珍,鞠刚.功能材料概论.哈尔滨:哈尔滨工业大学出版社, 1999. 61-63
    [31] Inoue A, Nakamura T, Nishiyama N, et al. Mg-Cu-Y bulk amorphous alloys with high tensile strength by a high-pressure die casting method. Mater. Trans., 1992, 33: (10) 937-945
    [32] Wang L, Li C, Inoue A. Formation and mechanical properties of bulk glassy Ni57-XTi23Zr15Si5PdX alloys. Mater. Trans., 2001, 42 (5): 886-889
    [33] Pang S, Zhang T, Asami K, et al. Formation of bulk glassy Fe75-X-YCrXMoYC15B10 alloys and their corrosion behavior. J. Mater. Res., 2001, 17 (3): 701-704
    [34] Inoue A, Zhang T. Fabrication of bulk Zr-based glassy alloys by suction casting into copper mold. Mater. Trans., JIM, 1995, 36 (9): 1184-1187
    [35] Inoue A, Zhang T, Takeuchi A. Preparation of bulk Pr-Fe-Al amorphous alloys and characterization of their hard magnetic properties. Mater. Trans. JIM, 1996, 37 (12): 1731-1740
    [36] Inoue A, Ohtera K, Kita K, et al. New amorphous Mg-Ce-Ni alloys with high strength and good ductility, Jpn. J. Appl. Phys., 1988, 27 (12): 2248-2251
    [37] Kim S G, Inoue A, Masumoto T. High mechanical strengths of Mg-Ni-Y and Mg-Cu-Y amorphous alloys with significant supercooled liquid region. Mater. Trans. JIM, 1990, 31 (11): 929-934
    [38] Inoue A, Kohinata M, c A P, et al. Mg-Ni-La Amorphous Alloys with a Wide Supercooled Region. Mater. Trans. JIM, 1989, 30 (5): 378-381
    [39] Inoue A, Kita K, Zhang T, Masumoto T. Amorphous La55Al25 Ni20 alloy prepared by water quenching. Mater Trans. JIM, 1989, 30 (9): 722-725
    [40] Inoue A, Zhang T, Masumoto T. Stabilization of supercooled liquid and opening-up of bulk glassy alloys. Mater. Trans. JIM, 1997, 73 (2): 19-25
    [41] Peker A, Johnson W L. A highly processable metallic glass Zr41.2Cu12.5Ni10Ti13.8Be22.5. Appl. Phys. Lett., 1993, 63 (17): 2342-2344
    [42] Inoue A, Gook J S. Fe-based ferromagnetic glassy alloys with wide supercooled liquid region. Mater. Trans. JIM, 1995, 36 (9): 1180-1183
    [43] Inoue A, Zhang T, Itoi T et al. New Fe-Co-Ni-Zr-B amorphous alloys with supercooled liquid regions and good soft magnetic properties. Mater. Trans. JIM, 1997, 38 (4): 359-362
    [44] Inoue A, Nishiyama N, Matsuda T. Preparation of bulk glassy Pd40Ni10Cu30P20 Alloy of 40 mm in diameter by water quenching. Mater. Trans. JIM, 1996, 37 (2): 181-184
    [45] He Y, Schwarz R B, Archuleta J I. Bulk glass gormation in the Pd-Ni-P System. Appl. Phys. Lett. 1996, 69 (13): 1861-1863
    [46] Inoue A, Zhang W, Zhang T, et al. Thermal and mechanical properties of Cu-based Cu-Zr-Ti bulk glassy alloys. Mater. Trans., 2001, 42 (6): 1149-1151
    [47] Amiya K, Inoue A. Formation, thermal stability and mechanical properties of Ca-based glassy alloys. Mater. Trans., 2002, 43 (1): 81-84
    [48] Amiya K, Inoue A. Formation and thermal stability of Ca-Mg-Ag-Cu bulk glassy alloys. Mater. Trans., 2002, 43 (10): 2578-2581
    [49] Park E S, Kim D H. Formation of Ca-Mg-Zn bulk glassy alloy by casting into cone-shaped copper mold. Mater. Res., 2004, 19 (3): 685-688
    [50] Choi-Yim H, Xu D H , Johnson W L. Ni-based bulk metallic glass formation in the Ni-Nb-Sn-X (X=B, Fe,Cu) alloy systems. Appl. Phys.Lett., 2003, 82 (7):1030-1032
    [51] Lee M, Bae D, Kim W, et al. Ni-Based refractory bulk amorphous alloys with high thermal stablility. Mater. Trans., 2003, 44 (10): 2084-2087
    [52] Kim Y C, Kim W T, Kim D H. Amorphous and icosahedral phases in Ti-Zr-Cu- Ni-Be alloys.Mater. Sci. Eng. A, 2004, 375-377 (1-2): 749-753
    [53] Nishiyama N, Amiya K, Inoue A. Bulk metallic glasses forindustrial products. Mater. Trans., 2004, 45 (4): 1245-1250
    [54] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater., 2000, 48 (1): 279-306
    [55] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans., 2005, 46 (12): 2817-2829
    [56] Saida J, Sanada T, Sato S, et al. Effect of Al on the local structure and stability of Zr-based metallic galsses. J. Alloys Compd., 2007, 434-435 (SPEC): 135-137
    [57] Bian Z, Inoue A. High glass-forming Ce-Cu-Fe-Al-Si bulk metallic glassy alloys. Mater. Sci. Eng. A, 2007, 448-451 (3):114-117
    [58] Wang L M, Li C F, Ma L Q, Inoue A. Microstructure and crystallization of melt-spun Ti-Ni-Zr-Y alloys. J. Alloys Compd, 2002, 339: 216-220
    [59]陈庆军,铁基大块非晶合金的玻璃形成能力及断裂行为.哈尔滨工业大学博士学位论文, 2004
    [60] Lu Z P, Liu C T. Role of minor alloying additions in formation of bulk metallic glasses: A Review. J. Mater. Sci. 2004, 39 (12): 3965-3974.
    [61]孔见, Cu-Ti基块体非晶合金玻璃形成能力、合金化效应及性能研究.南京理工大学博士学位论文,. 2006
    [62] Greer A L. Confusion by design. Nature, 1993, 366 (25): 303-304
    [63] Egami T. Atomistic mechanism of bulk metallic glass formation. J. Non-crys. Sol., 2003, 317 (1-2): 30-33
    [64] Voronel A, Rabinovich S, Kisliuk A, et al. Universality of physical properties of disordered alloys. Physical Review Letters, 1998, 60 (23): 2402
    [65] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta mater., 2000, 48 (1): 279-306
    [66] Takeuchi A, Inoue A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mate. Trans., JIM, 2000, 41 (11): 1372-1378
    [67] Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold silicon alloys. Nature, 1960, 187 (4740): 869-870
    [68] Wang W H, Dong C, Shek C H. Bulk metallic glasses.Mater. Sci. Eng. R., 2004, 44 (2-3): 45-89
    [69] Turnbull D. Under what conditions can a glass formed. Contemporary Physics, 1969, 10 (5): 473
    [70] Cantor B, Kim K B, Warren P J. Novel multicomponent amorphous alloys. Mater. Sci. Forum, 2002, 386-388:27
    [71] Lu Z P, Tan H, Ng S C. The correlation between reduced glass transition temperature and glass forming ability of bulkMetallic glasses. Scripta Mater., 2006, 42 (7): 667-673
    [72] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys.Acta Mater., 2000, 48 (1): 279-306
    [73] Inoue A, Zhang T, Masumoto T. Glass-forming ability of alloys, J. Non-cryst. Sol., 1993, 156-158 (2): 473-480
    [74] Inoue A, Zhang T. Stabilization of supercooled liquid and bulk glassy alloys in ferreous and non-ferrous systems. J. Non-Cryst. Sol., 1999, 250-252 (2): 552-559
    [75] Li Y, Ng S C, Ong C K, et al. Glass forming ability of bulk glass forming alloys. Scip. Mater., 1997, 36 (7): 783-787
    [76] Inoue A, Zhang T, Masumoto T. Production of amorphous cylinder and sheet of La55Al25Ni20 alloy by a metallic mold casting method. Mater. Trans. JIM, 1990, 31 (5): 425-428
    [77] Inoue A, Nakamura T, Sugita T, et al. Bulky La-Al-TM (TM=Transition Metal) amorphous alloys with high tensile strength produced by a high-pressure die casting method. Mater. Trans. JIM, 1993, 34 (4):351-358
    [78] Inoue A, Zhng T, Masumoto T. Preparation of bulky amorphous Zr-Al-Co-Ni-Cu alloys by copper mold casting and their thermal and mechanical properties. Mater. Trans. JIM, 1995, 36 (3): 391-398
    [79] Waniuk T A, Schroers J, Johnson W L. Critical cooling rate and thermal stability of Zr-Ti-Cu-Ni-Be alloys, Appl. Phys. Lett., 2001, 78 (9): 1213-1215
    [80] Inoue A, Matsumoto N, Masumoto T. Al-Ni-Y-Co Amorphous alloys with high mechanical strength, wide supercooled liquid and large glass-forming capacity. Mater. Trans. JIM, 1990, 31 (6): 493-500
    [81] Inoue A, Nakamura T, Nishiyama N, et al. Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method. Mater. Trans. JIM, 1992, 33 (10): 937-945
    [82] Inoue A, Kawamura Y, Saotome Y. High strain rate superplasticity of supercooled liquid for amorphous alloys. Mater. Sci. Forum , 1997, 233-234: 147-154
    [83] Lu Z P, Tan H, Li Y, et al. The correlations between reduced glass transition temperature and glass forming ability of bulk metallic glasses. Scripta Mater., 2002, 42 (7): 667-673
    [84] Lu Z P, Liu C T. A new glass-forming ability criterion for bulk metallic glassed. Acta. Mater. 2002, 50 (13): 3501-3512
    [85] Lu Z P, Liu C T. Glass formation criterion for various glass-forming systemically. Phys.Rev. Lett., 2003, 91 (11): 115515
    [86] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater, 2000, 48 (1): 279-306
    [87] Zhang T, Inoue A, Masumoto T. Amorphus (Ti, Zr, Hf)-Ni-Cu ternary alloys with a wide supercooled liquid region.Mater. Sci. Eng. A, 1994, 181-182 (2): 1423-1426
    [88] Amiya K, Nishiyama N. Inoue A, et al. Mechnical strength and thermal stability of Ti-based amorphous alloys with large glass-forming ability. Mater. Sci. Eng. A, 1994, 179-180 (1): 692-696
    [89] Pang S J, Men H, Shek C H, et al. Formation, thermal stability and corrosion behavior of glassy Ti45Zr5Cu45Ni5 alloy. Intermetallics, 2007, 15 (5-6): 683-686
    [90] Oak J-J, Inoue A. Attempt to develop Ti-based amorphous alloys for biomaterials. Mater. Sci. Eng. A, 2007, 448-451 (3): 220-224
    [91] Pang S J, Shek C H, Ma C L, et al. Corrosion behavior of a glassy Ti-Zr-Hf-Cu-Ni-Si. Mater. Sci. Eng. A, 2007, 449-451(3): 557-560
    [92] Myung W N, Park K H, Jnag D H, et al. Structural relaxation and crystallization of amorphousTi60Cu30Ni10 alloy. J. Non-Cryst. Sol. 1995, 192-193: 401-404
    [93] Weiland A, Johannesson T. Residual stresses in fibre- and whisker-reinforced aluminium alloys during thermal cycling measured by x-ray diffraction. Mater. Sci. Eng.A, 1995, 190 (1-2): 131-142
    [94] Zhang T, Inoue A . Thermal and mechanical properties of Ti-Ni-Cu-Sn amorphous alloys with a wide supercooled liquid region before crystallization. Mater. Trans. JIM, 1998, 39(10): 1001-1006
    [95] Kim Y C, Kim W T, Kim D H. A development of Ti-based bulk metallic glass. Mater. Sci. Eng. A, 2004, 375-377 (7): 127-135
    [96] Nishiyama N, Amiya K, Inoue A. Bulk metallic glasses for industrial products. Mater. Trans., 2004, 45: 1245-1250
    [97] Kim Y C, Bae D H, Kim W T, et al. Glass forming ability and crystallization behavior of Ti-based amorphous alloys with high specific strength. J. Non-cryst. Sol., 2003, 325 (1-3): 242-250
    [98] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size differene, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater.Trans., 2005, 46 (12.): 2817-2829
    [99] Zhang T, Inoue A. Ti-based amorphous alloys with a large supercooled liquid region. Mater. Sci. Eng. A., 2001, 304-306 (1-2): 771-774
    [100] Zhang T, Inoue A, Preparation of Ti-Cu-Ni-Si-B amorphous alloys with a large supercooled liquid region. Mater. Trans.JIM 1999, 40 (4): 301-306
    [101] Xia M X, Ma C L, Zheng H X, et al. Preparation and crystallization of Ti53Cu27Ni12Zr3Al7Si3B1 bulk metallic glass with supercooled liquid region. Mater. Sci. Eng. A., 2005, 390 (1-2): 372-375
    [102] Wang L M, Ma L Q, Ma C L, et al. Formations of amorphous and quasicrystal phases in Ti-Zr-Ni-Cu alloys. J. Alloys Compd, 2003, 361 (1-2): 234-240
    [103] Wang L M, Li C F, Ma L Q, et al. Microstructure and crystallization of melt-spun Ti-Ni-Zr-Y alloys. J. Alloys Compd, 2002, 339 (1-2): 216-220
    [104] Inoue A, Nishiama N, Amiyam K, et al. Ternary peritectic solidification in the NiAl-Ni2AlTa system. Mater. Lett. 1994 (3-4), 19: 129-133
    [105] Nicula R, Kuncser V, Jianu A, et al. Mossbauer spectroscopy study of Ti-Zr-Ni-Fe icosahedral and approximant phases. Mater. Sci. Eng. A, 2000, 294-296 (12): 539-541
    [106] Kim K B, Ko B C, Pak S J. Formation of nanocrystals in Ti78Fe15Si7 amorphous alloy with a wide supercooled liquid region. Mater. Sci. Eng. A, 2004, 366 (2): 421-425
    [107] Naka M, Sakai H, Maeda M, et al. Fornation and thermal stability of amorphous Ti-Si-C alloys. Mater. Sci. Eng. A, 1997, 226-228(wu): 774-778
    [108] Tanner L E, Ray R. Physical properties of Ti//5//0Be//4//0Zr//1//0 Glass. Scr. Metall., 1977, 11: 783-789.
    [109] Naka M, Okada T, Mori H. Mater. Crystallization and thermal stability of amorphous Ti-B alloy. Sci. Eng. A, 1994, 179-180 (1): 366-370
    [110] Naka M, Matsui T, Maeda M, et al. Formation and thermal stability of amorphous Ti-Si alloys. Mater. Sci. Trans. JIM, 1995, 36: 797-801
    [111]刘江龙.环境材料导论.北京:冶金工业出版社, 1999. 39
    [112] Daisuke Kuroda, Mitsuo Niinomi, et al. Design and mechanical properties of newβtype titanium alloys for implant materials. Mater.Sci.Eng.A, 1998, 243: 244-249
    [113]于思荣.金属系牙科材料的应用现状及部分元素的毒副作用.金属功能材料, 2000, 7 (1): 1-6
    [114]颜世铭,李增禧,熊丽萍.微量元素医学精要Ⅰ.微量元素的生理作用和体内平衡.广东微量元素科学, 2002, 9 (9): 1-48
    [115]张济山,崔华,胡壮麒等.应用d-电子合金设计理论发展新型抗热腐蚀单晶镍基高温合金I.相稳定性临界条件的确定.金属学报, 1993, 29 (7): 289-296
    [116] Morinaga M, Kato M, Kamimura T, et al.Theoretical design ofβ-type titanium alloys. The minerals, metals & moterials society, 1993: 216-217
    [117] Naka M, Okada T, Mori H. Crystallization and thermal stability of amorphous Ti-B alloy. Mater. Sci. Eng., A, 1994, 179-180 (1): 366-370
    [118] Naka M, Matsui T, Maeda M, et al. Formation and thermal stability of amorphous Ti-Si alloys. Mater. Trans. JIM, 1995, 36 (7): 797-801
    [119]章熙康编著.非晶态材料及其应用.北京:北京科学技术出版社. 1987: 46-48
    [120]鲍利索娃E A等著.陈石卿卿译.钛合金金相学.北京:国防工业出版社. 1986: 106-133
    [121] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater., 2000, 48 (1): 279-306
    [122]莱茵斯C,皮特尔斯M.钛与钛合金.北京:化学工业出版社. 2005
    [123] Inoue A, Takeuchi A. A recent progress in bulk glassy alloys. Mater. Trans., 2002, 43 (8): 1892-1906
    [124] Maruzen, Metal Databook. 4th edition.Japan: Japan Institute of Metal, 2004. 8
    [125] Takeuchi A, Inoue A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element.Mater. Trans., 2005, 46 (12): 2817-2829.
    [126] Takeuchi A, Inoue A. Calculations of mixing enthalpy and mismatch entropy for ternary amorphous alloys. Mater. Trans. JIM, 2000, 41 (11): 1372-1378.
    [127] Boer F R, Perrifor D G. Cohesion in Metal. Netherlands: Elsevier Science Publishers B. V., 1988.1
    [128] Xia M X, Zhang S G, Ma C L et al. Evaluation of Glass-forming Ability for Metallic Glasses based on Order-disorder Competition. Appl. Phys. Let., 2006, 89 (9): 091917
    [129] Takeuchi A, Inoue A. Quantitative evaluation of critical cooling rate formetallic galsses. Mater.Sci. Eng. A, 2001, 304-306 (1-2): 446
    [130] Zhang T, Inoue A. Ti-based amorphous alloys with a large supercooled liquid region. Mater. Sci. Eng. A., 2001, 304-306 (1-2): 771-774.
    [131]钱九红.外科植入物用纯钛及其合金.稀有金属, 2001, 25 (4): 303-306
    [132]宁聪琴,周玉.医用钛合金的发展及研究现状.材料科学与工艺, 2002, 10 (1): 100-106
    [133]于思荣.生物医学钛合金的研究现状及发展趋势.材料科学与工程, 18 (2): 131-134
    [134]李世普.生物医用材料导论.湖北:武汉工业大学出版社, 2000. 10-14
    [135] Cheale E J, Spectorm M S , Hayes W C. Role of loads and prostheses material properties on the mechanics of the proximal femur after total hip arthroplasty. J Orthop. Res., 1992, 10 (3): 405-422
    [136] Huiskes R, Weinans H, Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects flexible materials J. Clin. Orthop. Relat. Res., 1992, 274: 124-1340
    [137] Sumner D, Gatante J. Determinations of stress shielding: design versus materials versus interface. J. Clin. Orthop. Relat. Res., 1992, 274: 202-212
    [138] Mitsuo Niinomi. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci. Technol. Adv. Mater., 2003, 4 (5): 445-454
    [139]储成林,朱景川,尹钟大.医用钛合金及其表面改性.材料科学与工艺, 1998,6(2):40-44
    [140] Mitsuo Niinomi. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A., 1998, 243 (1-2): 231–236
    [141]储成林,王世栋.致密羟基磷灰石(HA)生物陶瓷烧结行为和力学性能.功能材料, 1999, 30 (6): 606-609
    [142] Schmidt H, Exner H E. Corrosion and fatigue properties of ion implanted titanium alloy Ti6Al4V. Wear, 2000 (2): 45
    [143]孙玉绣.羟基磷灰石生物陶瓷纳米粒子的制备、表征及生长机理的研究.北京化工大学博士学位论文.2007
    [144]陈长春,孙康,吴人洁.髋关节置换用股骨假体材料的研究与应用.材料导报,1998,12 (6): 1
    [145]陈晓明,李世善.骨植入材料的表面特征与骨性结合.武汉工业大学学报, 1995, 17 (4): 132
    [146] Black J. Biological performance of materials. 3 rd ed. NewYork: Marcel Dekker, 1992. 25-109
    [147]刘敬肖,史非,周靖,等.模拟体液中仿生羟基磷灰石超细粉的制备及表征.硅酸盐学报, 2006, 34 (3): 334-339
    [148] Xue w, Krishna B V, Bandyopadhyay A, et al. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomater., 2007, 3 (6): 1007-1008
    [149] Oak J J, Inoue A. Formation, mechanical properties and corrosion resistance of Ti-Pd based glassy alloys. J. Non-cryst. Sol., 2008, 354 (17): 1828-1832
    [150] Parlapanska S, Parlapanski D. Corrosion behavior of mechanically alloyed Ti-Si samples. Corros. Sci., 1997, 39 (7):1321-1327
    [151]刘永辉,张佩芬.金属腐蚀学原理.北京:航空工业出版社, 1993. 10-11
    [152]叶康民,金属腐蚀与防护概论.北京:高等教育出版社,1989. 84-106
    [153] Silver F H. Biomaterials, medical devices and tissue engineering: an integrated apporach. New York: Chapman & Hall Press.1994.7-14
    [154] Mitsuo N. Mechanical properties of biomedical titanium alloys. Mater. Sci. Eng. A., 1998, 243 (1-2): 231-236
    [155]陈传宏,杨哲,王澎仁.中国生物医学工程科技产业.北京:中国农业出版社, 2000. 39-40
    [156]浦素云编.金属植入材料及腐蚀.北京:北京航空航天大学出版社, 1990.1
    [157] Marc Long, Rack H J. Titanium alloys in total joint replacement—a materials science perspective. Biomater., 1998, 19 (18):1621-1639
    [158]顾汉卿,徐国风.生物医学材料.天津:天津科技翻译出版公司, 1992. 67-70
    [159] Cheale E J, Spectorm M S, Hayes W C. Role of loads and prostheses material properties on the mechanics of the proximal femur after total hip arthroplasty. J. Orthop. Res, 1992, 10 (3): 405-422
    [160] Huiskes R, Weinans H, Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects flexible materials. J. Clin. Orthop. Relat. Res., 1992, 274: 124-1340
    [161] Sumner D R, Galante J. Determinations of stress shielding: design versus materials versus interface. J. Clin. Orthop. Relat. Res, 1992, 274: 202-212
    [162] Hench L L. Bioceramics. J. Am.Ceram.Soc.1998, 81 (7):1705-1728
    [163] Bonfield W, Wang M, Tanner K E. Interfaces in analogue biomaterials. Acta.Mater.1998, 46 (7): 2509-2518

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700