用户名: 密码: 验证码:
载阿霉素GoldMag金磁复合微粒用于肝癌靶向治疗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恶性肿瘤是严重威胁人类身体健康的重大疾病。化疗是目前常用的治疗方法。传统的给药途径使得药物在全身均匀分布,缺乏对肿瘤特异性作用。因此,在杀死肿瘤细胞的同时,也对正常组织细胞产生严重的毒副作用,从而使化疗药物的临床应用受到限制。磁导靶向给药是通过静脉将吸附或包裹于磁性载体的抗癌药物注射体内,在外磁场的诱导作用下,靶向定位于肿瘤区域;持续缓慢释放抗癌药物,从而使药物在肿瘤部位保持较高的浓度而降低其它组织和器官的药物浓度,最终达到改变药物在体内的组织分布,提高治疗指数,降低药物的毒副作用的目的。本课题研究了GoldMag金磁复合微粒体外载药、释药规律和机理及其载药后联合磁场对细胞的毒性作用;用巯基化的聚乙二醇(PEG-SH)对GoldMag金磁复合微粒进行了表面功能化修饰,并对修饰后的金磁复合微粒进行了表征;同时探讨了修饰后的金磁复合微粒(PGMNs)体外载载药释药规律和机理及其对细胞的毒性作用;以正常大鼠为材料,通过检测组织和血浆中阿霉素及铁元素的含量,探讨了载阿霉素PEG修饰的金磁复合微粒(DOX-PGMNs)在外磁场作用下在动物体内的分布,并评价它在动物体内的靶向性。最后又研究了DOX-PGMNs在外磁场作用下对H22肿瘤模型小鼠的治疗效果。结果表明:
     1.在最优的载药条件下,市售GoldMag金磁复合微粒对阿霉素的最大载药率为10.2%。MTT法分析GoldMag金磁复合微粒对HepG2细胞毒性的实验结果显示:在金磁复合微粒浓度为2.0 mg/ml的条件下,细胞的存活率大于92%。载阿霉素金磁复合微粒的半数致死剂量(IC50=0.731μg/ml)大于阿霉素组(IC50=0.522μg/ml)(P<0.05)。载阿霉素金磁复合微粒联合磁场作用对细胞的抑制作用(IC50=0.42μg/ml)比单纯阿霉素(IC50=0.522μg/ml)显著增强。
     2.由于酸处理的纳米金磁微粒在溶液中不稳定,我们对其表面进行了聚乙二醇(PEG)修饰。修饰后的金磁复合微粒(PGMNs)粒径约为50 nm;分散性有了很大的改善,在PBS中能稳定存在,具有良好的分散性;修饰后的GoldMag金磁复合微粒的饱和磁化强度为34 emu/g。在最佳的载药条件下,PGMNs对阿霉素的最大载药率为10.8%。细胞毒性结果显示,在2.0 mg/ml的浓度条件下,细胞的存活率大于89%。
     3.PGMNs在动物体内靶向性实验结果表明:给药0.5,1,2和4小时后,载阿霉素PEG修饰的金磁复合微粒联合磁场组(DOX-PGMNs-M)的实验动物肝脏中药物的浓度(60.7±8.14,53.6±4.89,44.8±6.41和38.4±2.58 ng/g)显著高于无磁场组(40.8±9.96,31.9±7.01,28±6.11和20.7±5.78 ng/g)(P<0.05)。组织学分析显示在肝脏的靶区有大量的粒子聚集。
     4. DOX-PGMNs联合磁场治疗H22肿瘤模型小鼠的效果显示:DOX-PGMNs-M组,DOX-PGMNs组,DOX组和对照组的动物存活时间分别为72.7±9.95,66.1±13.5,31.3±3.31和25.8±10.1天。治疗后33天,它们的相对肿瘤体积分别为5.46,9.21,14.8和24.3。与对照组相比,DOX-PGMNs联合磁场能够显著抑制肿瘤组织的生长。
     GoldMag金磁复合微粒作为新型磁性化疗药物载体,在外加磁场作用下,具有明显的靶向性。载阿霉素PEG修饰的金磁复合微粒联合磁场作用可以有效提高肿瘤组织内化疗药物浓度,降低化疗药物毒副反应,显著抑制肿瘤组织的生长。
     本研究将为GoldMag金磁复合微粒用作化疗药物载体,靶向输送药物治疗肝癌提供一定的理论基础。
Cancer remains one of the leading causes of death in most parts of the world and chemotherapy is the common treatment. The main reason for failure of chemotherapy is the poor accessibility of antineoplastic agents to the tumor, requiring higher doses, and the nonselective nature of these agents causes severe toxicity. The magnetically targeted-drug delivery system (MT-DDS) involves binding anticancer drug to biocompatible magnetic particles, injecting into the blood stream and using an external magnetic field to pull them out of suspension in the target region. The drug can be enriched and released at the specific region and enriched at the specific region, reducing their systemic distribution as well as the possibility of administering lower but more accurately targeted doses of the drug in the treatments. This local therapy could improve the efficiency of the treatment, reducing systemic toxicity. In this project, the kinetics of doxorubicin(DOX) adsorption on GoldMag nanoparticles surface and drug release were investigated firstly. The cytotoxicity assay of GoldMag nanoparticles and GoldMag nanoparticles loaded with doxorubicin combined with the permanent magnetic fields to the human hepatocellular liver carcinoma cell line (HepG2) in vitro were also tested. Then we modified GoldMag (Fe3O4/Au) nanoparticles with PEG5000-thiol (PEG-SH)(PGMNs) and investigated the kinetics of absorption and release of DOX of PGMNs in vitro. The biodistribution of DOX-loaded PGMNs combined with external magnetic field were also investigated in vivo. Additionally the therapeutic efficiency of DOX-loaded PGMNs combined with external magnetic field of DOX-loaded PGMNs was investigated. The results showed that:
     1. The content of drug adsorbed on the GoldMag nanoparticle surface increased rapidly within 30 min and the maximum drug loading rate is about 10.2%.The cell viability remained more than 92% by using of GoldMag nanoparticles at the concentration as high of 2.0 mg/ml, suggesting the good biocompatibility of the nanoparticles. IC50 (0.731μg/ml) of the Dox-GoldMag group were higher than those (0.522μg/ml) of the Dox group (P<0. 05). However, the Dox-GoldMag group combined with the magnetic fields had obviously increased the inhibition rate for HepG2 cell line and IC50 was lower than Dox group (0.421μg/ml).
     2. The PEG modified GoldMag nanoparticles (PGMNs) have saturated magnetization of 34 emu/g with a size range of 50 nm. The maximum quantity of doxorubicin (DOX) loaded on the particles is about 107.78mg/g (10.8%). The PGMNs loaded with DOX (DOX-loaded PGMNs) exhibited a controlled drug release within 4 h and then the drug slowly, sustained release to 96 h. The cell viability remained more than 92% incubated in cell culture medium RPMI-1640 contained PGMNs at the concentration as high as 2.0 mg/ml, suggesting the biocompatibility of the nanoparticles.
     3. The results of the biodistribution of DOX-loaded PGMNs applied permanent magnetic in vivo indicated that the concentration of DOX in the liver exposed to magnetic field group (60.7±8.14,53.6±4.89,44.8±6.41 and 38.4±2.58 ng/g) were much higher than those of no magnetic field applied group (40.8±9.96,31.9±7.01,28±6.11 and 20.7±5.78 ng/g) at 0.5,1,2 and 4 h (P<0.05), respectively. Histological studies suggested a larger particle concentration in the targeted area of liver in comparison to the no exposed to magnetic field and control.
     4. The results of therapeutic efficiency of DOX-loaded PGMNs combined with external magnetic field showed that DOX-PGMNs and DOX-PGMNs-M groups (M represent magnetic field) displayed more tumor suppression than DOX group. The relative tumor volumes of DOX-PGMNs-M, DOX-PGMNs, DOX and Control were 5.46,9.21,14.8 and 24.3 respectively in H22 cell-bearing mice on the 33rd day. The life span of H22 cell-bearing mice treated with DOX-PGMNs-M, DOX-PGMNs, DOX and control were 74.8±9.95,66.1±13.5, and 31.3±3.31 and 25.8±10.1 days, respectively. Histological studies suggested a larger amount necrotic cells in the targeted area of liver in comparison to the no exposed to magnetic field and control.
     Summary, GoldMag nanoparticles, as a new targeting drug delivery carrier, were capable of carrying drug for targeting therapeutic purposes due to its novel property. DOX-loaded PGMNs combined with external magnetic can significantly increase the level of drug concentration in specific site and reducing their systemic distribution as well as the possibility of administering lower but more accurately targeted doses of the drug in the treatments. This local therapy system could improve the therapeutic efficiency, reducing systemic toxicity. Our study will provide basis for GoldMag nanoparticles used to drug targeting delivery carrier.
引文
[1]吴孟超.原发性肝癌的诊断和治疗进展[J].中华外科杂志,1998,36(9):1-3
    [2]张阳德,肖志刚,张浩伟.载药纳米粒在肝癌靶向治疗中的研究进展[J].中国医学工程,2005,13(6):609-614
    [3]Chang A.E.A prospective randomized trial of regional verus systemic continuous 5-Fluorodeoxyuridine chemotherapy in the treatment of colorectal liver metastatic [J]. Ann Surg.1987; 20(1):685-693
    [4]Balch C.M.Continuous regional chemotherapy for metastatic colorectal carcinoma using a totally implantable infusion pumps [J]. Am J Surg,1983,145:285-90
    [5]Ensuing W.D., et al.A clinical pharmacological evaluation of hepatic arterial infusion of 5-Fluoroideoxyridine and 5-Fluorouracil.Cancer Res.1978; 38:3784-3792
    [6]Embleton M.J. Drug by monocional antibodies [J]. Br J Cancer,1987,55 (3):227-231
    [7]陆彬.药物新剂型与新技术[M].人民卫生出版社,北京,1998,166-167
    [8]Torchilin V.P. Grug Targeting [J]. Eur J Pharm Sci,2000,11(2):81-89
    [9]杜会强,安鸿志,李红霞.抗肿瘤靶向给药系统的研究进展[J].中国医院药学杂志,2007,27(02):242-244
    [10]Lubbea S, Alexiou C, Bercemann C. Clinical application of magnetic drug targeting [J]. Surg Res, 2001,95(2):200-206.
    [11]张阳德.纳米药物学[M],化学工业出版社,北京,2006,23-24
    [12]Au J.L., Jang, S. H., Wientjes, M. G. Clinical Aspects of Drug Delivery to Tumors [J]. J Control Release,2002,78:81-95
    [13]Rubin P., Casarett G. Microcirculation of Tumors. I. Anatomy, Function, and Necrosis [J]. Clin Radiol, 1966,17:220-229
    [14]Shubik P. Visualization of Tumors:A Review [J]. J Cancer Res Clin Oncol,1982,103:211-226
    [15]Dellian M., Witwer B. P., Salehi H. A.,et al.Quantitation and Physiological Characterization of Angiogenic Vessels in Mice:Effect of Basic Fibroblast Growth Factor, Vascular Endothelial Growth Factor/Vascular Permeability Factor, and Host Microenvironment [J]. Am J Pathol,1996,149:59-71
    [16]Maeda H., Wu J., Sawa T., Matsumura, et al. Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics:A Review [J]. J Control Release,2000,65:271-284
    [17]Matsumura Y., Maeda H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy:
    Mechanism of Tumor tropic Accumulation of Proteins and the Antitumor Agent Smancs [J]. Cancer Res,1986,46:6387-6392
    [18]Maeda H., Wu J., Sawa T., et al. Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics:A Review [J]. J Control Release,2000,65:271-284
    [19]Muggia F. M. Doxorubicin-polymer Conjugates:Further Demonstration of the Concept of Enhanced Permeability and Retention [J]. Clin Cancer Res,1999,5:7-8
    [20]Jaspreet K. Vasir, Vinod Labhasetwar. Targeted Drug Delivery in Cancer Therapy [J]. Technology in Cancer Research& Treatment,2005,4(4):363-373
    [21]Folkman J., Watson K., Ingber D., et al. Induction of Angiogenesis during the Transition from Hyperplasia to Neoplasia [J]. Nature,1989,339:58-61
    [22]Molema G., Leijde L. F., Meijer D. K. Tumor Vascular Endothelium:Barrier or Target in Tumor Directed Drug Delivery and Immunotherapy [J]. Pharm Res,1997,14:2-10
    [23]Thorpe P. E. Vascular Targeting Agents as Cancer Therapeutics [J]. Clin Cancer Res,2004,10: 415-427
    [24]Fonsatti E., Altomonte M., Arslan P., et al. Endoglin (CD 105):A Target for Anti-angiogenetic Cancer Therapy [J]. Curr Drug Targets,2003,4:291-296
    [25]Kabbinavar F., Hurwitz H. I., Fehrenbacher L., et al. Phase Ⅱ. Randomized Trial Comparing Bevacizumab plus Fluorouracil (FU)/leucovorin (LV) with FU/LV Alone in Patients with Metastatic Colorectal Cancer [J]. J Clin Oncol,2003,21:60-65
    [26]Liao F., Doody J. F., Overholser J.,et al. Selective Targeting of Angiogenic Tumor Vasculature by Vascular Endothelial-cadherin Antibody Inhibits Tumor Growth without Affecting Vascular Permeability[J]. Cancer Res 2002,62:2567-2575
    [27]Arap W., Pasqualini R., Ruoslahti E. Chemotherapy Targeted to Tumor Vasculature [J]. Curr Opin Oncol,1998,10:560-565
    [28]Arap W., Pasqualini, R., Ruoslahti, E. Cancer Treatment by Targeted Drug Delivery to Tumor Vasculature in a Mouse Model [J]. Science,1998,279:377-380
    [29]Brooks P. C., Montgomery A. M., Rosenfeld M., et al. Integrin Alphav Beta 3 Antagonists Promote Tumor Tegression by Inducing Apoptosis of Angiogenic Blood Vessels [J]. Cell,1994,79:1157-1164
    [30]Brooks P. C., Stromblad S., Klemke R., et al. Antiintegrin Alpha v Beta 3 Blocks Human Breast Cancer Growth and Angiogenesis in Human Skin [J]. J Clin Invest,1995,96:1815-1822
    [31]Houshmand P., Zlotnik A. Targeting Tumor Cells [J]. Curr Opin Cell Biol,2003,15:640-644
    [32]Stevanovic S. Identification of Tumour-associated T-cell Epitopes For Vaccine Development [J]. Nat Rev Cancer,2002,2:514-520
    [33]Juretic A., Spagnoli G. C., Schultz-Thater E., et al. Cancer Testis Tumour-associated Antigens: Immunohistochemical Detection with Monoclonal Antibodies [J]. Lancet Oncol,2003,4:104-109
    [34]Houshmand P., Zlotnik A. Targeting Tumor Cells [J]. Curr Opin Cell Biol,2003,15:640-644
    [35]Sudimack J., Lee R. J. Targeted Drug Delivery via the Folate Receptor [J]. Adv Drug Deliv Rev,2000, 41:147-162
    [36]Chung N. S., Wasan K. M. Potential Role of the Low-density Lipoprotein Receptor Family as Mediators of Cellular Drug Uptake [J]. Adv Drug Deliv Rev,2004,56:1315-1334
    [37]Amin K., Ng K. Y., Brown C. S., et al. LDL Induced Association of Anionic Liposomes with Cells and Delivery of Contents as Shown by the Increase in Potency of Liposome Dependent Drugs [J]. Pharm Res,2001,18:914-921
    [38]Schally A. V., Nagy A. Chemotherapy Targeted to Cancers Through Tumoral Hormone Receptors [J]. Trends Endocrinol Metab 2004,15:300-310
    [39]Ben Y.A., Lorberboum G. H. Targeted Cancer Therapy with Gonadotropin-releasing Hormone Chimeric Proteins [J]. Expert Rev Anticancer Ther,2004,4:151-161
    [40]Vasir J. K., Reddy M. K., Labhasetwar V. Nanosystems in Drug Targeting:Opportunities and Challenges. Curr Nanoscience,2005,1:47-64
    [41]Jain R. K., Baxter L. T. Mechanisms of Heterogeneous Distribution of Monoclonal Antibodies and Other Macromolecules in Tumors:Significance of Elevated Interstitial Pressure. Cancer Res,1988,48: 7022-7032
    [42]Rapoport N. Combined Cancer Therapy by Micellar-encapsulated Drug and Ultrasound. Int J Pharm, 2004,277:155-162
    [43]Rapoport N., Marin A., Luo Y., et al. Intracellular Uptake and Trafficking of Pluronic Micelles in Drug-sensitive and MDR Cells:Effect on the Intracellular Drug Localization. J Pharm Sci,2002,91: 157-170
    [44]Rapoport N., Marin A., Luo Y., et al. Intracellular Uptake and Trafficking of Pluronic Micelles in Drug-sensitive and MDR Cells:Effect on the Intracellular Drug Localization. J Pharm Sci,2002,91: 157-170
    [45]Rapoport N. Y., Christensen D. A., Fain H. D.,et al. Ultrasound-triggered Drug Targeting of Tumors in Vitro and in Vivo [J]. Ultrasonics,2004,42:943-950
    [46]Weinstein J.N., Magin R.L., Yatvin M.B., et al. Liposomes and local hyperthermia:selective delivery of methotexate to heated tumors [J]. Science,1979,204:188-191.
    [47]FR ICKER J. Drugs with a magnetic attraction to tumors [J]. DDT,2001,6 (8):387-389
    [48]ALEXIOU C., JURGONS R., SCHM ID R. J., et al. Magnetic drug targeting-biodistribution of the magnetic carrier and the chemotherapeutic agent mitoxantrone after locoreginal cancer treatment [J]. Drug Target,2003,11(3):139-149
    [49]Hafeli U.O. Magnetically Modulated Therapeutic Systems [J]. Int J Pharm,2004,277:19-24
    [50]Widder K.J., Senyei A.E., Scarpelli D.G. Magnetic microspheres:a model system for site specific drug delivery in vivo [J]. Proc Soc Exp Biol Med,1978,58:141-146
    [51]Senyei A., Widder K., Czerlinski C. Magnetic guidance of drug carrying microspheres [J]. J Appl Phys,1978,49:3578-3583
    [52]Mosbach K, Schro¨der U. Preparation and application of magnetic polymers for targeting of drugs [J]. FEBS Lett,1979,102:112-116
    [53]Widder K.J., Senyel A.E. Intravascular administerrable, magnetically locality biodegradable zable carrier [P]. US:4247406,1981.
    [54]Lubbe A.S., Bergemann C., Huhnt W., et al. Preclinical Experiences with Magnetic Drug Targeting: Tolerance and Efficacy, Cancer Res,1996,56:4694-4701.
    [55]Johnson J., Kent T., Koda J., et al.The MTC technology:a platform technology for the site-specific delivery of pharmaceutical agents [J]. Eur Cells Mater,2002,3:12-15
    [56]龚连生,张阳德,周少波.磁性化疗纳米粒治疗大鼠移植性肝癌[J].中国现代医学杂志,2001,11:14-16
    [57]Goodwin S.C., Bittner C.A., Peterson C.L., et al. Sigle2does toxicity study of heptic intra-arterial infusion of doxorubicin coupled to a novel magnetically targetd drug carrier [J]. Toxicol Sci,2001, 6091:177-183
    [58]陶凯雄,陈道达,田源,等.抗癌药物磁性微球靶向给药的药代动力学研究[J].实用癌症杂志,2000,15(4):347-349
    [59]吴远,叶红军,王家龙,等.丝裂霉素-聚碳酸酯磁性微球的制备及靶向治疗原发性肝癌的实验研究.华夏医学,2001,14(1):1-3
    [60]Mah C., Fraites T.J., Zolotukhin I., Song S.H., et al. Improved method of recombinant AAV2 delivery for systemic targeted gene therapy [J]. Mol Ther,2002,6:106-112
    [61]Neuberger T., Schopf B., Hofmann H., et al. Super paramagnetic nanoparticles for biomedical applications:possibilities and limitations of a new drug delivery system [J].J Magn Mater,2005, 293:483-496
    [62]吴传斌,魏树礼.磁性药物微球研究进展[J].中国药学杂志,1993,28(6):330
    [63]Weissleder D.D., Stark B.L., Engelstad B.R.,et al. Super paramagnetic iron oxide:pharmacokinetics and toxicity, AJR [J]. American Journal of Roentgenology,1989,152:167-173
    [64]Tartaj P., Morales M.D., Verdaguer S. V. et al.The preparation of magnetic nanoparticles for applications in biomedicine [J].Journal of Physics. D, Applied Physics,2003,36:R182-R197
    [65]Gupta A.K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials,2005,26:3995-4021
    [66]Sun C., Lee J.H., Zhang M. Magnetic nanoparticles in MR imaging and drug delivery Advanced Drug Delivery Reviews 2008,60:1252-1265
    [67]M.A.Willard, L.K.Kurihara, E.E. Carpenter, S. Calvin, V.G. Harris. Chemically prepared magnetic nanoparticles [J]. International Materials Reviews,2004,49:125-170
    [68]Lee J.H., Huh Y.M., Jun Y.W., et al.Artificially engineered magnetic nanoparticles for ultra sensitive molecular imaging, Natural Medicines,2007,13:95-99
    [69]Rana S., Gallo A., Srivastava R.S., et al.On the suitability of nanocrystalline ferrites as a magnetic carrier for drug delivery:functionalization, conjugation and drug release kinetics.Acta Biomaterialia, 2007,3:233-242
    [70]Huber D.L. Synthesis, properties, and applications of iron nanoparticles [J].Small,2005,1:482-501.
    [71]Kumaresh S. S., Tejraj M. A., Anandraw R. K., et al. Biodegradable polymeric nanoparticles as drug delivery devices [J]. J Cont rolled Release,2001,70:1
    [72]吴传斌,魏树礼.磁性药物微球研究进展[J].中国药学杂志,1993,28(6):330
    [73]Santra S., Tapec R., Theodoropoulou N., et al. Synthesis and characterization of silica-coated iron oxide nanoparticles in micro emulsion:the effect of nonionic surfactants [J].Langmuir,2001, 17:2900-2906
    [74]Park H.Y., Schadt M.J., Wang L. et al. Fabrication of Magnetic Core@Shell Fe Oxide@Au Nanoparticles for Interfacial Bioactivity and Bio-separation [J]. Langmuir,2007,23:9050-9056.
    [75]王斌.靶向抗肿瘤药物载体系统研究近况[J].广东药学院学报(ACAD JGCP),1998,14(4):311-314
    [76]邱广亮,邱广明,石晶瑜,等.磁性靶向顺铂白蛋白微球的研究[J].广州化工,2000,28(4):103
    [77]Gupta A. K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials,2005,26:3995-4021
    [78]Dobson J. Magnetic Nanoparticles for Drug Delivery [J]. DRUG DEVELOPMENT RESEARCH, 2006,67:55-60
    [79]Torchilin V.P., Trubetskoy V.S.Which polymers can make Nanoparticulate drug carriers long-circulating [J]. Adv Drug Del Rev,1995; 16:141-55
    [80]Florence A.T. The oral absorption of micro-and nanoparticulates:neither exceptional nor unusual. Pharm Res,1997,14(3):259-66
    [81]张凯,傅强,黄渝鸿,等.磁性高分子微球的制备及表征技术[J].宇航材料工艺,2004,(6):1
    [82]Sussan G., Turaj E., Seyed M., et al. Dexamethasone-loaded magnetic albumin micro spheres: preparation and in vitro release [J]. Int J Pharm,1996,130:49.
    [83]Widder K.J., Senyei A.E., Ranney D. F., et al. In vitro release of biologically active adriamycin by magnetically responsive albumin microspheres [J]. Cancer Res,1980,40(10):3512
    [84]张阳德,龚连生.磁性阿霉素白蛋白纳米粒的研制[J].中国现代医学杂志,2001,11(3):1
    [85]Longo W., Iwata H., Lindheimer T., et al. Preparation of hydrophilic albumin using polymeric dispersing agents [J]. J Pharm Sci,1982,71:1323
    [86]吕慧丹,刘峥,刘勇平.磁性高分子微球的制备及生物医学应用[J].化工新型材料,2004,32(3):10
    [87]吴远,叶红军,黄杰,等.含肿瘤坏死因子聚碳酸酯磁性微球的制备及靶向治疗原发性肝癌的实验研究[J].胃肠病学和肝病学杂志,2001,10(1):33
    [88]沈海霞,陈晓耕,刘振华,等.阿霉素磁性高分子抗癌微球的制备与表征[J].中国新医药,2004,3(4):15
    [89]刘利萍,吴泽志,李苹,等.天然高分子磁微球作为靶向制剂的研究进展[J].药物生物技术,2004,11(1):68
    [90]Hans M.L., Lowman A. M. Biodegradable nanoparticles for drug delivery and targeting [J]. Current Opinion in Solid Sate and Materials Science,2002,6 (4):319
    [91]Lyon J. L., Fleming D. A., Stone M. B., et al. Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding. Nano Lett.,2004,4:719.
    [92]Kinoshita T., Seino S., Mizukoshi Y., et al. Amino Acids by Gold/Iron-Oxide Composite Nanoparticles Synthesized by Gamma-ray. J. Magn. Magn. Mater.,2005,293:106.
    [93]Kawaguchi K., Jaworski J., Ishikawa Y., et al. Preparation of gold/iron-oxide composite nano-particles by a unique laser process in water. J. Magn. Magn. Mater.,2007,310:2369.
    [94]Wu W., He Q.G., Chen H., et al. Sonochemical Gold Coating of Fe3O4 Nanoparticles and Its Characterizations. Acta Chim. Sin,2007,65:1273.
    [95]Spasova M., Salgueirino M.V., Schlachter A.et al. Magnetic and optical tunable microspheres with a magnetite/gold nanoparticle shell.J. Mater.Chem.,2005,15:2095.
    [96]Lo C. K., Xiao D., Choi M. M. F. Homocysteine-protected gold-coated magnetic synthesis and characterization.J. Mater. Chem.,2007,17:2418.
    [97]Oliva B. L., Pradhan A., Caruntu D., et al. Magnetic Nanoparticles using TiO2 as a Bridging Material J. Mater.Res.,2006,21:1312.
    [98]徐辉碧,杨祥良.纳米医药[M].北京:清华大学出版社,2004,245—-265
    [99]Cui Y. L., Hu D.D., Fang Y., et al.Preparation and mechanism of Fe3O4/Au core/shell super-paramagnetic microspheres [J].Science in China (series B),2001,44 (4):404-410
    [100]Cui Y. L., Hui W.L., Wang H.R., et al. Preparation and characterization of Fe3O4/Au composite particles [J]. Science in China (Chemistry),2004,47 (2):152-158
    [101]Cui Y.L, Hui W.L., Su J., et al. Fe3O4/Au composite nanoparticles and their optical properties [J]. Science In China (Chemistry),2005,48 (4):274-278
    [102]赵明.以金磁微粒为载体的全血基因组DNA纯化方法的研究[D].西安,西北大学,2009
    [103]刘蓓.以金磁微粒为载体从动物组织中提取RNA方法的研究[D].西安,西北大学,2008
    [104]崔亚丽,张连营,苏婧等.组装型金磁微粒的制备及其在免疫学检测中的应用[J].中国科学B辑化学2006,36(2):159-165
    [105]Yu A., Geng T.T, Fu Q., et al. Biotin-avidin amplified magnetic immunoassay for hepatitis B surface antigen detection using GoldMag nanoparticles. Journal of Magnetism and Magnetic Materials,2007, 311:421-424
    [106]Andre Persoons, Thierry Verbiest, Palash Gangopadhyay. Targeted delivery of biological active substances using iron oxide/gold core nanoparticles [P]. UK, GB2415374A,2005,12,18
    [107]Mukherjee P., Bhattacharya R., Bone N., et al. Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL):enhancing apoptosis [J]. Journal of Nanobiotechnology,
    2007,5:4
    [108]Giulio F.P., Lonnie M., David W., et al. Colloidal Gold:A Novel Nanoparticle Vector for Tumor Directed Drug Delivery [J]. Drug Delivery,2004,11:169-183
    [109]Bhattacharya R., Mukherjee P., Xiong Z., et al.GoldNanoparticles Inhibit VEGF165-Induced Proliferation of HUVEC Cells [J].Nano Letters,2004,12:2479-2481
    [110]Hainfeld J.F., Slatkin D.N., Focella T.M., et al. Gold nanoparticles:a new X-ray contrast agent [J]. Br J Radiol,2006,79:248-53
    [111]Zhao Z.J., Wakita T.J., Kotaro Y.S. et al.Inoculation of Plasmids Encoding Japanese Encephalitis Virus PrM-E Proteins with Colloidal Gold Elicits a Protective Immune Response in BALB/c Mice [J]. JOURNAL OF VIROLOGY,2003,77(7):4268-4260
    [112]Dykman L. A., Sumaroka M.V., Staroverov S. A., et al. Immunogenic Properties of Colloidal Gold [J]. Biology Bulletin,2004,31(1):75-79.
    [113]田野,崔言顺,娄华,等.胶体金对小鼠细胞免疫的影响,中国农学通报第[J].2007,23(6):7-12.
    [114]Zharov V., Galitovskaya E., Johnson C., et al. Synergistic hancement of selective nanophotothermolysis with gold and clusters:potential for cancer therapy [J]. Lasers Surgery Medicine,2005,37 (3):219-226
    [115]El-Sayed I. H., Huang X., El-Sayed M. A. Surface plasmon resonance cattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics::applications in oral cancer[J].Nano Letters,2005,5 (5):829-834
    [116]张阳德.纳米药物学[M].化学工业出版社,北京,2006:15-16
    [117]Fitzsimmons RJ, Ryaby J T, Mohen S, et al. Combined magnetic fields increase insulin21ide growth factor22 in TE285 human osteosarcona bone cell cultures[J]. Endocrimology,1995,136:3100-3106
    [118]张小云,张晓鄂.恒定磁场对Hela细胞生长分裂的影响[J].科学通报,1989,34:1901-1904
    [119]Hannan CJ, Liang Y, Allison JD, et al. Chemotherapy of human carcinoma engrafts during pulsed magnetic field exposure [J]. Anticancer Res,1994,14 (4A):1521-1524
    [120]Sandak VK, Berlelsen CA, Kern DH et al. Evaluation and clinical application of a rap id chemo sensitivity assay [J]. Cancer,1985,55:1367
    [121]Gupta AK, Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles [J].Biomaterials,2005,26:1565-1573
    [122]Mukherjee P., Bhattacharya R., Bone N., et al. Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL):enhancing apoptosis [J]. Journal of Nanobiotechnology, 2007,5:4:1-13
    [123]Giulio F., Paciotti, L.M., David W., et al. Colloidal Gold:A Novel Nanoparticle Vector for Tumor Directed Drug Delivery [J]. Drug Delivery,2004,11:169-183
    [124]Bhattacharya R., Mukherjee P., Xiong Z., et al. Gold Nanoparticles Inhibit VEGF165-Induced Proliferation of HUVEC Cells [J]. Nano Letters,2004,12:2479-2481
    [125]Hainfeld J.F., Slatkin D.N., Focella T.M., et al.Gold nanoparticles:a new X-ray contrast agent [J]. Br J Radiol 2006,79:248-53
    [126]Zharov V., Galitovskaya E., Johnson.C. et al. Synergistic hancement of selective nanophotothermolysis with gold anoclusters:potential for cancer therapy [J]. Lasers Surgery Medicine, 2005,37 (3):219~226
    [127]Dykman L. A., Sumaroka M.V.,. Staroverov S. A,et al.. Immunogenic Properties of Colloidal Gold [J]. BIOLOGY BULLETIN,2004,3 (1):75-79
    [128]Fitzsimmons R.J., Ryaby J. T., Mohen S., et al. Combined magnetic fields increase insulinlide growth factor-2 in TE285 human osteosarcona bone cell cultures[J]. Endocrimology,1995, 136:3100-3106
    [129]Gupta A.K., Gupta M.. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J]. Biomaterials,2005,26:3995-4021
    [130]Miyamoto D., Oishi M., Keiji K., et al. Completely Dispersible PEGylated Gold Nanoparticles under Physiological Conditions:Modification of Gold Nanoparticles with Precisely Controlled PEG-b-polyamine [J]. Langmuir,2008,24:5010-5017
    [131]Otsuka H., Nagasaki Y., Kataoka K. PEGylated nanoparticles for biological and pharmaceutical Applications [J]. Advanced Drug Delivery Reviews,2003,55:403-419
    [132]Gupta A.K., Wells S. Surface modified super paramagnetic nanoparticles for drug delivery: preparation, characterisation and cytotoxicity studies [J]. IEEE Trans Nanobiosci,2004; 3(1):66-73.
    [133]Zhang Y., Kohler N., Zhang M. Surface modification of super paramagnetic magnetite nanoparticles and their intracellular uptake [J]. Biomaterials,2002,23(7):1553-61
    [134]Gupta A.K., Curtis A.S. Surface modified super paramagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture [J]. J Mater Sci Mater Med,2004,15(4):493-6
    [135]Schwartzberg A.M., Olson T.Y., Talley C.E., et al. Synthesis, Characterization, and Tunable Optical Properties of Hollow Gold Nanospheres. J Phys Chem (B),2006,110:19935-19944
    [136]Sokolov K., Follen M., Aaron J., et al. Real-Time Vital Optical Imaging of Precancer Using Anti-Epidermal Growth Factor Receptor Antibodies Conjugated to Gold Nanoparticles [J].Cancer Res,2003,63:1999-2004
    [137]Paciotti G. F., Myer L., Weinreich D., et al. Colloidal Gold:A Novel Nanoparticle Vector for Tumor Directed Drug Delivery [J]. Drug Delivery,2004,11:169-183
    [138]Bergen J.M., Recum H.A., Goodman T.T., et al. Gold Nanoparticles as a Versatile Platform for Optimizing Physicochemical Parameters for Targeted Drug Delivery [J]. Macromol Biosci,2006, 6:506-516
    [139]Kim D., Park S., Lee J.H., et al. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging [J]. J Am Chem Soc,2007,129:7661-7665
    [140]Miyamoto D., Oishi M., Kojima K., et al. Completely Dispersible PEGylated Gold Nanoparticles under Physiological Conditions:Modification of Gold Nanoparticles with Precisely Controlled PEG-b-polyamine [J]. Langmuir,2008,24:5010-5017
    [141]Niidome T., Yamagata M., Okamoto Y, et al. PEG-modified gold nanorods with a stealth character for in vivo applications[J].Journal of Controlled Release,2006,114:343-347
    [142]Miyamoto D., Oishi M., Kojima K., et al. Completely Dispersible PEGylated Gold Nanoparticles under Physiological Conditions:Modification of Gold Nanoparticles with Precisely Controlled PEG-b-polyamine [J]. Langmuir,2008,24:5010-5017
    [143]Kim D., Park S., Lee J.H., et al. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo x-ray computed tomography imaging [J]. J Am Chem Soc,2007,129:7661-7665
    [144]Storm G., Belliot S.O., Daemen T., et al. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system [J]. Adv Drug Del Rev,1995,17:31-48
    [145]Niidome T., Yamagata M., Okamoto Y., et al. PEG-modified gold nanorods with a stealth character for in vivo applications. Journal of Controlled Release,2006,114:343-347
    [146]Yang X.Y., Zhang X.Y., Liu Z.F., et al. High-Efficiency Loading and Controlled Release of Doxorubicin Hydrochloride on Graphene Oxide [J]. J. Phys. Chem. C,2008,112:17554-17558
    [148]Sasco A. J. Cancer and globalization [J]. Biomedicine Pharm,2008,62:110-121
    [149]Lubbe A.S., Bergemann C., Huhnt W.,et al. Preclinical Experiences with Magnetic Drug Targeting: Tolerance and Efficacy[J].Cancer Res,1996,56:4694-4701
    [150]Johnson J., Kent T., Koda J., et al. The MTC technology:a platform technology forthe site-specific delivery of pharmaceutical agents. Eur Cells Mater,2002,3:12-15
    [151]龚连生,张阳德,周少波.磁性化疗纳米粒治疗大鼠移植性肝癌中[J].国现代医学杂志,2001,11:14-16
    [152]Sun J.B., Duan J.H., Dai S.L., et al. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells:The magnetic bio-nanoparticles as drug carriers [J]. Cancer Letters,2007,258:109-117
    [153]慕蓉,严向阳,张连营,等.载阿霉素磁性壳聚糖微球靶向治疗大鼠移植性肝癌[J].西北大学学报(自然科学版),2007,37(5):785-789
    [154]Mitra S., Gaur U., Ghosh P.C., et al.Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. Journal of Controlled Release,2001,74:317-323
    [155]吴远,叶红军,王家龙,等.丝裂霉素-聚碳酸酯磁性微球的制备及靶向治疗原发性肝癌的实验研究[J].华夏医学,2001,14:2-3
    [156]陶凯雄,陈道达,王国斌,等.阿霉素磁性蛋白微球靶向治疗胃癌的实验研究及临床应用[J].中华外科杂志,1999,37:205-207
    [157]Alexiou C., Arnold W., Klein R.J., et al. Loco-regional cancer treatment with magnetic drug targeting [J]. Cancer Res,2000,60 (23):6641-6648
    [158]Lubbe A.S., Alexiou C., Bergemann C. Clinical applications of magnetic targeting [J]. J Surg Res, 2001,95 (5):200-206
    [159]Lubbe A.S., Bergemann C., Huhnt W., e al, Preclinical Experiences with magnetic Targeting: Tolerance and Efficacy [J].Cancer Res,1996,56:4694-4701
    [160]Lubbe A.S., Bergemann C., Riess H., et al, Clillical Experiences with Magnetic magnetic Targeting: A Phase I Study with 4'-Epidoxonlbicin in 14 Patients with Advanced Solid Tumors [J].Cancer Res, 1996,56:4686-4693
    [161]Johnson J., Kent T., Koda J., et al.The MTC technology:a platform for the site-specific delivery of pharmaceutical agents [J].Eur Cell Mater,2002,3:12-15
    [162]王增寿,上官王宁,连庆泉,等.高效液相色谱法测定儿童血清异丙酚浓度[J].儿科药学杂志,2003,9(1):4-5
    [163]Niidome T., Yamagata M., Okamoto Y., et al. PEG-modified gold nanorods with stealth character for in vivo applications [J]. J Controlled Release,2006,114:343-347
    [164]Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature:the key role of tumor-selective macromolecular drug targeting [J]. Adv. Enzyme Regul,2001,41:189-207
    [165]Alexiou C., Jurgons R., Schmid R.,et al. In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles [J]. J Magn Magn Mater,2005,293:389-393
    [166]Widder K. J., Senyei A. E., Scarpelli D. G.. Magnetic microspheres:a model system for site special drug delivery in vivo [J]. Proc Soc EXP Biol Med,1978,58 (1):141-146
    [167]Liu Z., Chen K., Davis C.,et al. Drug Delivery with Carbon Nanotubes for In vivo Cancer Treatment. Cancer Res 2008; 68 (16):6652-6660
    [168]郑幼伟,张培云.磁性药物微球靶向性治疗恶性肿瘤的研究进展[J].河南肿瘤学杂志,2003,16(4):309-313
    [169]Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature:the key role of tumor-selective macromolecular drug targeting [J]. Adv. Enzyme Regul,2001,41:189-207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700