用户名: 密码: 验证码:
牦牛绒毛和免疫性状相关基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牦牛是分布在以我国青藏高原为中心以及毗邻的高山和亚高山、平均海拔3000m以上地区的特有的畜种资源和宝贵的基因库,我国拥有世界牦牛总数的95%。牦牛对高寒草地生态环境条件具有很强的适应性,能在空气稀薄、牧草生长期短、气候寒冷的恶劣环境条件下生活自如、繁衍后代,这不仅与它能通过独特的毛被结构来适应严寒和高辐射有密切关系,而且还与它拥有能适应空气稀薄的心肺系统以及免疫系统密不可分。
     本研究主要对牦牛绒毛结构关键基因-角蛋白关联蛋白KAP3-1、KAP7、KAP13-1和KAPl家族4个成员,以及多态性非常丰富的免疫相关基因-DRB3第二外显子进行研究,首次获得了牦牛7个KAP基因的完整CDS序列,并对这些基因的遗传多样性、单倍型构建及其功能等作了深入探讨,主要研究结果如下:
     在KAP3-1基因的扩增产物大小为525bp,包含297bp的全长CDS;存在4个SNPs,决定4个基因型和单倍型,其中AABB为主要基因型,主要单倍型的频率在6个牦牛群体中均超过0.81;其中两个单倍型离牦牛的主要单倍型较远,而与普通牛的主要单倍型较近,且均以较低频率出现在5个牦牛群体,说明它们应该是通过长期的种间杂交从普通牛导入到牦牛基因组中的;有3个SNPs位于CDS区,均未引起氨基酸变化。KAP7基因的扩增产物大小375bp,包含264bp的全长CDS;牦牛和普通牛KAP7基因的序列完全一致,牦牛群体中没有发现遗传多样性;在普通牛中发现了2个SNPs,其中一个为错义突变,可能会导致蛋白结构或功能的变化。KAP13-1基因的扩增产物大小为607bp,包含495bp的全长CDS;牦牛和普通牛KAP13-1基因的单倍型有3个SNPs的差异;牦牛中存在3个SNPs,全部位于CDS区域,且均为错义突变;这3个SNPs决定7个基因型和4个单倍型,其中TTTTGG为主要基因型,BOSGR-KRTAP13-1*A为优势单倍型。
     在KAP1家族基因中,kAP1-1基因的扩增产物大小为617bp,其中CDS序列长度为471bp;存在14个SNPs,决定11种基因型和7个单倍型,ABCD基因型频率最高,在5个牦牛群体中都有出现,BOSGR-KRTAP1-1*A和BOSGR-KRTAP1-1*B为主要单倍型。牦牛KAPl-2基因的扩增产物大小为624bp,其中CDS序列长度为501bp,存在3个SNPs,决定5种基因型和4个单倍型,AACCAA为主要基因型,BOSGR-KRTAP1-2*A为主要单倍型。本研究第一次获得了普通牛和牦牛KAP1-3基因的全长CDS序列,并填补了普通牛基因组中这段序列的空白;牦牛和普通牛KAP1-3基因的扩增产物大小为525bp,其中CDS序列长度为429bp;牦牛中存在5个SNPs,决定5种基因型和5个单倍型,其中AABB基因型为优势基因型, BOSGR-KRTAP1-3*A为主要单倍型。牦牛KAP1-4基因的CDS区域存在30bp插入/缺失的长度多态现象,长度分别为:471bp、441bp和411bp;在471bp和411bp的片段中没有发现变异,在441bp的片段中存在2个SNPs;长度多态和SNPs共决定9种基因型和5个单倍型,虽然ABDD基因型总频率不是最高,但存在于5个牦牛群体中,AADD基因型虽然总频率最高,但仅在GT、DQK和AD牦牛中出现。结果显示在基因组结构中紧密连锁的KAP1家族4个基因的单倍型数不尽相同,说明其中可能存在重组现象,但重组热点及方式还需进一步验证。
     本研究除采用直接测序和克隆测序以外,还结合了等位基因特异引物扩增法,对牦牛DRB3第二外显子的多态性及其单倍型进行了分析,实验结果如下:在DRB3第二外显子中,共检测到66个SNPs和1个氨基酸密码子的插入缺失,其中只有3个SNPs可能会导致蛋白质的功能和结构的变化,它们分别是位于157bp处的G/T突变,导致缬氨酸替换为亮氨酸,220bp处的G/A突变,导致甘氨酸替换为丝氨酸,259bp处的G/A突变,导致丙氨酸替换为苏氨酸;天祝白牦牛和甘南牦牛82份样品中存在40个单倍型;对单倍型进行中性检验,发现天祝白牦牛DRB3第二外显子的遗传多样性可能受到人工选择的影响。
The yak is distributed in the highland alpine and subalpine areas with an average altitude above3000m and centered on the Qinghai-Tibetan Plateau. It is a unique and valuable gene pool of livestock genetic resources. China accounts for about95%of the world's total yak population. Yak has a strong adaptability to the alpine grasslands, survives freely and reproduces normally with thin air, short grass growing season, cold weather and very harsh environmental conditions. These distinctive physiological characteristics are attributed not only to its exceptional fiber and coat structures to become accustomed to cold and to prevent strong ultraviolet radiation, but also to its cardiopulmonary and immune systems to adapt to less oxygen in the air.
     In this study, a few key genes including seven keratin-associated proteins (KAPs)(KAP3-1, KAP7, KAP13-1and four members of KAP1family and the highly polymorphic exon2of DRB3genes associated with fiber and immunity traits were selected as candidates critical to genetic improvement of yak grown and development. The complete coding sequences of the seven KAPs genes were generated for the first time in yak. The genetic diversity, haplotype reconstruction and probable function of these genes were investigated in yak as well as taurine cattle. The major research findings are as follows:
     The PCR product of KAP3-1gene was525bp in length containing the297bp long complete coding sequence (CDS). There were four SNPs determining four haplotypes and genotypes each with the major yak haplotype BOSGR-KRTAP3-1*A present in all six yak populations at frequencies more than0.81and genotype AABB to be predominant in all six yak populations. Two of the four haplotypes were closely linked to the major taurine cattle haplotype and present at relatively low frequencies in five yak populations, indicating their taurine cattle origins through genetic introgression following historical hybridization events. Three out of the four SNPs were found in the CDS region and they were all synonymous. The PCR product of KAP7gene was375bp in length carrying the264bp long complete CDS. Yak only had a single haplotype which was shared by the major taurine cattle haplotype. There was a second haplotype in taurine cattle with two SNPs between the two haplotypes, of which one was non-synonymous but the other to be synonymous. The PCR product of KAP'13-1gene was607bp in length including the495bp long complete CDS. Three SNPs were found between the yak and cattle haplotypes while there were three non-synonymous SNPs present within the CDS of yak KAP13-1gene defining four haplotypes and seven genotypes, of which TTTTGG was the predominant genotype and BOSGR-KRTAP13-1*A to be the dominant haplotype.
     Among the KAP1gene family, the PCR product of KAP1-1gene was617bp in length including471bp long CDS. There were14SNPs defining11genotypes and seven haplotypes with ABCD genotype to be most frequent and present in all five yak populations and BOSGR-KRTAP1-1*A and BOSGR-KRTAP1-1*B to be major haplotypes. The PCR product of KAP1-2gene was624bp in length carrying501bp long complete CDS which had three SNPs determining five genotyping and four haplotypes with AACCAA genotype to be predominant and BOSGR-KRTAP1-2*A to be major haplotype. This study successfully generated the complete CDS of yak and taurine cattle KAP1-3gene which filled the gap in the current bovine genome assembly. The PCR product of KAP1-3gene was525bp including429bp long complete CDS. Five SNPs were detected in yak sequences and they defined five genotypes and haplotypes each with AABB genotype to be predominant and BOSGR-KRTAP1-3*A to be major haplotype. The KAP1-4gene in yak had length polymorphisms of30bp In/Del in its CDS with length variations in471bp,441bp and411bp. There was no SNP in471bp and411bp long fragments but two SNPs were found in441bp long fragment. The length polymorphisms and SNPs determined nine genotypes and five haplotypes, of which ABDD genotype were present in all yak populations though it was less frequent than the AADD genotype present only in GT, DQK and AD yak populations. It is evident that the numbers of haplotypes across the four members of the KAP1gene family were all different, indicating possible recombination in this closely linked genomic region which calls for further investigation.
     In search for polymorphisms and determining haplotypes in yak DRB3exon2, we not only used direct and cloning sequencing protocols, but also explored an allele-specific sequencing method to ensure the PCR amplifications of specific haplotypes from this highly polymorphic genomic fragment. A total of66SNPs present in bi-, tri-or tetra-alleles as well as a single amino acid codon In/Del mutations were identified within the yak DRB3exon2, of which only three SNPs leading to amino acid replacements were predicted to have probable functional and structural significance:157G/T mutation for Val>Leu,220G/A mutation for Cys>Ser, and259G/A mutation for to Arg>Thr. Forty haplotypes were reconstructed from82samples of Tianzhu White yak and Gannan yak. Fu and Li's D*neutrality test revealed a probable impact of artificial selection on the genetic diversity of DRB3exon2in the Tianzhu White yak.
引文
1. 保,W.E.编著,吴玉章等译,基础免疫学(上册).科学出版社,2003
    2. 蔡立,四川牦牛.成都,四川民族出版社,1989
    3. 高强国,杨恬,杨进.uPAR在人毛囊发育中的表达及其规律.第三军医大学学报,2001,23:1279-1281
    4. 孔令勇,王林云,猪的MHC对繁殖性能的影响.畜牧与兽医,1994,26:85-87
    5. 梁育林,张海明,天祝白牦牛保种选育技术,甘肃科学技术出版社,2008
    6. 李波,梅花鹿(Cervus nippon) MHC-DRB基因多态性及其与产茸性能关系的研究[博士毕业论文].东北林业大学,2003
    7. 刘建欣,郑昌学,现代免疫学一免疫的细胞和分子基础.清华大学出版社,2002
    8. 欧阳建华,范玉庆,中国泰和乌鸡MHC与其繁殖性能相关的研究.江西农业大学学报,2000,22:98-101
    9. 宋瑞超,毛发生长周期.畜牧兽医科技信息,2012,(1):21-22
    10.沈永岱,何永红,杨林等,转导素β-TrCP在小鼠毛囊发育中的表达与意义.四川大学学报(医学版),2008,39:612-614
    11.王重庆,分子免疫学基础.北京大学出版社,1997中国畜禽遗传资源状况编委会,中国畜禽遗传资源状况.北京,2004:18
    12.吴江鸿,闫祖威,胡斯乐等,Hoxc13在毛囊发育中的作用.遗传,2010,32:656-662
    13.夏春,白鲢MHCIα2基因克隆及序列分析.动物学报,1999a,45:345-349
    14.夏春,中华鳖MHCIα2链基因克隆及序列分析.中国免疫学杂志,1999b,15:77-79
    15.西藏自治区农牧业厅,西藏自治区畜牧总站,西藏畜禽品种遗传资源,2009
    16.张兴洪,周乃慧,范卫新,拉坦前列素与毛发生长.国外医学皮肤性病学分册,2004,30:95-97
    17.张容昶,中国牦牛.中国兰州:甘肃科学技术出版社,1989
    18.张伟,徐艳春,毛发微观结构研究的回顾与展望.兽类学报,2003,23:339-343
    19.郑敏,吕中法,皮肤毛囊研究进展.浙江大学学报(医学版),2004,33:277-280
    20.郑源泉,许成蓉,TGF-β与毛囊发育.中国皮肤性病学杂志,2006,20:177-178
    21. 《中国牦牛学》编写委员会,《中国牦牛学》.成都:四川科学技术出版社,1989
    22.朱海琴,范卫新,雄激素和毛发生长.中国麻风皮肤病杂志,2007,23:149-151
    23.左彩兰,石红梅,甘南牦牛业的现状调查与分析,甘南藏族自治州科学技术局科技期刊,2007
    24. Aarestrup, F. M., Jensen, N. and (?)stergard, H., Analysis of associations between major histocompatibility complex (BoLA) class I haplotypes and subclinical mastitis of dairy cows. Journal of dairy science 1995,78:1684-1692.
    25. Ammer, H., F. Schwaiger, W., Kammerbauer, C., et al., Exonic polymorphism vs intronic simple repeat hypervariability in MHC-DRB genes. Immunogenetics 1992,35:332-340.
    26. Andersson, L. and Rask, L., Characterization of the MHC class Ⅱ region in cattle. The number of DQ genes varies between haplotypes. Immunogenetics 1988,27:110-120.
    27. Burke, M. G, Stone, R. T. and Muggli-Cockett, N. E., Nucleotide sequence and northern analysis of a bovine major histocompatibility class ⅡDR beta-like cDNA. Animal Genetics 1991,22:343-352.
    28. Crewther, W. G., Fraser, R. D., Lennox, F. G, et al., The chemistry of keratins. Advances in protein chemistry 1965,20:191-346.
    29. Dalgaard, T., Boving, M. K., Handberg, K., et al., MHC expression on spleen lymphocyte subsets in genetically resistant and susceptible chickens infected with Marek's disease virus. Viral Immunology 2009,22:321-327.
    30. Dietz, A. B., Cohen, N. D., Timms, L., et al., Bovine lymphocyte antigen class Ⅱ alleles as risk factors for high somatic cell counts in milk of lactating dairy cows. Journal of dairy science 1997,80:406-412.
    31. Duangjinda, M., Buayai, D., Pattarajinda, V., et al., Detection of bovine leukocyte antigen DRB3 alleles as candidate markers for clinical mastitis resistance in Holstein x Zebu. Journal of Animal Science 2009,87:469-476.
    32. Elleman, T. C., The amino acid sequence of protein SCMK-B2C from the high-sulphur fraction of wool keratin. Biochemal Journal 1972a,128:1229-1239.
    33. Elleman, T. C., The amino acid sequence of protein SCMK-B2A from the high-sulphur fraction of wool keratin. Biochemal Journal 1972b,130:833-845.
    34. Elleman, T. C., and Dopheide, T. A., The sequence of SCMK-B2B, a high-sulfur protein from wool keratin. Journal of Biological Chemistry 1972,247:3900-3909.
    35. Elsik, C. G., Tellam, R. L., Worley, K. C., et al., The genome sequence of taurine cattle:a window to ruminant biology and evolution. Science 2009,324:522-528.
    36. Frenkel, M. J., Powell, B. C., Ward, K. A., et al., The keratin BIIIB gene family:isolation of cDNA clones and structure of a gene and a related pseudogene. Genomics 1989,4:182-191.
    37. Gelhaus, A., Schnittger, L., Mehlitz, D., et al., Sequence and PCR-RFLP analysis of 14 novel BoLA-DRB3 alleles. Animal Genetics 1995,26:147-153.
    38. Gelhaus, A., Wippern, C., Mehlitz, D., et al., Sequence polymorphism of BoLA-DQA. Immunogenetics 1995,42:296-298.
    39. Gillespie, J. M, Frenkel, M. J., and Reis, P. J., Changes in the matrix proteins of wool and mouse hair following the administration of depilatory compounds. Australian Journal of Biological Sciences 1980,33:125-136.
    40. Godwin, A. R. and Capecchi, M. R., Hoxc13 mutant mice lack external hair. Genes& development 1998,12:11-20.
    41. Gong, H., Zhou, H., McKenzie, G. W., et al., An updated nomenclature for keratin-associated proteins (KAPs). International journal of biological sciences2012,8:258-264.
    42. Gong, H., Zhou, H., Yu, Z., et al., Identification of the ovine keratin-associated protein KAP1-2 gene (KRTAP1-2). Experimental dermatology,2011,20:815-819.
    43. Gorer, P. A., The detection of antigenic differences in mouse erythrocytes by the employment of immune sera, British Journal of Experimental Pathology 1936,17:42.
    44. Haylett, T., Swart L. S. and Parris, D., Studies on the high-sulphur proteins of reduced merino wool. Amino acid sequence of protein SCMKB-ⅢB3. Biochemal Journal 1971,123:191-200.
    45. Headington, J. T. Transverse microscopic anatomy of the human scalp. A basis for a morphometric approach to disorders of the hair follicle. Arch Dermatol,1984,120(4):449-456.
    46. Hedrick, P. W. and Parker, K. M, MHC variation in the endangered Gila topminnow. Evolution,1998: 194-199.
    47. Hess, M., Goldammer, T., Gelhaus, A., et al., Physical assignment of the bovine MHC class Ha and class Ⅱb genes. Cytogenetic and Genome Research 1999,85:244-247.
    48. Huelsken, J., Vogel, R., Erdmann, B., et al., beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 2001,105:533-545.
    49. Itenge-Mweza, T., Forrest, R., McKenzie, G, et al., Polymorphism of the KAP1.1, KAP1.3 and K33 genes in Merino sheep. Molecular and cellular probes 2007,21:338-342.
    50. Jacob, JP, Milne, S., Beck, S., et al. The major and a minor class Ⅱ bata-chain(B-LB) gene flank the tapasin gene in the B-F/B-L region of the chicken major histocompatibility complex. Immunogenetics,2000,51:138-147.
    51. Jahoda, C. A., Oliver, R. F., Reynolds, A. J., et al., Trans-species hair growth induction by human hair follicle dermal papillae. Experimental Dermatology 2001,10:229-237.
    52. Jave-Suarez, L. F., Winter, H., Langbein, L., et al., HOXC13 is involved in the regulation of human hair keratin gene expression. Journal of Biological Chemistry 2002,277:3718-3726.
    53. Jolles, P., H. Zahn and H. Hocker. Formation and structure of human hair[M]. Birkhauser,1997.
    54. Joosten, I., Oliver, R., Spooner, R., et al., Characterization of class I bovine lymphocyte antigens (BoLA) by one-dimensional isoelectricfocusing. Animal genetics 1988,19:103-113.
    55. Kariya, N., Shimomura Y. and Ito, M., Size polymorphisms in the human ultrahigh sulfur hair keratin-associated protein 4, KAP4, gene family. Journal of Investigative Dermatology 2005,124: 1111-1118.
    56. Kaufman, J., Milne, S., et al., The chicken B locus is a minimal essential major histocompatibility complex. Nature 1999,401:923-925.
    57. Klein, J., Klein, D., Figueroa, F., et al., Major histocompatibility complex genes in the study of fish phylogeny. Molecular systematics of fishes,1997:271-283.
    58. Koutsogiannouli E. A, Moutou, K. A., Sarafidou, T., et al., Major histocompatibility complex variation at class II DQA locus in the brownhare (Lepus europaeus). Molecular ecology 2009,18:4631-4649.
    59. Kuczek, E. S. and Rogers, G. E., Sheep wool (glycine+tyrosine)-rich keratin genes. A family of low sequence homology. European Journal of Biochemistry 1987,166:79-85.
    60. Kuhn, F., Lassing, C., Range, A., et al., Pmg-1 and pmg-2 constitute a novel family of KAP genes differentially expressed during skin and mammary gland development. Mechanisms of development,1999,86:193-196.
    61. Langbein, L. and Schweizer, J., Keratins of the human hair follicle. International review of cytology,2005,243:1-78.
    62. Langefors, A., Von Schantz, T. and Widegren, B., Allelic variation of Mhc class II in Atlantic salmon; a population genetic analysis. Heredity,1998,80:568-575.
    63. Larruskain, A., Minguijon, E., Garcia-Etxebarria, K., et al., MHC class II DRB1 gene polymorphism in the pathogenesis of Maedi-Visna and pulmonary adenocarcinoma viral diseases in sheep. Immunogenetics 2010,62:75-83.
    64. Lewin, H. A., Russell G. C., and Glass, E. J., Comparative organization and function of the major histocompatibility complex of domesticated cattle. Immunological Reviews 1999,167:145-158.
    65. Lewin, H. A., Wu, M. C., Stewart, J. A., et al., Association between BoLA and subclinical bovine leukemia virus infection in a herd of Holstein-Friesian cows. Immunogenetics 1988,27:338-344.
    66. Librado, P. and J. Rozas. DnaSP v5:a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009,25:1451-1452.
    67. Linnaeus, C. Systema Naturae, per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus. Differentiis, Synonymis. Locis. Tomus I. Editio Duodecima, Reformata. Laurentii Salvii, Stockholm,1766.
    68. Lu, X. and Lane. E., Retrovirus-mediated transgenic keratin expression in cultured fibroblasts:specific domain functions in keratin stabilization and filament formation. Cell 1990,62:681-696.
    69. Maillard, J. C., Renard, C., Chardon, P., et al., Characterization of 18 new BoLA-DRB3 alleles. Animal Genetics,1999,30:200-203.
    70. Marello, K., Gallagher, A., McKeever, D., et al., Expression of multiple DQB genes in Bos indicus cattle. Animal Genetics 1995,26:345-349.
    71. Mejdell, C., Lie,(?)., Solbu, H., et al., Association of major histocompatibility complex antigens (BOLA-A) with AI bull progeny test results for mastitis, ketosis and fertility in Norwegian Cattle. Animal Genetics 1994,25:99-104.
    72. Mikko, S. and Andersson L., Extensive MHC class Ⅱ DRB3 diversity in African and European cattle. Immunogenetics 1995,42:408-413.
    73. Mirsky, M., Olmstead, C., Da, Y., et al., Reduced bovine leukaemia virus proviral load in genetically resistant cattle. Animal Genetics 1998,29:245-252.
    74. Miyazono, K., Recent advances in the research on TGF-beta/Smad signaling pathways. Tanpakushitsu Kakusan Koso 2001,46:105-110.
    75. Moll, R., Divo M. and Langbein L., The human keratins:biology and pathology. Histochemistry and cell biology 2008,129:705-733.
    76. Newton, C., A. Graham, L. Heptinstall, et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic acids research 1989,17:2503-2516.
    77. Olsen, S. J. Fossil ancestry of the yak, its cultural significance and domestication in Tibet. Proceedings of the Academy of Natural Sciences of Philadelphia 1990:73-100.
    78. Parry, D., Fraser R., and MacRae T., Repeating patterns of amino acid residues in the suequences of some high sulphur proteins from [alpha]-keratin. International Journal of Biological Macromolecules 1979,1:17-22.
    79. Parry, D. A., Hard alpha-keratin IF:a structural model lacking a head-to-tail molecular overlap but having hybrid features characteristic of both epidermal keratin and vimentin IF. Proteins 1995,22: 267-272.
    80. Parry, D. A. D., Smith, T. A., Rogers, M. A., et al., Human hair keratin-associated proteins:sequence regularities and structural implications. Journal of structural biology 2006,155:361-369.
    81. Pfau, R., Van Den Bussche, R. and McBee, K., Population genetics of the hispid cotton rat (Sigmodon hispidus):patterns of genetic diversity at the major histocompatibility complex. Molecular Ecology 2001,10:1939-1945.
    82. Powell, B. C., The Genetics of Sheep. Molecular genetics,1997:149-181.
    83. Powell, B. C. and Rogers G. E., The role of keratin proteins and their genes in the growth, structure and properties of hair. Cellular and Molecular Life Sciences-Supplements Only 1997,78:59-148.
    84. Powell, B. C., Sleigh, M. J., Ward, K. A., et al., Mammalian keratin gene families:organisation of genes coding for the B2 high-sulphur proteins of sheep wool. Nucleic Acids Reserch 1983,11:5327-5346.
    85. Pruett, N. D., Tkatchenko, T. V., Jave-Suarez, L., et al., Krtap16, characterization of a new hair keratin-associated protein (KAP) gene complex on mouse chromosome 16 and evidence for regulation by Hoxc13. Journal of Biological Chemistry 2004,279:51524.
    86. Qi, X., Genetic Diversity, Differentiation, and Relationship of Domestic Yak Populations:A Microsatellite and Mitochondrial DNA Study. Lanzhou, China:Lanzhou University,2004.
    87. Rinn, J. L., Kertesz, M., Wang, J. K., et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 2007,129:1311-1323.
    88. Rogers, G. R., Hickford, J. G. and Bickerstaffe, R., Polymorphism in two genes for B2 high sulfur proteins of wool. Animal Genetics 1994,25:407-415.
    89. Rogers, M. A., Langbein, L., Winter, H., et al., Characterization of new members of the human type Ⅱ keratin gene family and a general evaluation of the keratin gene domain on chromosome 12q13.13. Journal of investigative dermatology 2005,124:536-544.
    90. Rogers, M. A., Langbein, L., Praetzel-Wunder, S., et al., Human hair keratin-associated proteins (KAPs). International review of cytology 2006,251:209-263.
    91. Rogers, M. A., Langbein, L., Winter, H., et al. Hair keratin associated proteins:characterization of a second high sulfur KAP gene domain on human chromosome 21. J Invest Dermatol,2004,122(1): 147-158.
    92. Rogers, M. A., Langbein, L., Winter, H., et al. Characterization of a cluster of human high/ultrahigh sulfur keratin-associated protein genes embedded in the type I keratin gene domain on chromosome 17q12-21. J Journal of Biological Chemistry 2001,276:19440-19451.
    93. Rogers, M. A., Langbein, L., Winter, H., et al., Characterization of a first domain of human high glycine-tyrosine and high sulfur keratin-associated protein (KAP) genes on chromosome 21q22.1. Journal of Biological Chemistry 2002,277:48993-49002.
    94. Rogers, M. A. and Schweizer, J., Human KAP genes, only the half of it? Extensive size polymorphisms in hair keratin-associated protein genes. Journal of investigative dermatology 2005,124:vii-ix.
    95. Ruano, G. and Kidd, K. K., Direct haplotyping of chromosomal segments from multiple heterozygotes via allele-specific PCR amplification. Nucleic acids research 1989,17:8392.
    96. Russell, G. C., Smith, J. A. and Oliver, R. A., Structure of the BoLA-DRB3 gene and promoter. Eur J Immunogenet 2004,31:145-151.
    97. Sambrook, J. and D. W. Russell. Molecular cloning:a laboratory manual. Cold Spring Harbor Laboratory Press,1989.
    98. Sarson, A., Parvizi, P., Lepp, D., et al., Transcriptional analysis of host responses to Marek's disease virus infection in genetically resistant and susceptible chickens. Animal genetics 2008,39:232-240.
    99. Schneider, M. R., Schmidt-Ullrich, R. and Paus, R., The hair follicle as a dynamic miniorgan. Current Biology 2009,19:R132-142.
    100. Schweizer, J., P. E. Bowden, P. A. Coulombe, et al. New consensus nomenclature for mammalian keratins. The Journal of cell biology,2006,174(2):169-174.
    101. Sharif, S., Mallard, B., Wilkie, B., et al., Associations of the bovine major histocompatibility complex DRB3 (BoLA-DRB3) alleles with occurrence of disease and milk somatic cell score in Canadian dairy cattle. Animal genetics 1998,29:185-193.
    102. Shimomura, Y., Aoki, N., Rogers, M. A., et al. hKAP1.6 and hKAP1.7, two novel human high sulfur keratin-associated proteins are expressed in the hair follicle cortex. Journal of investigative dermatology 2002,118:226-231.
    103. Shimomura, Y., Aoki, N., Rogers, M. A., et al., Characterization of human keratin-associated protein 1 family members. Nature Publishing Group 2003,8:96-99.
    104. Sitte, K., East, I. J., Lavin, M. F., et al., Identification and characterization of new BoLA-DRB3 alleles by heteroduplex analysis and direct sequencing. Animal Genetics 1995,26.413-417.
    105. Smith, O., Smith, J., Bowen, S., et al., Similarities among a group of elite maize inbreds as measured by pedigree, F 1 grain yield, grain yield, heterosis, and RFLPs. TAG Theoretical and Applied Genetics 1990,80:833-840.
    106. Suarez, C., Cardenas, P. Llanos Ballestas, E., et al., al and α2 domains of Aotus MHC Class I and Catarrhini MHC Class la share similar characteristics. Tissue antigens 2003,61:362-373.
    107. Takeshima, S. N., Matsumoto, Y, Miyasaka, T., et al. A new method for typing bovine major histocompatibility complex class Ⅱ DRB3 alleles by combining two established PCR sequence-based techniques. Tissue Antigens 2011,78:208-213.
    108. Tamura, K., Peterson, D., Peterson, N., et al., MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution 2011,28:2731-2739.
    109. Thanendrarajan, S., Kim, Y. and Schmidt-Wolf, I. G. H., Understanding and Targeting the Wnt/β-Catenin Signaling Pathway in Chronic Leukemia. Leukemia Research and Treatment 2011,2011: 1-7.
    110. Tkatchenko, A. V., Visconti, R. P., Shang, L., et al., Overexpression of Hoxc13 in differentiating keratinocytes results in downregulation of a novel hair keratin gene cluster and alopecia. Development 2001,128:1547-1558.
    111. Venter, J. C., Adams, M. D., Myers, E. W., et al., The sequence of the human genome. Science 2001,291: 1304-1351.
    112. Wang, K., Sun, D. and Zhang, Y, Sequencing of 15 new BoLA-DRB3 alleles. International Journal of Immunogenetics 2008,35:331-332.
    113. Weigel, K., Freeman, A., Kehrli Jr, M., et al., Association of Class I Bovine Lymphocyte Antigen Complex Alleles with Health and Production Traits in Dairy Cattlel. Journal of dairy science 1990,73: 2538-2546.
    114. Westerdahl, H., Wittzell, H. and von Schantz. T., Mhc diversity in two passerine birds:no evidence for a minimal essential Mhc. Immunogenetics 2000,52:92-100.
    115. Wiener G, H. J. L., Ruijun L., The Yak. Bangkok,ThaiIand:The Regional Office for Asia and the Pacific,Food and Agriculture Organization of the United Nations,2003.
    116. WU, T., HE, M., WANG, X., et al., Genetic Variation Analysis of KAP3.1 Gene in 6 Rabbit Populations. Acta Agriculturae Universitatis Jiangxiensis 2010:04.
    117. Yahagi, S., Shibuya, K., Obayashi, I., et al., Identification of two novel clusters of ultrahigh-sulfur keratin-associated protein genes on human chromosome 11. Biochemical and biophysical research communications 2004,318:655-664.
    118. Zanotti, M., Poli, G., Ponti, W.,et al., Association of BoLA class II haplotypes with subclinical progression of bovine leukaemia virus infection in Holstein-Friesian cattle. Animal genetics 1996,27: 337-341.
    119. Zimin, A. V, Delcher, A. L., Florea, L.,et al., A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol 2009,10:R42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700