用户名: 密码: 验证码:
地塞米松抑制NF-κB活化促进天花粉蛋白诱导的人肝癌HepG2细胞凋亡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分NF-κB/IκB信号通路在TCS抗肝癌HepG2细胞中的作用
     研究背景:天花粉蛋白(trichosanthin, TCS)是从植物栝楼天花粉块根中分离提取的有效成分,属于Ⅰ型核糖体失活蛋白,具有引产,免疫调节,抗肿瘤及抗病毒等多种生物学功效。近年来TCS的抗肿瘤活性备受关注,多种凋亡机制参与TCS诱导肿瘤细胞凋亡。与宫颈癌、绒毛膜上皮癌等对TCS高度敏感的肿瘤细胞株相比,肝癌HepG2细胞对TCS低度敏感,其机理尚未阐明。核转录因子kappa B (nuclear factor kappa B, NF-κB)广泛存在于真核生物中,参与细胞生长、分化、炎症及免疫反应、凋亡等多种基因表达调控。目前,NF-κB活化是否参与了TCS抗肿瘤过程,以及在该过程中的作用机制,尚未见报道。研究目的:本实验选取对TCS低度敏感的肝癌HepG2细胞作为细胞模型,研究TCS对HepG2细胞NF-κB活性的影响,以及NF-κB活化在TCS诱导HepG2细胞凋亡中的作用,揭示HepG2细胞对TCS低度敏感的机制,为TCS抗肿瘤实验研究,提供理论依据。
     研究方法:MTT法检测HepG2和MIHA细胞经不同浓度TCS处理48 h后的细胞存活率。提取经TCS处理细胞的胞浆和胞核蛋白,应用Western blot法检测胞浆中IκB-a蛋白、NF-κB p65亚单位、Cox-2蛋白水平,以及胞核中NF-κB p65亚单位水平。采用双荧光素酶报告基因检测系统检测NF-κB转录活性。应用Hoechst33258染色,检测TCS诱导的细胞凋亡,并统计细胞凋亡率。通过生物抑制剂(IκB-DM)和化学抑制剂(PDTC)抑制NF-κB活化,观察IKB-a蛋白、NF-κB p65亚单位的改变,以及细胞存活率和凋亡率改变。
     研究结果:(1)经200μg/ml TCS处理48 h后,HepG2和MIHA细胞生长抑制率分别约为48%和17%,表明TCS对HepG2具有选择性的抑制作用。(2)TCS能迅速诱导肝癌HepG2 IKB-a蛋白水平显著降低,并伴有胞浆中NF-κB蛋白水平降低及胞核NF-κB蛋白水平增高,即NF-κB核易位。TCS可以明显促进NF-κB转录活性,具有时间依赖性。并且TCS能诱导NF-κB下游Cox-2基因表达增加。(3)通过稳定转染,建立了稳定表达IκB-DM和空白对照(pEGFP-N1) HepG2细胞系。空白质粒对照组细胞胞浆中IκB-a和NF-κB p65蛋白变化趋势与未转染质粒的HepG2细胞相似;IκB-DM组IKB-a蛋白基础水平显著增加,而且TCS处理持续达3h也未见降解。同时IκB-DM组未见NF-κB p65蛋白胞浆胞核蛋白水平变化。经MTT检测,50μg/ml TCS处理48 h后,IκB-DM组的细胞存活率(43%)比空白质粒组(63%)低20%(P<0.05)。应用PDTC对HepG2细胞进行预处理抑制NF-κB活化,Hoechst 33258染色观察发现,(PDTC+TCS)组的细胞凋亡率较TCS组增加了16%。
     结论:(1)TCS对肝癌HepG2细胞具有选择性细胞毒性作用,使得TCS具有较好的抗肿瘤应用前景。(2)TCS能引起HepG2细胞胞浆中IKB-a蛋白水平降低,导致NF-κB被释放、发生核转移,并调节下游基因表达。(3)NF-κB活化可抑制TCS诱导的HepG2细胞凋亡,导致HepG2对TCS的低度敏感;而有效抑制NF-κB信号通路能增强HepG2细胞对TCS的敏感性,促进TCS抗肿瘤作用。
     第二部分地塞米松促进天花粉蛋白诱导的人肝癌HepG2细胞凋亡
     研究背景:地塞米松(dexamethasone)属于糖皮质类激素(glucocorticoids),具有抗炎及免疫调节等药理作用。地塞米松能通过抑制NF-κB活化诱导多种淋巴瘤细胞凋亡。近年来,学者们发现地塞米松能有效预防化疗药物引起的恶心、呕吐,促进了5-氟尿嘧啶、顺铂等化疗药物的抗肿瘤效果。然而地塞米松对TCS诱导人肝癌细胞凋亡的调节作用尚未见报道。
     研究目的:本实验研究地塞米松是否能促进TCS诱导的HepG2细胞凋亡,并进一步确认NF-κB活化在TCS诱导HepG2细胞凋亡中的作用,为TCS单独或药物联合抗肿瘤的临床实验研究,提供依据。
     研究方法:HepG2细胞经地塞米松(1μM,24 h)预处理后,与不同浓度TCS联用处理48 h后,MTT法检测细胞存活率;应用Western blot法检测胞浆中IκB-a蛋白水平;采用Hoechst 33258染色检测细胞凋亡,并统计细胞凋亡率。
     研究结果:(1)TCS单独处理时,IC50超过200μg/ml, TCS与地塞米松联用后,IC50约为50μg/ml,表明地塞米松促进了TCS诱导的HepG2细胞凋亡。(2)经地塞米松预处理后,IKB-a蛋白明显增加,且联用TCS后,IKB-a蛋白水平未见明显改变。
     结论:(1)TCS与地塞米松联用使HepG2细胞对TCS的敏感性增加,促进了TCS诱导的HepG2细胞凋亡发生。(2)地塞米松能显著提高IKB-a蛋白的基础水平,提示地塞米松通过促进IκB-a转录水平,使IKB-a蛋白表达增加,从而抑制了胞浆中NFκB的解离,最终抑制NFκB的活化,促进了TCS的抗肿瘤作用。
Part I The role of NF-κB/IκB signaling pathway in trichosanthin-induced apoptosis in the HepG2 hepatoma cell line
     Background:Trichosanthin (TCS) is a type I ribosome-inactivating protein, extracted from the Chinese medicinal herb trichosanthes kirilowii, and has various pharmacological activities, including abortifacient, immunoregulatory, anti-tumor, and anti-viral activity. In recent years, TCS has been the subject of much research because of its potential antitumor activities. Many reports have revealed that various mechanisms participated in TCS-induced apoptosis. TCS-induced cytotoxicity of HepG2 cells was not as significant as that of JAR and HeLa cells, the underlying mechanisms remain to be elucidated. Nuclear factor-kappa B (NF-κB) is an important transcription factor that regulates the expression of various genes involved in inflammation, cell proliferation and apoptosis. So far, it is need to elucidate that whether NF-κB activation participated in TCS-induced apoptosis and the potential role of NF-κB in the low sensitivity of hepatoma cells to TCS.
     Objective:TCS low-sensitive hepatoma cell line HepG2 was employed for investigation. The present study investigated whether NF-κB activation was induced in TCS-induced apoptosis of HepG2 cells and the potential role of NF-κB in the low sensitivity of hepatoma cells to TCS-induced apoptosis.
     Methods:After treatment with various concentrations of TCS for 48 h, cell viability assays were performed using the MTT method. HepG2 cells were treated with 50μg/ml TCS at different time intervals, and cytoplasmic and nuclear extracts were prepared. The levels of IκB-αand Cox-2 were determined in cytoplasmic extracts, and the level of NF-κB p65 was detected in both cytoplasmic extracts and nuclear extracts by Western blot assay. Luciferase reporter assay detected the NF-κB transcriptional activity induced by TCS. And apoptosis was evaluated with Hoechst 33258 staining. Additionally, we took advantage of dominant-negative IκB (IκB-DM) over-expression and chemical inhibitor PDTC to inhibit NF-κB activation, and analyzed the changes of cell viability and apoptosis induced by TCS.
     Results:(1) After treatment with 200μg/ml TCS for 48 h, the cell growth inhibition of HepG2 and MIHA cells were about 48% and 17%, respectively. TCS had relatively low toxicity to HepG2 cells, but could still discriminate HepG2 cells and MIHA cells. (2) TCS could rapidly decrease the level of IμB-αprotein, and also decrease the level of cytoplasmic NF-κB p65 subunit and lead to an elevation of the p65 subunit level in the nuclei, indicating nuclear translocation of NF-κB. and decrease of COX-2 expression in HepG2 cells. TCS could induce NF-κB transcriptional activity in a time-dependent manner. In addition, TCS could gradually increase the level of downstream factor, Cox-2 protein. (3) It is established stably-transfected HepG2 cell lines expressing either IκB-DM or a mock control transfected with plasmid pEGFP-N1. After treatment with TCS, the changes of the level of IκB-αprotein and NF-κB p65 subunit in the mock control cells were similar to that observed in untransfected HepG2 cells. In contrast, the basal level of IκB-αprotein increased significantly in IκB-DM-transfected cells. In addition, there was no obvious cytoplasmic down-regulation of IκB-αprotein and p65 subunit in cells induced by TCS-induced for 3 h, and there was also no obvious elevation of the p65 subunit in the nuclei. MTT assays demonstrated that the viability of the IKB-DM-transfected cell group treated with 50μg/ml TCS for 48 h was 43%, compared with 63% in the mock-transfected cell group (P<0.05). In addition, HepG2 cells were pretreated with inhibitor of NF-κB, PDTC, and stained with Hoechst 33258. There were 16% more apoptotic cells in the PDTC pretreatment group compared with the TCS alone group (P<0.05).
     Conclusion:(1) TCS can discriminate tumor cells (HepG2 cells) and normal cells (MIHA cells), which make TCS possessed a good application prospect of anti-tumor. (2) TCS can cause rapid down-regulation of IKB-a protein in the cytoplasm of HepG2 cells, liberation of NF-κB dimmers, entrance to the nucleus, and activation of NF-κB. (3) NF-κB activation played an anti-apoptotic role in TCS-treated cells. At least in part, by inhibiting the NF-κB signaling pathway can enhance trichosanthin-induced apoptosis in the HepG2, and thus strengthening the antitumor effects of TCS.
     PartⅡDexamethasone enhances trichosanthin-induced apoptosis in the HepG2 hepatoma cell line
     Background:Dexamethasone, a synthetic glucocorticoid, is widely used in clinical settings for its anti-inflammatory and immunomodulatory effects. Dexamethasone can treat cancers, such as lymphocytic leukemia, Hodgkin's disease and non-Hodgkin's myeloma, through effective inhibition of NF-κB activity and induction of apoptosis. In recent years, researchers have tested the effect of dexamethasone co-treated with antitumor drugs, such as 5-fluorouracil, cisplatin and so on, on solid cancers. The modulatory effects of dexamethasone on TCS mediated apoptosis in human hepatoma cells have not yet been reported.
     Objective:The present study investigated the modulatory effects of dexamethasone on TCS induced apoptotic death in the human HepG2 hepatoma cell line, which highlights the possibility of combined drug application of TCS and dexamethasone in the clinical treatment of hepatoma.
     Methods:After pretreated with or without 1μM dexamethasone for 24 h, and then treated with different concentrations of TCS, cell viability assays were performed using the MTT method. The levels of IκB-a in cytoplasmic extracts was detected by Western blot assay. And apoptosis was evaluated with Hoechst 33258 staining.
     Results:(1) Our results demonstrated that dexamethasone could enhance TCS induced apoptosis in the hepatoma cell line HepG2, decreasing IC50 values from in excess of 200μg/ml to 50 ug/ml. (2) Dexamethasone increased the level of IκB-αprotein and effectively inhibited TCS-induced down-regulation of IκB-α.
     Conclusion:(1) Dexamethasone was able to enhance the sensitivity of hepatoma HepG2 cells to TCS, and promote trichosanthin-induced apoptosis in the HepG2. (2) Dexamethasone might promote the transcription of the IκB-αgene to increase the expression of IκB-αprotein, and efficiently inhibited TCS induced down-regulation of IκB-αprotein, and enhance the antitumor effect of TCS itself.
引文
[1]Jin YC. Clinical study of trichosanthin. In:Chang HM, Yeung, H. W., Tso, W. W., and Koo, A., Eds., editor. In Advances in Chinese Medicinal Material Research. Singapore.:World Scientific Publ. Co.,1985. pp.319-26.
    [2]Lui G, Liu, F., Li, Y., Yu, S. A summary of 402 cases of termination of early pregnancy with crystalline preparation of trichosanthin. In Advances in Chinese Medicinal Materials Research 1985.
    [3]Shaw PC, Lee KM, Wong KB. Recent advances in trichosanthin, a ribosome-inactivating protein with multiple pharmacological properties. Toxicon 2005;45 (6):683-9.
    [4]Shaw PC, Chan WL, Yeung HW, Ng TB. Minireview:trichosanthin-a protein with multiple pharmacological properties. Life Sci 1994;55 (4):253-62.
    [5]Wang JH, Nie HL, Huang H, Tam SC, Zheng YT. Independency of anti-HIV-1 activity from ribosome-inactivating activity of trichosanthin. Biochem Biophys Res Commun 2003;302 (1):89-94.
    [6]Zhou X, Yang N, Lu L, Ding Q, Jiao Z, Zhou Y, Chou KY. Up-regulation of IL-10 expression in dendritic cells is involved in Trichosanthin-induced immunosuppression. Immunol Lett 2007;110 (1):74-81.
    [7]Zhang C, Gong Y, Ma H, An C, Chen D, Chen ZL. Reactive oxygen species involved in trichosanthin-induced apoptosis of human choriocarcinoma cells. Biochem J 2001;355 (Pt 3):653-61.
    [8]Li J, Xia X, Ke Y, Nie H, Smith MA, Zhu X. Trichosanthin induced apoptosis in HL-60 cells via mitochondrial and endoplasmic reticulum stress signaling pathways. Biochim Biophys Acta 2007; 1770 (8):1169-80.
    [9]Wang P, Li JC. Trichosanthin-induced specific changes of cytoskeleton configuration were associated with the decreased expression level of actin and tubulin genes in apoptotic Hela cells. Life Sci 2007;81 (14):1130-40.
    [10]Kong M, Ke YB, Zhou MY, Ke XY, Lu B, Nie HL. [Study on Trichosanthin induced apoptosis of leukemia K562 cells]. Shi Yan Sheng Wu Xue Bao 1998;31 (3):233-43.
    [11]Chan WY, Huang H, Tam SC. Receptor-mediated endocytosis of trichosanthin in choriocarcinoma cells. Toxicology 2003; 186 (3):191-203.
    [12]Lau IF, Saksena SK, Chang MC. Further studies on the trichosanthin-induced termination of pregnancy. Contraception 1980;21 (1):77-86.
    [13]Stirpe F, Battelli MG. Ribosome-inactivating proteins:progress and problems. Cell Mol Life Sci 2006;63 (16):1850-66.
    [14]Stirpe F, Barbieri L, Battelli MG, Soria M, Lappi DA. Ribosome-inactivating proteins from plants:present status and future prospects. Biotechnology (N Y) 1992;10(4):405-12.
    [15]Yao Z, Mishra L. Cancer stem cells and hepatocellular carcinoma. Cancer Biol Ther 2009;8(18):1691-8.
    [16]Tan S, Chen JS, Sun LJ, Yao HR. Selective enrichment of hepatocellular cancer stem cells by chemotherapy. J Int Med Res 2009;37 (4):1046-56.
    [17]Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 1986;47 (6):921-8.
    [18]Brown K, Park S, Kanno T, Franzoso G, Siebenlist U. Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc Natl Acad Sci U S A 1993;90 (6):2532-6.
    [19]Chen LF, Greene WC. Shaping the nuclear action of NF-kappaB. Nat Rev Mol Cell Biol 2004;5 (5):392-401.
    [20]Ghosh S, Karin M. Missing pieces in the NF-kappaB puzzle. Cell 2002; 109 Suppl:S81-96.
    [21]Robe PA, Bentires-Alj M, Bonif M, Rogister B, Deprez M, Haddada H, Khac MT, Jolois O, Erkmen K, Merville MP, Black PM, Bours V. In vitro and in vivo activity of the nuclear factor-kappaB inhibitor sulfasalazine in human glioblastomas. Clin Cancer Res 2004;10 (16):5595-603.
    [22]Loercher A, Lee TL, Ricker JL, Howard A, Geoghegen J, Chen Z, Sunwoo JB, Sitcheran R, Chuang EY, Mitchell JB, Baldwin AS, Jr., Van Waes C. Nuclear factor-kappaB is an important modulator of the altered gene expression profile and malignant phenotype in squamous cell carcinoma. Cancer Res 2004;64 (18):6511-23.
    [23]Shetty S, Gladden JB, Henson ES, Hu X, Villanueva J, Haney N, Gibson SB. Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) up-regulates death receptor 5 (DR5) mediated by NFkappaB activation in epithelial derived cell lines. Apoptosis 2002;7 (5):413-20.
    [24]Huang Y, Johnson KR, Norris JS, Fan W. Nuclear factor-kappaB/IkappaB signaling pathway may contribute to the mediation of paclitaxel-induced apoptosis in solid tumor cells. Cancer Res 2000;60 (16):4426-32.
    [25]Ryan KM, Ernst MK, Rice NR, Vousden KH. Role of NF-kappaB in p53-mediated programmed cell death. Nature 2000;404 (6780):892-7.
    [26]Mendoza J, Zamora R, Gallardo JC, Ceballos G, Aldana A, Espinosa M, Maldonado V, Melendez-Zajgla J. NF-kappaB does not influence the induction of apoptosis by Ukrain. Cancer Biol Ther 2006;5 (7):788-93.
    [27]Shishodia S, Aggarwal BB. Nuclear factor-kappaB activation:a question of life or death. J Biochem Mol Biol 2002;35 (1):28-40.
    [28]Radhakrishnan SK, Kamalakaran S. Pro-apoptotic role of NF-kappaB: implications for cancer therapy. Biochim Biophys Acta 2006;1766 (1):53-62.
    [29]Gilmore TD. The Rel/NF-kappaB signal transduction pathway:introduction. Oncogene 1999; 18 (49):6842-4.
    [30]Zhang S, Lin ZN, Yang CF, Shi X, Ong CN, Shen HM. Suppressed NF-kappaB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-alpha-induced apoptosis in human cancer cells. Carcinogenesis 2004;25 (11):2191-9.
    [31]Karin M. How NF-kappaB is activated:the role of the IkappaB kinase (IKK) complex. Oncogene 1999;18 (49):6867-74.
    [32]Kim SB, Kim JS, Lee JH, Yoon WJ, Lee DS, Ko MS, Kwon BS, Choi DH, Cho HR, Lee BJ, Chung DK, Lee HW, Park JW. NF-kappaB activation is required for cisplatin-induced apoptosis in head and neck squamous carcinoma cells. FEBS Lett 2006;580 (1):311-8.
    [33]Liu SF, Ye X, Malik AB. Pyrrolidine dithiocarbamate prevents I-kappaB degradation and reduces microvascular injury induced by lipopolysaccharide in multiple organs. Mol Pharmacol 1999;55 (4):658-67.
    [34]Xia XF, Sui SF. The membrane insertion of trichosanthin is membrane-surface-pH dependent. Biochem J 2000;349 Pt 3:835-41.
    [35]Chan WL, Shaw PC, Tam SC, Jacobsen C, Gliemann J, Nielsen MS. Trichosanthin interacts with and enters cells via LDL receptor family members. Biochem Biophys Res Commun 2000;270 (2):453-7.
    [36]Jiao Y, Liu W. Low-density lipoprotein receptor-related protein 1 is an essential receptor for trichosanthin in 2 choriocarcinoma cell lines. Biochem Biophys Res Commun;391 (4):1579-84.
    [37]Wang Q, Jin S. Trichosanthin. Beijing:Science Press,2000.
    [38]Ru QH, Luo GA, Liao JJ, Liu Y. Capillary electrophoretic determination of apoptosis of HeLa cells induced by trichosanthin. J Chromatogr A 2000;894 (1-2):165-70.
    [39]He JF, Li JC. The growth inhibition and the apoptosis of HeLa cells induced with TCS. Acta anatomica sinica 2006;37 (3):301-14.
    [40]Zhang YQ, Huang LM, Wu JF. Morphologic changes of Caski cells induced by trichosanthin. Chinese journal of anatomy 2008;31 (5):720-1.
    [41]Bi L, Li H, Zhang Y. [Effect of trichosanthin of cell cycle and apoptosis of murine melanoma cells]. Zhongguo Zhong Xi Yi Jie He Za Zhi 1998; 18 (1):35-7.
    [42]Ding NB, Chen DJ, Li XR, Hu G. Trichosanthin inhibits growth of breast cancer cells in vitro and in vivo. Journal of Practical Oncology 2008;23 (4):310-3.
    [43]Wang P, Yan H, Li JC. CREB-mediated Bcl-2 expression in trichosanthin-induced Hela cell apoptosis. Biochem Biophys Res Commun 2007;363(1):101-5.
    [44]Li J, Xia X, Nie H, Smith MA, Zhu X. PKC inhibition is involved in trichosanthin-induced apoptosis in human chronic myeloid leukemia cell line K562. Biochim Biophys Acta 2007;1770 (1):63-70.
    [45]Beg AA, Baldwin AS, Jr. The I kappa B proteins:multifunctional regulators of Rel/NF-kappa B transcription factors. Genes Dev 1993;7 (11):2064-70.
    [46]Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999;18 (49):6853-66.
    [47]Yamamoto K, Arakawa T, Ueda N, Yamamoto S. Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3-E1 cells. J Biol Chem 1995;270 (52):31315-20.
    [48]Bui NT, Livolsi A, Peyron JF, Prehn JH. Activation of nuclear factor kappaB and Bcl-x survival gene expression by nerve growth factor requires tyrosine phosphorylation of IkappaBalpha. J Cell Biol 2001;152 (4):753-64.
    [49]Haskill S, Beg AA, Tompkins SM, Morris JS, Yurochko AD, Sampson-Johannes A, Mondal K, Ralph P, Baldwin AS, Jr. Characterization of an immediate-early gene induced in adherent monocytes that encodes I kappa B-like activity. Cell 1991;65(7):1281-9.
    [50]Lombardi L, Ciana P, Cappellini C, Trecca D, Guerrini L, Migliazza A, Maiolo AT, Neri A. Structural and functional characterization of the promoter regions of the NFKB2 gene. Nucleic Acids Res 1995;23 (12):2328-36.
    [51]Ten RM, Paya CV, Israel N, Le Bail O, Mattei MG, Virelizier JL, Kourilsky P, Israel A. The characterization of the promoter of the gene encoding the p50 subunit of NF-kappa B indicates that it participates in its own regulation. Embo J 1992; 11 (1):195-203.
    [52]Massaad CA, Portier BP, Taglialatela G. Inhibition of transcription factor activity by nuclear compartment-associated Bcl-2. J Biol Chem 2004;279 (52):54470-8.
    [53]Sibold S, Roh V, Keogh A, Studer P, Tiffon C, Angst E, Vorburger SA, Weimann R, Candinas D, Stroka D. Hypoxia increases cytoplasmic expression of NDRG1, but is insufficient for its membrane localization in human hepatocellular carcinoma. FEBS Lett 2007;581 (5):989-94.
    [54]Wang CY, Mayo MW, Baldwin AS, Jr. TNF-and cancer therapy-induced apoptosis:potentiation by inhibition of NF-kappaB. Science 1996;274 (5288):784-7.
    [55]Olivier S, Robe P, Bours V. Can NF-kappaB be a target for novel and efficient anti-cancer agents? Biochem Pharmacol 2006;72 (9):1054-68.
    [56]Sharma V, Hupp CD, Tepe JJ. Enhancement of chemotherapeutic efficacy by small molecule inhibition of NF-kappaB and checkpoint kinases. Curr Med Chem 2007;14(10):1061-74.
    [57]Campbell KJ, Rocha S, Perkins ND. Active repression of antiapoptotic gene expression by RelA(p65) NF-kappa B. Mol Cell 2004;13 (6):853-65.
    [58]Wang Y, Cui H, Schroering A, Ding JL, Lane WS, McGill G, Fisher DE, Ding HF. NF-kappa B2 p100 is a pro-apoptotic protein with anti-oncogenic function. Nat Cell Biol 2002;4 (11):888-93.
    [59]Zhang K, Xu J, Huang X, Wu L, Wen C, Hu Y, Su Y, Chen Y, Zhang Z. Trichosanthin down-regulated p210Bcr-Abl and enhanced imatinib-induced growth arrest in chronic myelogenous leukemia cell line K562. Cancer Chemother Pharmacol 2007;60 (4):581-7.
    [60]Venkatraman M, Anto RJ, Nair A, Varghese M, Karunagaran D. Biological and chemical inhibitors of NF-kappaB sensitize SiHa cells to cisplatin-induced apoptosis. Mol Carcinog 2005;44 (1):51-9.
    [61]Kim DS, Woo ER, Chae SW, Ha KC, Lee GH, Hong ST, Kwon DY, Kim MS, Jung YK, Kim HM, Kim HK, Kim HR, Chae HJ. Plantainoside D protects adriamycin-induced apoptosis in H9c2 cardiac muscle cells via the inhibition of ROS generation and NF-kappaB activation. Life Sci 2007;80 (4):314-23.
    [62]Cusack JC, Jr., Liu R, Baldwin AS, Jr. Inducible chemoresistance to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]-carbonyloxycamptothe cin (CPT-11) in colorectal cancer cells and a xenograft model is overcome by inhibition of nuclear factor-kappaB activation. Cancer Res 2000;60 (9):2323-30.
    [63]Sarkar A, Sreenivasan Y, Ramesh GT, Manna SK. beta-D-Glucoside suppresses tumor necrosis factor-induced activation of nuclear transcription factor kappaB but potentiates apoptosis. J Biol Chem 2004;279 (32):33768-81.
    [64]Kim YS, Schwabe RF, Qian T, Lemasters JJ, Brenner DA. TRAIL-mediated apoptosis requires NF-kappaB inhibition and the mitochondrial permeability transition in human hepatoma cells. Hepatology 2002;36 (6):1498-508.
    [65]Paris R, Morales A, Coll O, Sanchez-Reyes A, Garcia-Ruiz C, Fernandez-Checa JC. Ganglioside GD3 sensitizes human hepatoma cells to cancer therapy. J Biol Chem 2002;277 (51):49870-6.
    [66]Leung K, Munck A. Peripheral actions of glucocorticoids. Annu Rev Physiol 1975;37:245-72.
    [67]Cosmi EV, Di Renzo GC. Prevention and treatment of fetal lung immaturity. Fetal Ther 1989;4 Suppl 1:52-62.
    [68]Warr D. Standard treatment of chemotherapy-induced emesis. Support Care Cancer 1997;5 (1):12-6.
    [69]Wang CY, Cusack JC, Jr., Liu R, Baldwin AS, Jr. Control of inducible chemoresistance:enhanced anti-tumor therapy through increased apoptosis by inhibition of NF-kappaB. Nat Med 1999;5 (4):412-7.
    [70]Bentires-Alj M, Barbu V, Fillet M, Chariot A, Relic B, Jacobs N, Gielen J, Merville MP, Bours V. NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene 2003;22 (1):90-7.
    [71]Frelin C, Imbert V, Griessinger E, Peyron AC, Rochet N, Philip P, Dageville C, Sirvent A, Hummelsberger M, Berard E, Dreano M, Sirvent N, Peyron JF. Targeting NF-kappaB activation via pharmacologic inhibition of IKK2-induced apoptosis of human acute myeloid leukemia cells. Blood 2005;105 (2):804-11.
    [72]De Bosscher K, Vanden Berghe W, Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 2003;24 (4):488-522.
    [73]Kahn JO, Gorelick KJ, Gatti G, Arri CJ, Lifson JD, Gambertoglio JG, Bostrom A, Williams R. Safety, activity, and pharmacokinetics of GLQ223 in patients with AIDS and AIDS-related complex. Antimicrob Agents Chemother 1994;38 (2):260-7.
    [74]Chae HJ, Chae SW, Kang JS, Bang BG, Cho SB, Park RK, So HS, Kim YK, Kim HM, Kim HR. Dexamethasone suppresses tumor necrosis factor-alpha-induced apoptosis in osteoblasts:possible role for ceramide. Endocrinology 2000;141 (8):2904-13.
    [75]Chan AT, Giovannucci EL, Schernhammer ES, Colditz GA, Hunter DJ, Willett WC, Fuchs CS. A prospective study of aspirin use and the risk for colorectal adenoma. Ann Intern Med 2004;140 (3):157-66.
    [76]Sandler RS, Halabi S, Baron JA, Budinger S, Paskett E, Keresztes R, Petrelli N, Pipas JM, Karp DD, Loprinzi CL, Steinbach G, Schilsky R. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med 2003;348 (10):883-90.
    [77]Xu J, Gao DF, Yan GL, Fan JM. Induced apoptotic action of recombinant trichosanthin in human stomach adenocarcinoma MCG803 cells. Mol Biol Rep 2009;36 (6):1559-64.
    [78]Takahashi N, Yoshida Y, Sugiura T, Matsuno K, Fujino A, Yamashita U. Cucurbitacin D isolated from Trichosanthes kirilowii induces apoptosis in human hepatocellular carcinoma cells in vitro. Int Immunopharmacol 2009;9 (4):508-13.
    [79]Sun J, Wu ZQ, Li Y, Xue Q, Chen J, Chen J, Tang ZQ. Synergistic tumor inhibitory effect of trichosanthin and recombinant interferon a-lb on human liver cancer. Clinical Medical Journal of China 2003;10 (3):278-80.
    [80]Chen QQ, Huang JY, Chen LZ. The clinical application of dexamethasone in advanced liver cancer. Chinese Journal of Current Traditional and Western Medicine 2004;2 (3):265-6.
    [81]Evers BM, Thompson EB, Townsend CM, Jr., Lawrence JL, Johnson B, Srinivasan G, Thompson JC. Cortivazol increases glucocorticoid receptor expression and inhibits growth of hamster pancreatic cancer (H2T) in vivo. Pancreas 1993;8 (1):7-14.
    [82]Hofmann J, Kaiser U, Maasberg M, Havemann K. Glucocorticoid receptors and growth inhibitory effects of dexamethasone in human lung cancer cell lines. Eur J Cancer 1995;31A(12):2053-8.
    [83]Runnebaum IB, Bruning A. Glucocorticoids inhibit cell death in ovarian cancer and up-regulate caspase inhibitor cIAP2. Clin Cancer Res 2005;11 (17):6325-32.
    [84]Schwartzman RA, Cidlowski JA. Glucocorticoid-induced apoptosis of lymphoid cells. Int Arch Allergy Immunol 1994; 105 (4):347-54.
    [85]Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C. Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia 2000; 14 (3):399-402.
    [86]Evans-Storms RB, Cidlowski JA. Delineation of an antiapoptotic action of glucocorticoids in hepatoma cells:the role of nuclear factor-kappaB. Endocrinology 2000;141 (5):1854-62.
    [87]Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M. Immunosuppression by glucocorticoids:inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 1995;270 (5234):286-90.
    [88]Li M, Li X, Li JC. Possible Mechanisms of Trichosanthin-Induced Apoptosis of Tumor Cells. Anat Rec (Hoboken).
    [89]Boise LH, Gonzalez-Garcia M, Postema CE, Ding L, Lindsten T, Turka LA, Mao X, Nunez G, Thompson CB. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell 1993;74 (4):597-608.
    [1]Jin YC. Clinical study of trichosanthin. In:Chang HM, Yeung, H. W., Tso, W. W., and Koo, A., Eds., editor. In Advances in Chinese Medicinal Material Research. Singapore.:World Scientific Publ. Co.,1985. pp.319-26.
    [2]Collins EJ, Robertus JD, LoPresti M, Stone KL, Williams KR, Wu P, Hwang K, Piatak M. Primary amino acid sequence of alpha-trichosanthin and molecular models for abrin A-chain and alpha-trichosanthin. J Biol Chem 1990;265 (15):8665-9.
    [3]Pan KZ, Fu ZJ, Lin YJ, Zhou KJ, Dodson E, Chen ZW, Ye XM. Crystallographic refinement of trichosanthin at 2.6A resolution. Sci China B 1992;35 (10):1203-13.
    [4]Zhang C, Gong Y, Ma H, An C, Chen D, Chen ZL. Reactive oxygen species involved in trichosanthin-induced apoptosis of human choriocarcinoma cells. Biochem J 2001;355 (Pt 3):653-61.
    [5]Li J, Xia X, Ke Y, Nie H, Smith MA, Zhu X. Trichosanthin induced apoptosis in HL-60 cells via mitochondrial and endoplasmic reticulum stress signaling pathways. Biochim Biophys Acta 2007; 1770 (8):1169-80.
    [6]Wang P, Li JC. Trichosanthin-induced specific changes of cytoskeleton configuration were associated with the decreased expression level of actin and tubulin genes in apoptotic Hela cells. Life Sci 2007;81 (14):1130-40.
    [7]Hasegawa N, Kimura Y, Oda T, Komatsu N, Muramatsu T. Isolated ricin B-chain-mediated apoptosis in U937 cells. Biosci Biotechnol Biochem 2000;64 (7):1422-9.
    [8]Higuchi S, Tamura T, Oda T. Cross-talk between the pathways leading to the induction of apoptosis and the secretion of tumor necrosis factor-alpha in ricin-treated RAW 264.7 cells J Biochem 2004; 134 (6):927-33.
    [9]Smith WE, Kane AV, Campbell ST, Acheson DW, Cochran BH, Thorpe CM. Shiga toxin 1 triggers a ribotoxic stress response leading to p38 and JNK activation and induction of apoptosis in intestinal epithelial cells. Infect Immun 2003;71 (3):1497-504.
    [10]Langer M, Mockel B, Eck J, Zinke H, Lentzen H. Site-specific mutagenesis of mistletoe lectin:the role of RIP activity in apoptosis. Biochem Biophys Res Commun 1999;264 (3):944-8.
    [11]Shaw PC, Lee KM, Wong KB. Recent advances in trichosanthin, a ribosome-inactivating protein with multiple pharmacological properties. Toxicon 2005;45 (6):683-9.
    [12]Kong M, Ke YB, Zhou MY, Ke XY, Lu B, Nie HL. [Study on Trichosanthin induced apoptosis of leukemia K562 cells]. Shi Yan Sheng Wu Xue Bao 1998;31 (3):233-43.
    [13]Wang Q, Jin SW. Trichosanthin:Science Press 2000.
    [14]Ru QH, Luo GA, Liao JJ, Liu Y. Capillary electrophoretic determination of apoptosis of HeLa cells induced by trichosanthin. J Chromatogr A 2000;894 (1-2):165-70.
    [15]He JF, Li JC. The growth inhibition and the apoptosis of HeLa cells induced with TCS. Acta anatomica sinica 2006;37 (3):301-14.
    [16]Zhang YQ, Huang LM, Wu JF. Morphologic changes of Caski cells induced by trichosanthin. Chinese journal of anatomy 2008;31 (5):720-1.
    [17]Bi L, Li H, Zhang Y. [Effect of trichosanthin of cell cycle and apoptosis of murine melanoma cells]. Zhongguo Zhong Xi Yi Jie He Za Zhi 1998;18 (1):35-7.
    [18]Ding NB, Chen DJ, Li XR, Hu G. Trichosanthin inhibits growth of breast cancer cells in vitro and in vivo. Journal of Practical Oncology 2008;23 (4):310-3.
    [19]Lu HB, Teng R, Chen P. Induction of Apoptosis in HL-60 Cells by Tr ichosanthin in Vitro. Med J of Communications 2008;22 (4):359-61.
    [20]Li J, Xia X, Nie H, Smith MA, Zhu X. PKC inhibition is involved in trichosanthin-induced apoptosis in human chronic myeloid leukemia cell line K562. Biochim Biophys Acta 2007;1770(1):63-70.
    [21]Tu SP, Jiang SH, Qiao MM, Wang LF, Zhang S, Yuan YZ, Wu YL, Wu YX. Induction of apoptosis by trichosanthin in gastric cancer cell MKN-45. Cancer 2000;19(12):1105-8.
    [22]Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 2000;279 (6):L1005-28.
    [23]Nakazato T, Ito K, Ikeda Y, Kizaki M. Green tea component, catechin, induces apoptosis of human malignant B cells via production of reactive oxygen species. Clin Cancer Res 2005; 11 (16):6040-9.
    [24]Nie F, Zhang X, Qi Q, Yang L, Yang Y, Liu W, Lu N, Wu Z, You Q, Guo Q. Reactive oxygen species accumulation contributes to gambogic acid-induced apoptosis in human hepatoma SMMC-7721 cells. Toxicology 2009;260 (1-3):60-7.
    [25]Shih SF, Wu YH, Hung CH, Yang HY, Lin JY Abrin triggers cell death by inactivating a thiol-specific antioxidant protein. J Biol Chem 2001;276 (24):21870-7.
    [26]Kim WH, Park WB, Gao B, Jung MH. Critical role of reactive oxygen species and mitochondrial membrane potential in Korean mistletoe lectin-induced apoptosis in human hepatocarcinoma cells. Mol Pharmacol 2004;66 (6):1383-96.
    [27]Zhang CY, An CC, Wang RY, Gong YX, Ma H, Chen DY, Chen ZL. Capillary electrophoresis and circular dichroism study of trichosanthin and its mutants. Talanta 2002;57(3):467-73.
    [28]Meier B. Superoxide generation of phagocytes and nonphagocytic cells. Protoplasma 2001;217(1-3):117-24.
    [29]Chan WL, Shaw PC, Tam SC, Jacobsen C, Gliemann J, Nielsen MS. Trichosanthin interacts with and enters cells via LDL receptor family members. Biochem Biophys Res Commun 2000;270 (2):453-7.
    [30]Tan S, Sagara Y, Liu Y, Maher P, Schubert D. The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 1998; 141 (6):1423-32.
    [31]Wu ZH, Nie HL, Lu B, Wang Q, Ke YB. [Activation of G protein on the membrane of TCS-sensitive cells]. Shi Yan Sheng Wu Xue Bao 1999;32 (2):151-6.
    [32]Wang P, Yan H, Li JC. CREB-mediated Bcl-2 expression in trichosanthin-induced Hela cell apoptosis. Biochem Biophys Res Commun 2007;363(1):101-5.
    [33]Seino S, Shibasaki T. PKA-dependent and PKA-independent pathways for cAMP-regulated exocytosis. Physiol Rev 2005;85 (4):1303-42.
    [34]Busca R, Abbe P, Mantoux F, Aberdam E, Peyssonnaux C, Eychene A, Ortonne JP, Ballotti R. Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. Embo J 2000; 19 (12):2900-10.
    [35]Hecquet C, Lefevre G, Valtink M, Engelmann K, Mascarelli F. cAMP inhibits the proliferation of retinal pigmented epithelial cells through the inhibition of ERK1/2 in a PKA-independent manner. Oncogene 2002;21 (39):6101-12.
    [36]Zhang K, Xu J, Huang X, Wu L, Wen C, Hu Y, Su Y, Chen Y, Zhang Z. Trichosanthin down-regulated p210Bcr-Abl and enhanced imatinib-induced growth arrest in chronic myelogenous leukemia cell line K562. Cancer Chemother Pharmacol 2007;60 (4):581-7.
    [37]Wang P, Chen LL, Yan H, Li JC. Trichosanthin suppresses HeLa cell proliferation through inhibition of the PKC/MAPK signaling pathway. Cell Biol Toxicol 2008.
    [38]Pae HO, Seo WG, Shin M, Lee HS, Lee HS, Kim SB, Chung HT. Protein kinase A or C modulates the apoptosis induced by lectin II isolated from Korean mistletoe, Viscum album var. Coloratum, in the human leukemic HL-60 cells. Immunopharmacol Immunotoxicol 2000;22 (2):279-95.
    [39]Teitelbaum I. Protein kinase C inhibits arginine vasopressin-stimulated cAMP accumulation via a Gi-dependent mechanism. Am J Physiol 1993;264 (2 Pt 2):F216-20.
    [40]Teitelbaum I, Berl T. Increased cytosolic Ca2+inhibits AVP-stimulated adenylyl cyclase activity in rat IMCT cells by activation of PKC. Am J Physiol 1994;266 (3 Pt 2):F486-90.
    [41]Momoi T. Caspases involved in ER stress-mediated cell death. J Chem Neuroanat 2004;28 (1-2):101-5.
    [42]Lee SY, Lee MS, Cherla RP, Tesh VL. Shiga toxin 1 induces apoptosis through the endoplasmic reticulum stress response in human monocytic cells. Cell Microbiol 2008; 10 (3):770-80.
    [43]Burbage C, Tagge EP, Harris B, Hall P, Fu T, Willingham MC, Frankel AE. Ricin fusion toxin targeted to the human granulocyte-macrophage colony stimulating factor receptor is selectively toxic to acute myeloid leukemia cells. Leuk Res 1997;21 (7):681-90.
    [44]Chiu LC, Ooi VE, Sun SS. Induction of apoptosis by a ribosome-inactivating protein from Agrostemma githago is associated with down-regulation of anti-apoptotic bcl-2 protein expression. Int J Oncol 2001;19 (1):137-41.
    [45]Huang H, Chan H, Wang YY, Ouyang DY, Zheng YT, Tam SC. Trichosanthin suppresses the elevation of p38 MAPK, and Bcl-2 induced by HSV-1 infection in Vero cells. Life Sci 2006;79 (13):1287-92.
    [46]Huang YL, Huang LM, Hu HJ, Li JH, Zhang ZX. Influence of trichosanthin on apoptosis of HeLa cell and expression of bax and bcl-2 gene. Zhong Liu Fang Zhi Yan Jiu 2007;34 (7):483-5.
    [47]Wilson BE, Mochon E, Boxer LM. Induction of bcl-2 expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol Cell Biol 1996; 16 (10):5546-56.
    [48]Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE, Reusch JE. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 2000;275 (15):10761-6.
    [49]Li XY, Wang GQ, Ge HL, Wang Y, Li NL, Zhu Q, Chen YL, Chou GY [Isolation of a gene related to trichosanthin-induced apoptosis (GRETA)]. Shi Yan Sheng Wu Xue Bao 2000;33 (1):81-4.
    [50]Xu J, Gao DF, Yan GL, Fan JM. Induced apoptotic action of recombinant trichosanthin in human stomach adenocarcinoma MCG803 cells. Mol Biol Rep 2009;36 (6):1559-64.
    [51]Mashima T, Naito M, Tsuruo T. Caspase-mediated cleavage of cytoskeletal actin plays a positive role in the process of morphological apoptosis. Oncogene 1999;18(15):2423-30.
    [52]Lavastre V, Pelletier M, Saller R, Hostanska K, Girard D. Mechanisms involved in spontaneous and Viscum album agglutinin-Ⅰ-induced human neutrophil apoptosis:Viscum album agglutinin-I accelerates the loss of antiapoptotic Mcl-1 expression and the degradation of cytoskeletal paxillin and vimentin proteins via caspases. J Immunol 2002; 168 (3):1419-27.
    [53]Lavastre V, Binet F, Moisan E, Chiasson S, Girard D. Viscum album agglutinin-I induces degradation of cytoskeletal proteins in leukaemia PLB-985 cells differentiated toward neutrophils:cleavage of non-muscle myosin heavy chain-IIA by caspases. Br J Haematol 2007;138 (4):545-54.
    [54]Safavi-Abbasi S, Wolff JR, Missler M. Rapid morphological changes in astrocytes are accompanied by redistribution but not by quantitative changes of cytoskeletal proteins. Glia 2001;36 (1):102-15.
    [55]Narayanan S, Surolia A, Karande AA. Ribosome-inactivating protein and apoptosis:abrin causes cell death via mitochondrial pathway in Jurkat cells. Biochem J 2004;377 (Pt 1):233-40.
    [56]Iordanov MS, Pribnow D, Magun JL, Dinh TH, Pearson JA, Chen SL, Magun BE. Ribotoxic stress response:activation of the stress-activated protein kinase JNK1 by inhibitors of the peptidyl transferase reaction and by sequence-specific RNA damage to the alpha-sarcin/ricin loop in the 28S rRNA. Mol Cell Biol 1997;17(6):3373-81.
    [57]Laskin JD, Heck DE, Laskin DL. The ribotoxic stress response as a potential mechanism for MAP kinase activation in xenobiotic toxicity. Toxicol Sci 2002;69(2):289-91.
    [58]Narayanan S, Surendranath K, Bora N, Surolia A, Karande AA. Ribosome inactivating proteins and apoptosis. FEBS Lett 2005;579 (6):1324-31.
    [59]Stirpe F, Battelli MG. Ribosome-inactivating proteins:progress and problems. Cell Mol Life Sci 2006;63 (16):1850-66.
    [60]Wang Q, Jin SW. Trichosanthin:Science Press 2000.
    [61]Chan WL, Zheng YT, Huang H, Tam SC. Relationship between trichosanthin cytotoxicity and its intracellular concentration. Toxicology 2002; 177 (2-3):245-51.
    [62]Chan WY, Huang H, Tam SC. Receptor-mediated endocytosis of trichosanthin in choriocarcinoma cells. Toxicology 2003; 186 (3):191-203.
    [63]Wang QC, Ying WB, Xie H, Zhang ZC, Yang ZH, Ling LQ. Trichosanthin-monoclonal antibody conjugate specifically cytotoxic to human hepatoma cells in vitro. Cancer Res 1991;51 (13):3353-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700