用户名: 密码: 验证码:
B-CLL细胞内BCR相关因子及其信号通路表达与交互关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性B淋巴细胞白血病(B cell Chronic lymphocytic leukemia, B-CLL)作为最普遍的白血病类型之一,主要发生在老年人群中。其主要特征是具有成熟细胞表型但其功能缺失的CD5+, CD23+ B淋巴细胞在外周血、骨髓、淋巴节、脾和肝等免疫器官中的增殖与累积。B-CLL的病因及发病机制在发育免疫学研究中迄今尚不清楚,但已发现在B-CLL患者体内,白血病细胞经历了从正常B细胞转变为具有B-CLL临床表征克隆的演化,在此过程受到作为决定B细胞命运的B细胞受体(B cell receptor, BCR)编辑及其信号通路的持续影响。
     最近的一系列研究进展,加深了对于B-CLL细胞中BCR及其信号通路的了解。例如表面BCR的低表达,IgHV基因的突变状态以及ZAP70和CD38在不同亚型B-CLL中的差异表达。这些发现清楚地显示了在B-CLL细胞中存在BCR信号通路的异常调控,对此核心问题的深入研究,将从解读B-CLL的演变过程的分子机制中对此疾病发生环节的靶向治疗提供理论依据。
     本论文以BCR相关分子及其介导的信号通路作为研究对象,利用western blotting, real-time RT-PCR,免疫共沉淀,流式细胞术,RNA干扰等技术比较系统地研究了在B-CLL细胞与正常人外周血B细胞,以及不同亚型外周血B细胞之间的重要基因和蛋白的差异表达及其互作关系,并对B细胞癌变及其与发育相关的分子机制进行了理论概括。
     BCR抑制受体CD22相关因子及其介导的信号通路在B-CLL细胞中的表达:本研究首先采集了63个B-CLL患者和60个正常人外周血临床样本,利用多抗体混合物交联多余细胞增加细胞密度后,Ficoll缓冲液密度梯度离心收集到纯度为83%±8%的B细胞,提取其总蛋白和nRNA作为主要研究材料。利用Western blotting技术及N-糖苷酶F(PNase F)消化糖蛋白N'端寡糖单元的方法检测了BCR抑制受体CD22的表达,确定其同工型CD22a和CD22(3同时存在于B-CLL细胞中,且蛋白表达量出现了适当的下调。通过比较B-CLL细胞和正常B细胞的CD22胞质尾区ITIMs基序磷酸化,发现了CD22起抑制作用的激活状态在B-CLL细胞中显著降低。利用免疫共沉淀技术观察到CD22对其下游信号分子SHP-1的更新作用明显减少,显示出B-CLL细胞中CD22介导的BCR抑制信号通路的缺失。
     通过磷酸化CD22发现抑制BCR功能的Lyn蛋白在B-CLL细胞中高表达,real-time RT-PCR结果表明该现象不依赖于mRNA转录调控,而其活性和无活性磷酸化形式均存在不同程度的增强,但相对于过表达的Lyn总蛋白无一状态占明显优势。依赖Lyn活化的酪氨酸激酶Syk,是介导BCR激活信号通路的重要分子,其蛋白在B-CLL细胞内表达正常,但其激活磷酸化形式过表达,显示B-CLL细胞中Syk下游信号通路的持续激活。
     E3泛素蛋白连接酶c-Cbl在B-CLL细胞中的表达及功能研究:为深入了解B-CLL细胞内对BCR信号通路相关蛋白起降解作用的蛋白泛素化-蛋白酶体降解系统,我们检测了该系统中的核心因子E3泛素蛋白连接酶c-Cbl的表达。Western blotting结果显示c-Cbl蛋白在B-CLL细胞中显著高表达,而依据real-time RT-PCR结果分析该现象为转录后现象。
     利用RNA干扰技术对BJAB细胞系进行c-Cbl siRNA基因转染,流式细胞术检测基因沉默前后膜表面CD22表达,结果显示CD22表面表达明显下调,提示B-CLL细胞内增强的c-Cbl蛋白可能导致其表面CD22内在化和降解。免疫共沉淀c-Cbl及其相关的磷酸化酪氨酸激酶,确定PI3-kinase P85与c-Cbl在B-CLL细胞内具有明显的交互作用,且此作用随B-CLL重要预后判断因子ZAP70的表达升高而增强。此结果表明c-Cbl对P85的磷酸化更新可能是ZAP70阳性B-CLL患者的重要调控事件。
     BCR相关基因和蛋白在外周血B细胞亚型及B-CLL细胞中的差异表达:为阐明BCR相关分子在B细胞发育过程中所发挥的作用,并推测B-CLL细胞的起源,我们利用CD19、CD27、和IgM作为荧光标记表型将外周血B细胞通过流式细胞术成功分选为naive B-cells、IgM memory B-cells(MZ B-cells)和switch memory B-cells三个亚型,分离提纯度达到90%。
     以3个正常人外周血样本分选的B细胞亚型及B-CLL临床样本的mRNA为模板,对SIAE、c-Cbl、ST6Gal1、ZAP70、Syk和Lyn 6个基因的real-time RT-PCR结果分析确定在记忆性B细胞中SIAE和c-Cbl基因上调,而S T6Gall基因下调,而中SIAE是一种乙酰基酯酶,可特异性去除位于α2-6,端连接的唾液酸9-OH上的乙酰基部分,而睡液酸9-0-乙酰化状态可以调节CD22的功能。ST6Gall则是位于高尔基体上的唾液酸转移酶,可将CD22上包含的唾液酸配基O-乙酰基化。这两种蛋白酶对CD22的联合调控可能是记忆性B细胞的一种特性。B-CLL细胞过表达的Lyn和c-Cbl货白在不同类型B细胞中表达观察,揭示了Lyn蛋白的上调可能是由于B-CLL患者机体衰老引发的记忆性B细胞集聚所导致,而c-Cbl蛋白的表达不受基因调控,可能是B-CLL发让过程序中的关键事件。综上的述,能过对BCR抑制和激活通路以及c-Cbl与相关蛋白交互作用在B-CLL细胞中的研究结果,我们构建了B-CLL细胞内BCR相关因子及其信号通路表达与交互关系的动态平衡模型(见下图I)。在B-CLL细胞中,细胞表而表达BCR减少,但Lyn蛋白表达上调,过表达的Lyn包括有活性和无活性的Lyn两种状态。其中激活的Lyn磷酸化酷氨酸激酶Syk并造成BCR激活信号增强,而未活化的Lyn阻碍了CD22上ITIMs的磷酸化,导致发挥抑制作用的CD22显著降低,无法对SHP-1进行更新,并最终造成B-CLL细胞中BCR抑制信号通路的缺失。E3连接酶c-Cbl在B-CLL细胞明显高表达,并作用于表面的CD22,标记其发生细胞内吞作用,所造成的CD22内在化成为B-CLL的重要表型之一。C-Cbl还可磷酸化PI3-Kinase的功能调节部分P85,该现象受ZAP70表达的调控,可能潜在增强AKT和PKCδ信号通路的激活,为B-CLL细胞的异常集聚提供条件。此外通过对不同亚型B细胞BCR相关基因和蛋白表达的研究,阐述了SIAE、c-Cbl基因上调和S T6Gall基因下调具有成为记忆性B细胞标记的潜在的临床应用价值;而B-CLL细胞内,Lyn蛋白表达增强可能是机体衰老的表现,c-Cbl蛋白表达升高可能是肿瘤发生中的关键事件。
B cell Chronic lymphocytic leukaemia (B-CLL) is the commonest form of leukaemia, which develops in the ageing population. B-CLL is characterized by the progressive accumulation of functionally incompetent, mature looking, monoclonal CD5+, CD23+ B lymphocytes in blood, bone marrow, lymph nodes and spleen/liver. The etiopathogenesis of B-CLL in developmental immunology research remains unclear. But it has already found that the leukemic cells perform the evolution from a normal B cell to a clinically manifested B-CLL clone in vivo of B-CLL patient. And these processes influence by B cell receptror (BCR) and its signaling pathway which is critical in determining B cell fate.
     Recently, there are several advances have enhenced the understanding of BCR and BCR signaling pathway in B-CLL. Such as low level of surface BCR, mutational status of IGHV genes, and differential expression of ZAP70 and in differnet kinds of B-CLL. These advanves shed light on the abnormal regulation of BCR signaling pathway in B-CLL cells. Further studies to this project will offer clues for improving the design and targeting of therapeutic strategies.
     In this paper, we studied BCR related moleculars and signaling pathway. And we compared important differential expressions and interactions of several genes and proteins between B-CLL cells and normal peripheral B cells as well as in different B cells subgroup using western blotting, real-time RT-PCR, immunoprecipitation, flow cytometry and RNA interfere techniques, which will imporve the understanding of mechanisms for B-cell tumor pathogenesis and B-cell development.
     Expression of BCR inhibitory coreceptor CD22 related factors and signaling pathway via CD22 in B-CLL cells:Peripheral blood samples were collected from 63 typical B-CLL patients and 60 healthy donors. After increased the density of the unwanted cells by crosslinking antibody cocktail, we purified 83%±8% B cells by centrifugation over Ficoll buoyant density medium and isolated total protein and mRNA as research samples. We detected the protein expression of BCR inhibitory receptor CD22 by western blotting and N-Glycosidase F (PNGase F) which cleaves oligosaccharides of N-linked glycans on glycoproteins. Both CD22a and CD22βisoform are determined in CLL B cells, but the CD22 protein expression is less. We analyzed the phosphorylation of ITIMs motif in the cytoplasmic tails of CD22 in B-CLL cells compared with normal B cells, and found the significant decrease of active CD22 was dramatically. We determined that the recruitement of SHP-1 by CD22 was significant decreased using an co-immunoprecipitation approach, and further suggested BCR inhibitory pathway via CD22 is defective in B-CLL cells.
     Lyn proteins are overexpressed in B-CLL cells and block BCR funciton by phophrylated CD22. The results of real-time RT-PCR showed it does not depend on mRNA transcription. Both active Lyn and inactive Lyn are moderated up-regulation, but neither of them is as the same level as overexpressed total Lyn protein. Tyrosine kinase Syk is a key molecule in BCR active pathway, which requires phosphorylated by Lyn during activation. In B-CLL cells, Syk protein level is normal but activated phosphorylated Syk is increased, which means the constitutive activation of Syk downstream signaling pathway.
     Expression and function of c-Cbl E3 ubiquitin-ligase in B-CLL cells:In order to further understand the ubiquitination-proteasome system which targets BCR related proteins for degradation in B-CLL cells, we detected protein expressions of the system key factor c-Cbl E3 ubiquitin-ligase. The results of western blotting show the enhanced levels of c-Cbl protein, which is a post-transcriptional phenomena based on real-time RT-PCR results.
     We used an RNA interfere approach to transfect c-Cbl siRNA into in BJAB B cells, and detected surface CD22 expressions during gene knocking down process by flow cytometry. The results show that CD22 surface levels are upregulated. Enhanced c-Cbl expression in CLL B cells may therefor result in CD22 internalization and degradation. We co-immunoprecipated c-Cbl with phosphorylated tyrosine kinase, and determined a strong association between PI3-kinase P85 and c-Cbl in B-CLL This interaction is enhanced by increasing protein levels of B-CLL prognostic factor ZAP70, which suggest that p85 recuitment by c-Cbl may be an important regulation event in ZAP70 positive B-CLL.
     Differential expression of BCR related genes and proteins in peripheral blood B cells subgroups and B-CLL cells:To investigate the effect of BCR associated factors in B cell development and hypothesize the origins of CLL B cells, we separated naive B-cells, IgM memory B-cells (MZ B-cells) and switch memory B-cells by flow cytometry sorting using CD 19, CD27 and IgM as fluorescent marked phenotype. The purification rate is about 90%.
     B cell subgroups sorting was performed in 3 healthy donors and B-CLL patients samples, and 6 genes SIAE, c-Cbl, ST6Gall, ZAP70, Syk and Lyn were analysised by real-time RT-PCR using isolated mRNA as template. SIAE, c-Cbl is upregulated but ST6Gall is down-regulated in memory B cells. SIAE is an acetyl esterase that specifically removes acetyl moieties from 9-OH position of a2-6 liked sialic acid moieties to make ligands accessible to CD22. ST6GalI is a glycosyltransferase in the Golgi that can O-acetylated sialic acid-contaning ligands for CD22. The CD22 regulation by these two enzyme may be an characteristic of memory B cells. We also investigated protein levels of B-CLL overexpressed Lyn and c-Cbl in different kinds of B cells. The data indicates the up-regulation of Lyn protein may results from memory B cells accumulation following B-CLL patients aging. But c-Cbl protein overexperssion which is not regulated by gene may be an key event in B-CLL tumorigenesis.
     In conclusion, we constructed a hypothetical model about BCR associated signaling pathway based on research of BCR inhibitory and activation pathway and related proteins interaction in CLL B cells. In CLL B cells, following the low levels of surface BCR expression, CD22 is down-regulated but CD22 alpha and CD22 beta can be expressed equally well. At the same time, protein tyrosine Lyn is upregulated in CLL which included more active Lyn and inactive Lyn. More active Lyn contribute to phosphorylate protein tyrosine Syk that propagates the BCR signaling, while more inactive Lyn block phosphorylation of ITIMs in CD22, and results in abnormal recruit SHP-1, which results in defective BCR inhibitory signaling in B-CLL. E3 ligase c-Cbl is significant overexpressed in B-CLL, and affects the surface CD22 by leading it degradation. CD22 internalization in a c-Cbl dependent fashion becomes one of the most important phenotype of B-CLL. C-Cbl can phosphorylat regulatory subunit of PI3-kinase P85 which is associated with ZAP70 expression. This interaction may enhance activation of AKT and PKCδsignaling, and result in B-CLL cells abnormal accumulation. According to BCR related genes and proteins expression in B cell subgroups, SIAE and c-Cbl gene up-regulation and ST6Gall gene down-regulation could be potential molecular markers in memory B cells. However, Lyn protein levels enhanced may results from B-CLL patient aging, and c-Cbl protein overexpression may be an key event in tumorigenesis.
引文
1. Palma, M. et al. The biology and treatment of chronic lymphocytic leukemia. Ann Oncol 17 Suppl 10, x144-54 (2006).
    2. Dighiero, G. & Hamblin, T. J. Chronic lymphocytic leukaemia. Lancet 371, 1017-29(2008).
    3. Muller-Hemelink, HK, Catowvky, D., Montserrant E. Chronic lymphocytic leukemia/small lymphocytic lymphoma. In:Jaffe ES, Harris NL, Stein H, Vardiman JW(eds):WHO Classification of Tumors-Tumors of Haematopoietic and Lymphoid Tissues. Lyon:IARC Press (2001).
    4. Rozman, C. & Montserrat, E. Chronic lymphocytic leukemia. N Engl J Med 333, 1052-7(1995).
    5. Keating, M. J. et al. Biology and treatment of chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program,153-75 (2003).
    6. Dameshek, W. Chronic lymphocytic leukemia--an accumulative disease of immunolgically incompetent lymphocytes. Blood 29, Suppl:566-84 (1967).
    7. Ries LAG, M. D.et al. (eds) SEER Cancer Statistic Review,1975-2004. National Cancer Institute (2005).
    8. Binet, J. L. et al. Perspectives on the use of new diagnostic tools in the treatment of chronic lymphocytic leukemia. Blood 107,859-61 (2006).
    9. Chiorazzi, N. & Ferrarini, M. B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu Rev Immunol 21,841-94 (2003).
    10. Alfarano, A. et al. An alternatively spliced form of CD79b gene may account for altered B-cell receptor expression in B-chronic lymphocytic leukemia. Blood 93, 2327-35 (1999).
    11. Messmer, B. T. et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 115,755-64 (2005).
    12. Mauro, F. R. et al. Clinical characteristics and outcome of young chronic lymphocytic leukemia patients:a single institution study of 204 cases. Blood 94, 448-54(1999).
    13. Binet, J. L. et al. A clinical staging system for chronic lymphocytic leukemia: prognostic significance. Cancer 40,855-64 (1977).
    14. Rai, K. R. et al. Clinical staging of chronic lymphocytic leukemia. Blood 46, 219-34(1975).
    15. Molica, S. & Alberti, A. Prognostic value of the lymphocyte doubling time in chronic lymphocytic leukemia. Cancer 60,2712-6 (1987).
    16. Montserrat, E., Sanchez-Bisono, J., Vinolas, N. & Rozman, C. Lymphocyte doubling time in chronic lymphocytic leukaemia:analysis of its prognostic significance. Br J Haematol 62,567-75 (1986).
    17. Stevenson, F. K. & Caligaris-Cappio, F. Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood 103,4389-95 (2004).
    18. Hamblin, T. J., Davis, Z., Gardiner, A., Oscier, D. G. & Stevenson, F. K. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94,1848-54 (1999).
    19. Fais, F. et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 102,1515-25 (1998).
    20. Schroeder, H. W., Jr. & Dighiero, G. The pathogenesis of chronic lymphocytic leukemia:analysis of the antibody repertoire. Immunol Today 15,288-94 (1994).
    21. Tobin, G. et al. Somatically mutated Ig V(H)3-21 genes characterize a new subset of chronic lymphocytic leukemia. Blood 99,2262-4 (2002).
    22. Johnson, T. A., Rassenti, L. Z. & Kipps, T. J. Ig VH1 genes expressed in B cell chronic lymphocytic leukemia exhibit distinctive molecular features. J Immunol 158, 235-46 (1997).
    23. Damle, R. N. et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94,1840-7 (1999).
    24. Tobin, G. & Rosenquist, R. Prognostic usage of V(H) gene mutation status and its surrogate markers and the role of antigen selection in chronic lymphocytic leukemia. Med Oncol 22,217-28 (2005).
    25. Malavasi, F. et al. Human CD38:a glycoprotein in search of a function. Immunol Today 15,95-7(1994).
    26. Deaglio, S., Vaisitti, T., Aydin, S., Ferrero, E. & Malavasi, F. In-tandem insight from basic science combined with clinical research:CD38 as both marker and key component of the pathogenetic network underlying chronic lymphocytic leukemia. Blood 108,1135-44(2006).
    27. Deaglio, S. et al. CD38 is a signaling molecule in B-cell chronic lymphocytic leukemia cells. Blood 102,2146-55 (2003).
    28. Jaksic, O. et al. CD38 on B-cell chronic lymphocytic leukemia cells has higher expression in lymph nodes than in peripheral blood or bone marrow. Blood 103, 1968-9(2004).
    29. Deaglio, S. et al. CD38 and CD100 lead a network of surface receptors relaying positive signals for B-CLL growth and survival. Blood 105,3042-50 (2005).
    30. Hamblin, T. J. et al. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood 99,1023-9 (2002).
    31. Chang, C. C. & Cleveland, R. P. Conversion of CD38 and/or myeloid-associated marker expression status during the course of B-CLL:association with a change to an aggressive clinical course. Blood 100,1106 (2002).
    32. Wiestner, A. et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 101,4944-51 (2003).
    33. Crespo, M. et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl JMed 348,1764-75(2003).
    34. Orchard, J. A. et al. ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet 363,105-11 (2004).
    35. Au-Yeung, B. B. et al. The structure, regulation, and function of ZAP-70. Immunol Rev 228,41-57 (2009).
    36. Kong, G. H., Bu, J. Y., Kurosaki, T., Shaw, A. S. & Chan, A. C. Reconstitution of Syk function by the ZAP-70 protein tyrosine kinase. Immunity 2,485-92 (1995).
    37. Chen, L. et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 100,4609-14 (2002).
    38. Chen, L. et al. ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia. Blood 105,2036-41 (2005).
    39. Chu, D. H. et al. The Syk protein tyrosine kinase can function independently of CD45 or Lck in T cell antigen receptor signaling. Embo J 15,6251-61 (1996).
    40. Gobessi, S. et al. ZAP-70 enhances B-cell-receptor signaling despite absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lymphoma B cells. Blood 109,2032-9 (2007).
    41. Allsup, D. J. et al. B-cell receptor translocation to lipid rafts and associated signaling differ between prognostically important subgroups of chronic lymphocytic leukemia. Cancer Res 65,7328-37 (2005).
    42. Kuppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer 5, 251-62(2005).
    43. Chiorazzi, N., Rai, K. R. & Ferrarini, M. Chronic lymphocytic leukemia. N Engl JMed 352,804-15(2005).
    44. Kelsoe, G. B cell diversification and differentiation in the periphery. J Exp Med 180,5-6(1994).
    45. de Vinuesa, C. G. et al. Germinal centers without T cells. J Exp Med 191,485-94 (2000).
    46. Monson, N. L. et al. The role of CD40-CD40 ligand (CD154) interactions in immunoglobulin light chain repertoire generation and somatic mutation. Clin Immunol 100,71-81(2001).
    47. Weller, S. et al. CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans. Proc Natl Acad Sci USA 98, 1166-70(2001).
    48. Toellner, K. M. et al. Low-level hypermutation in T cell-independent germinal centers compared with high mutation rates associated with T cell-dependent germinal centers. J Exp Med 195,383-9 (2002).
    49. William, J., Euler, C., Christensen, S. & Shlomchik, M. J. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 297,2066-70 (2002).
    50. Deaglio, S. et al. Human CD38 (ADP-ribosyl cyclase) is a counter-receptor of CD31, an Ig superfamily member. J Immunol 160,395-402 (1998).
    51. Lund, F. E., Yu, N., Kim, K. M., Reth, M. & Howard, M. C. Signaling through CD38 augments B cell antigen receptor (BCR) responses and is dependent on BCR expression. J Immunol 157,1455-67 (1996).
    52. Zupo, S. et al. Apoptosis or plasma cell differentiation of CD38-positive B-chronic lymphocytic leukemia cells induced by cross-linking of surface IgM or IgD. Blood 95,1199-206(2000).
    53. Niiro, H. & Clark, E. A. Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol 2,945-56 (2002).
    54. Chan, A. C., Iwashima, M., Turck, C. W. & Weiss, A. ZAP-70:a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell 71,649-62 (1992).
    55. Herve, M. et al. Unmutated and mutated chronic lymphocytic leukemias derive from self-reactive B cell precursors despite expressing different antibody reactivity.J Clin Invest 115,1636-43 (2005).
    56. Silverman, G. J. B-cell superantigens. Immunol Today 18,379-86 (1997).
    57. Zupo, S. et al. CD38 expression distinguishes two groups of B-cell chronic lymphocytic leukemias with different responses to anti-IgM antibodies and propensity to apoptosis. Blood 88,1365-74 (1996).
    58. Lanham, S. et al. Differential signaling via surface IgM is associated with VH gene mutational status and CD38 expression in chronic lymphocytic leukemia. Blood 101,1087-93(2003).
    59. Ghia, P. & Caligaris-Cappio, F. The origin of B-cell chronic lymphocytic leukemia. Semin Oncol 33,150-6 (2006).
    60. Vilen, B. J., Nakamura, T. & Cambier, J. C. Antigen-stimulated dissociation of BCR mIg from Ig-alpha/Ig-beta:implications for receptor desensitization. Immunity 10,239-48(1999).
    61. Payelle-Brogard, B., Magnac, C., Alcover, A., Roux, P. & Dighiero, G. Defective assembly of the B-cell receptor chains accounts for its low expression in B-chronic lymphocytic leukaemia. Br J Haematol 118,976-85 (2002).
    62. Vuillier, F. et al. Lower levels of surface B-cell-receptor expression in chronic lymphocytic leukemia are associated with glycosylation and folding defects of the mu and CD79a chains. Blood 105,2933-40 (2005).
    63. Jiang, A., Craxton, A., Kurosaki, T. & Clark, E. A. Different protein tyrosine kinases are required for B cell antigen receptor-mediated activation of extracellular signal-regulated kinase, c-Jun NH2-terminal kinase 1, and p38 mitogen-activated protein kinase. J Exp Med 188,1297-306 (1998).
    64. Takata, M. et al. Tyrosine kinases Lyn and Syk regulate B cell receptor-coupled Ca2+ mobilization through distinct pathways. Embo J13,1341-9 (1994).
    65. Turner, M. et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378,298-302 (1995).
    66. Fu, C., Turck, C. W., Kurosaki, T. & Chan, A. C. BLNK:a central linker protein in B cell activation. Immunity 9,93-103 (1998).
    67. Hashimoto, S. et al. Identification of the SH2 domain binding protein of Bruton's tyrosine kinase as BLNK-functional significance of Btk-SH2 domain in B-cell antigen receptor-coupled calcium signaling. Blood 94,2357-64 (1999).
    68. Ishiai, M. et al. BLNK required for coupling Syk to PLC gamma 2 and Racl-JNK in B cells. Immunity 10,117-25 (1999).
    69. Pappu, R. et al. Requirement for B cell linker protein (BLNK) in B cell development. Science 286,1949-54 (1999).
    70. Xu, S. et al. B cell development and activation defects resulting in xid-like immunodeficiency in BLNK/SLP-65-deficient mice. Int Immunol 12,397-404 (2000).
    71. Marshall, A. J., Niiro, H., Yun, T. J. & Clark, E. A. Regulation of B-cell activation and differentiation by the phosphatidylinositol 3-kinase and phospholipase Cgamma pathway. Immunol Rev 176,30-46 (2000).
    72. Aman, M. J. & Ravichandran, K. S. A requirement for lipid rafts in B cell receptor induced Ca(2+) flux. Curr Biol 10,393-6 (2000).
    73. Pierce, S. K. Lipid rafts and B-cell activation. Nat Rev Immunol 2,96-105 (2002).
    74. Parekh, D. B., Ziegler, W. & Parker, P. J. Multiple pathways control protein kinase C phosphorylation. Embo J 19,496-503 (2000).
    75. Pasparakis, M., Schmidt-Supprian, M. & Rajewsky, K. IkappaB kinase signaling is essential for maintenance of mature B cells. J Exp Med 196,743-52 (2002).
    76. Petro, J. B. & Khan, W. N. Phospholipase C-gamma 2 couples Bruton's tyrosine kinase to the NF-kappaB signaling pathway in B lymphocytes.J Biol Chem 276, 1715-9(2001).
    77. Petro, J. B., Rahman, S. M., Ballard, D. W. & Khan, W. N. Bruton's tyrosine kinase is required for activation of IkappaB kinase and nuclear factor kappaB in response to B cell receptor engagement. JExp Med 191,1745-54 (2000).
    78. Su, T. T. et al. PKC-beta controls I kappa B kinase lipid raft recruitment and activation in response to BCR signaling. Nat Immunol 3,780-6 (2002).
    79. Baldwin, A. S., Jr. The NF-kappa B and I kappa B proteins:new discoveries and insights. Annu Rev Immunol 14,649-83 (1996).
    80. Thompson, A. A. et al. Aberrations of the B-cell receptor B29 (CD79b) gene in chronic lymphocytic leukemia. Blood 90,1387-94 (1997).
    81. Payelle-Brogard, B., Magnac, C., Mauro, F. R., Mandelli, F. & Dighiero, G. Analysis of the B-cell receptor B29 (CD79b) gene in familial chronic lymphocytic leukemia. Blood 94,3516-22 (1999).
    82. Vilen, B. J., Burke, K. M., Sleater, M. & Cambier, J. C. Transmodulation of BCR signaling by transduction-incompetent antigen receptors:implications for impaired signaling in anergic B cells. J Immunol 168,4344-51 (2002).
    83. Norvell, A. & Monroe, J. G. Acquisition of surface IgD fails to protect from tolerance-induction. Both surface IgM-and surface IgD-mediated signals induce apoptosis of immature murine B lymphocytes. J Immunol 156,1328-32 (1996).
    84. Brink, R. et al. Immunoglobulin M and D antigen receptors are both capable of mediating B lymphocyte activation, deletion, or anergy after interaction with specific antigen. J Exp Med 176,991-1005 (1992).
    85. Ales-Martinez, J. E., Warner, G. L. & Scott, D. W. Immunoglobulins D and M mediate signals that are qualitatively different in B cells with an immature phenotype. Proc NatlAcad Sci USA 85,6919-23 (1988).
    86. Tisch, R., Roifman, C. M. & Hozumi, N. Functional differences between immunoglobulins M and D expressed on the surface of an immature B-cell line. Proc NatlAcad Sci USA 85,6914-8 (1988).
    87. Kim, K. M. & Reth, M. Signaling difference between class IgM and IgD antigen receptors. Ann N YAcad Sci 766,81-8 (1995).
    88. Carsetti, R., Kohler, G.& Lamers, M. C. A role for immunoglobulin D: interference with tolerance induction. Eur J Immunol 23,168-78 (1993).
    89. Mongini, P. K., Blessinger, C, Posnett, D. N. & Rudich, S. M. Membrane IgD and membrane IgM differ in capacity to transduce inhibitory signals within the same human B cell clonal populations. J Immunol 143,1565-74 (1989).
    90. Zupo, S., Cutrona, G, Mangiola, M. & Ferrarini, M. Role of surface IgM and IgD on survival of the cells from B-cell chronic lymphocytic leukemia. Blood 99,2277-8 (2002).
    91. Gordon, M. S., Kanegai, C. M., Doerr, J. R. & Wall, R. Somatic hypermutation of the B cell receptor genes B29 (Igbeta, CD79b) and mbl (Igalpha, CD79a). Proc Natl Acad Sci USA 100,4126-31 (2003).
    92. Gordon, M. S. et al. Aberrant B cell receptor signaling from B29 (Igbeta, CD79b) gene mutations of chronic lymphocytic leukemia B cells. Proc Natl Acad Sci USA 97,5504-9 (2000).
    93. Cragg, M. S. et al. The alternative transcript of CD79b is overexpressed in B-CLL and inhibits signaling for apoptosis. Blood 100,3068-76 (2002).
    94. Koyama, M. et al. The novel variants of mb-1 and B29 transcripts generated by alternative mRNA splicing. Immunol Lett 47,151-6 (1995).
    95. Indraccolo, S. et al. Alternatively spliced forms of Igalpha and Igbeta prevent B cell receptor expression on the cell surface. Eur J Immunol 32,1530-40 (2002).
    96. Parent, B. A., Wang, X. & Song, W. Stability of the B cell antigen receptor modulates its signaling and antigen-targeting functions. Eur J Immunol 32,1839-46 (2002).
    97. Juliusson, G. & Merup, M. Cytogenetics in chronic lymphocytic leukemia. Semin Oncol 25,19-26(1998).
    98. Oscier, D. G. Cytogenetic and molecular abnormalities in chronic lymphocytic leukaemia. Blood Rev 8,88-97 (1994).
    99. Dohner, H. et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343,1910-6 (2000).
    100. Karhu, R. et al. Frequent loss of the 11q14-24 region in chronic lymphocytic leukemia:a study by comparative genomic hybridization. Tampere CLL Group. Genes Chromosomes Cancer 19,286-90 (1997).
    101. Dohner, H., Stilgenbauer, S., Dohner, K., Bentz, M. & Lichter, P. Chromosome aberrations in B-cell chronic lymphocytic leukemia:reassessment based on molecular cytogenetic analysis. J Mol Med 77,266-81 (1999).
    102. Bigoni, R. et al. Chromosome aberrations in atypical chronic lymphocytic leukemia: a cytogenetic and interphase cytogenetic study. Leukemia 11,1933-40 (1997).
    103. Mabuchi, H. et al. Cloning and characterization of CLLD6, CLLD7, and CLLD8, novel candidate genes for leukemogenesis at chromosome 13q14, a region commonly deleted in B-cell chronic lymphocytic leukemia. Cancer Res 61,2870-7 (2001).
    104. Starostik, P. et al. Deficiency of the ATM protein expression defines an aggressive subgroup of B-cell chronic lymphocytic leukemia. Cancer Res 58,4552-7 (1998).
    105. Bullrich, F. et al. ATM mutations in B-cell chronic lymphocytic leukemia. Cancer Res 59,24-7 (1999).
    106. Stankovic, T. et al. Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet 353,26-9 (1999).
    107. Schaffner, C., Stilgenbauer, S., Rappold, G A., Dohner, H.& Lichter, P. Somatic ATM mutations indicate a pathogenic role of ATM in B-cell chronic lymphocytic leukemia. Blood 94,748-53 (1999).
    108. Taylor, A. M., Metcalfe, J. A., Thick, J. & Mak, Y. F. Leukemia and lymphoma in ataxia telangiectasia. Blood 87,423-38 (1996).
    109. Stilgenbauer, S. et al. Biallelic mutations in the ATM gene in T-prolymphocytic leukemia. Nat Med 3,1155-9 (1997).
    110. Vorechovsky, I. et al. Clustering of missense mutations in the ataxia-telangiectasia gene in a sporadic T-cell leukaemia. Nat Genet 17,96-9 (1997).
    111. Rotman, G. & Shiloh, Y. ATM:a mediator of multiple responses to genotoxic stress. Oncogene 18,6135-44 (1999).
    112. Khanna, K. K. Cancer risk and the ATM gene:a continuing debate. J Natl Cancer Inst 92,795-802 (2000).
    113. Gahrton, G. et al. Cytogenetic mapping of the duplicated segment of chromosome 12 in lymphoproliferative disorders. Nature 297,513-4 (1982).
    114. Einhorn, S., Burvall, K., Juliusson, G, Gahrton, G. & Meeker, T. Molecular analyses of chromosome 12 in chronic lymphocytic leukemia. Leukemia 3,871-4 (1989).
    115. el Rouby, S. et al. p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood 82,3452-9 (1993).
    116. Ambros, V. The functions of animal microRNAs. Nature 431,350-5 (2004).
    117. Calin, G. A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci US A 99,15524-9(2002).
    118. Makunin, I. V., Pheasant, M., Simons, C. & Mattick, J. S. Orthologous microRNA genes are located in cancer-associated genomic regions in human and mouse. PLoS One 2, e1133 (2007).
    119. Calin, G. A. et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353,1793-801 (2005).
    120. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102,13944-9 (2005).
    121. Linsley, P. S. et al. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27,2240-52 (2007).
    122. Bonci, D. et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14,1271-7 (2008).
    123. Raveche, E. S. et al. Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 109,5079-86 (2007).
    124.Austen, B. et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol 25,5448-57 (2007).
    125. He, L., He, X., Lowe, S. W. & Hannon, G. J. microRNAs join the p53 network--another piece in the tumour-suppression puzzle. Nat Rev Cancer 7,819-22 (2007).
    126. Dijkstra, M. K. et al.17pl3/TP53 deletion in B-CLL patients is associated with microRNA-34a downregulation. Leukemia 23,625-7 (2009).
    127. Auer, R. L., Riaz, S. & Cotter, F. E. The 13q and llq B-cell chronic lymphocytic leukaemia-associated regions derive from a common ancestral region in the zebrafish. Br J Haematol 137,443-53 (2007).
    128. Bommer, G. T. et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17,1298-307 (2007).
    129. He, L. et al. A microRNA component of the p53 tumour suppressor network. Nature 447,1130-4(2007).
    130. Wei, J. S. et al. The MYCN oncogene is a direct target of miR-34a. Oncogene 27, 5204-13 (2008).
    131. Welch, C., Chen, Y. & Stallings, R. L. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26, 5017-22(2007).
    132. Cardinaud, B. et al. miR-34b/miR-34c:a regulator of TCL1 expression in 11q-chronic lymphocytic leukaemia? Leukemia 23,2174-7 (2009).
    133. Pekarsky, Y. et al. Tell expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66,11590-3 (2006).
    134. Mertens, F., Johansson, B., Hoglund, M. & Mitelman, F. Chromosomal imbalance maps of malignant solid tumors:a cytogenetic survey of 3185 neoplasms. Cancer Res 57,2765-80 (1997).
    135. Yang, L. et al. Tumor suppressive role of a 2.4 Mb 9q33-q34 critical region and DEC1 in esophageal squamous cell carcinoma. Oncogene 24,697-705 (2005).
    136. Herling, M. et al. TCL1 shows a regulated expression pattern in chronic lymphocytic leukemia that correlates with molecular subtypes and proliferative state. Leukemia 20,280-5 (2006).
    137. Bichi, R. et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc NatlAcad Sci USA 99,6955-60 (2002).
    138. Yan, X. J. et al. B cell receptors in TCL1 transgenic mice resemble those of aggressive, treatment-resistant human chronic lymphocytic leukemia. Proc Natl Acad Sci USA 103,11713-8 (2006).
    139. Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303,83-6 (2004).
    140. Allsopp, R. C. et al. Telomere shortening is associated with cell division in vitro and in vivo. Exp Cell Res 220,194-200 (1995).
    141. Rufer, N., Dragowska, W., Thornbury, G., Roosnek, E. & Lansdorp, P. M. Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat Biotechnol 16,743-7 (1998).
    142. Morin, G. B. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59,521-9 (1989).
    143. Bechter, O. E. et al. Telomere length and telomerase activity predict survival in patients with B cell chronic lymphocytic leukemia. Cancer Res 58,4918-22 (1998).
    144. Hu, B. T., Lee, S. C., Marin, E., Ryan, D. H. & Insel, R. A. Telomerase is up-regulated in human germinal center B cells in vivo and can be re-expressed in memory B cells activated in vitro. J Immunol 159,1068-71 (1997).
    145. Weng, N. P., Granger, L. & Hodes, R. J. Telomere lengthening and telomerase activation during humna B cell differentiation. Proc Natl Acad Sci USA 94, 10827-10832(1997).
    146. Norrback, K. F. et al. Telomerase regulation and telomere dynamics in germinal centers. Eur J Haematol 67,309-17 (2001).
    147. Dyer, M. J. et al. BCL2 translocations in leukemias of mature B cells. Blood 83, 3682-8(1994).
    148. Vrhovac, R. et al. Prognostic significance of the cell cycle inhibitor p27Kip1 in chronic B-cell lymphocytic leukemia. Blood 91,4694-700 (1998).
    149. Lagneaux, L., Delforge, A., Dorval, C., Bron, D. & Stryckmans, P. Excessive production of transforming growth factor-beta by bone marrow stromal cells in B-cell chronic lymphocytic leukemia inhibits growth of hematopoietic precursors and interleukin-6 production. Blood 82,2379-85 (1993).
    150. Caligaris-Cappio, F. Role of the microenvironment in chronic lymphocytic leukaemia. Br J Haematol 123,380-8 (2003).
    151. Granziero, L. et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 97, 2777-83 (2001).
    152. Igney, F. H. & Krammer, P. H. Death and anti-death:tumour resistance to apoptosis. Nat Rev Cancer 2,277-88 (2002).
    153. Reed, J. C., Kitada, S., Kim, Y. & Byrd, J. Modulating apoptosis pathways in low-grade B-cell malignancies using biological response modifiers. Semin Oncol 29, 10-24(2002).
    154. Panayiotidis, P., Ganeshaguru, K., Foroni, L. & Hoffbrand, A. V. Expression and function of the FAS antigen in B chronic lymphocytic leukemia and hairy cell leukemia. Leukemia 9,1227-32 (1995).
    155. Wang, D., Freeman, G. J., Levine, H., Ritz, J. & Robertson, M. J. Role of the CD40 and CD95 (APO-1/Fas) antigens in the apoptosis of human B-cell malignancies. Br J Haematol 97,409-17 (1997).
    156. Chu, P. et al. Latent sensitivity to Fas-mediated apoptosis after CD40 ligation may explain activity of CD 154 gene therapy in chronic lymphocytic leukemia. Proc NatlAcad Sci USA 99,3854-9 (2002).
    157. Hibbs, M. L., Stanley, E., Maglitto, R. & Dunn, A. R. Identification of a duplication of the mouse Lyn gene. Gene 156,175-81 (1995).
    158. Smith, K. G., Tarlinton, D. M., Doody, G M., Hibbs, M. L. & Fearon, D. T. Inhibition of the B cell by CD22:a requirement for Lyn. J Exp Med 187,807-11 (1998).
    159. Chan, V. W., Lowell, C. A. & DeFranco, A. L. Defective negative regulation of antigen receptor signaling in Lyn-deficient B lymphocytes. Curr Biol 8,545-53 (1998).
    160. Cornall, R. J. et al. Polygenic autoimmune traits:Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity 8,497-508 (1998).
    161. Xu, Y., Harder, K. W., Huntington, N. D., Hibbs, M. L. & Tarlinton, D. M. Lyn tyrosine kinase:accentuating the positive and the negative. Immunity 22,9-18 (2005).
    162. Cariappa, A. et al. B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase. J Exp Med 206, 125-38 (2009).
    163. Pillai, S., Cariappa, A. & Pirnie, S. P. Esterases and autoimmunity:the sialic acid acetylesterase pathway and the regulation of peripheral B cell tolerance. Trends Immunol 30,488-93 (2009).
    164. Swaminathan, G. & Tsygankov, A. Y. The Cbl family proteins:ring leaders in regulation of cell signaling.J Cell Physiol 209,21-43 (2006).
    165. Duan, L., Reddi, A. L., Ghosh, A., Dimri, M. & Band, H. The Cbl family and other ubiquitin ligases:destructive forces in control of antigen receptor signaling. Immunity 21,7-17 (2004).
    166. Poe, J. C., Hasegawa, M. & Tedder, T. F. CD19, CD21, and CD22:multifaceted response regulators of B lymphocyte signal transduction. Int Rev Immunol 20, 739-62 (2001).
    167. Pritchard, N. R. & Smith, K. G. B cell inhibitory receptors and autoimmunity. Immunology 108,263-73 (2003).
    168. Wilson, G. L. et al. Genomic structure and chromosomal mapping of the human CD22 gene. J Immunol 150,5013-24 (1993).
    169. Payelle-Brogard, B. et al. Abnormal levels of the alpha chain of the CD22 adhesion molecule may account for low CD22 surface expression in chronic lymphocytic leukemia. Leukemia 20,877-8 (2006).
    170. Walker, J. A. & Smith, K. G. CD22:an inhibitory enigma. Immunology 123, 314-25(2008).
    171. Nitschke, L. & Tsubata, T. Molecular interactions regulate BCR signal inhibition by CD22 and CD72. Trends Immunol 25,543-50 (2004).
    172. Fujimoto, M. et al. B cell antigen receptor and CD40 differentially regulate CD22 tyrosine phosphorylation. J Immunol 176,873-9 (2006).
    173. Matutes, E. & Polliack, A. Morphological and immunophenotypic features of chronic lymphocytic leukemia. Rev Clin Exp Hematol 4,22-47 (2000).
    174. Maley, F., Trimble, R. B., Tarentino, A. L. & Plummer, T. H., Jr. Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 180,195-204(1989).
    175. Doody, G. M. et al. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science 269,242-4 (1995).
    176. Gobessi, S. et al. Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia 23,686-97 (2009).
    177. Zeng, J. et al. The generation of influenza-specific humoral responses is impaired in ST6Gal I-deficient mice. J Immunol 182,4721-7 (2009).
    178. Hennet, T., Chui, D., Paulson, J. C. & Marth, J. D. Immune regulation by the ST6Gal sialyltransferase. Proc NatlAcad Sci USA 95,4504-9 (1998).
    179. Christie, D. R., Shaikh, F. M., Lucas, J. A. t., Lucas, J. A.,3rd & Bellis, S. L. ST6Gal-I expression in ovarian cancer cells promotes an invasive phenotype by altering integrin glycosylation and function. J Ovarian Res 1,3 (2008).
    180. Wang, P. H. et al. Enhanced expression of alpha 2,6-sialyltransferase ST6Gal I in cervical squamous cell carcinoma. Gynecol Oncol 89,395-401 (2003).
    181. Mondal, S., Chandra, S. & Mandal, C. Elevated mRNA level of hST6Gal I and hST3Gal V positively correlates with the high risk of pediatric acute leukemia. Leuk Res 34,463-70 (2010).
    182. Batata, A. & Shen, B. Immunophenotyping of subtypes of B-chronic (mature) lymphoid leukemia. A study of 242 cases. Cancer 70,2436-43 (1992).
    183. Ravid, T. & Hochstrasser, M. Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mot Cell Biol 9,679-90 (2008).
    184. Contri, A. et al. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis.J Clin Invest 115, 369-78 (2005).
    185. Schmidt, M. H., Dikic, I. & Bogler, O. Src phosphorylation of Alix/AIP1 modulates its interaction with binding partners and antagonizes its activities. J Biol Chem 280,3414-25 (2005).
    186. Marois, L. et al. The ubiquitin ligase c-Cbl down-regulates FcgammaRIIa activation in human neutrophils. J Immunol 182,2374-84 (2009).
    187. Datta, S. R., Brunet, A. & Greenberg, M. E. Cellular survival:a play in three Akts. Genes Dev 13,2905-27 (1999).
    188. Barragan, M. et al. Involvement of protein kinase C and phosphatidylinositol 3-kinase pathways in the survival of B-cell chronic lymphocytic leukemia cells. Blood 99,2969-76 (2002).
    189. Ringshausen, I. et al. Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL:association with protein kinase Cdelta. Blood 100,3741-8 (2002).
    190. Sagaert, X. & De Wolf-Peeters, C. Classification of B-cells according to their differentiation status, their micro-anatomical localisation and their developmental lineage. Immunol Lett 90,179-86 (2003).
    191. Weller, S. et al. Human blood IgM "memory" B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire. Blood 104,3647-54 (2004).
    192. Pillai, S., Cariappa, A. & Moran, S. T. Marginal zone B cells. Annu Rev Immunol 23,161-96 (2005).
    193. Kodituwakku, A. P., Jessup, C., Zola, H. & Roberton, D. M. Isolation of antigen-specific B cells. Immunol Cell Biol 81,163-70 (2003).
    1. Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R, Stacker S A, Dunn AR. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell.1995;83:301-311
    2. Smith KG, Tarlinton DM, Doody GM, Hibbs ML, Fearon DT. Inhibition of the B cell by CD22:a requirement for Lyn. J Exp Med.1998;187:807-811
    3. Chan VW, Lowell CA, DeFranco AL. Defective negative regulation of antigen receptor signaling in Lyn-deficient B lymphocytes. Curr Biol.1998;8:545-553
    4. Cornall RJ, Cyster JG, Hibbs ML, Dunn AR, Otipoby KL, Clark EA, Goodnow CC. Polygenic autoimmune traits:Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity. 1998;8:497-508
    5. Xu Y, Harder KW, Huntington ND, Hibbs ML, Tarlinton DM. Lyn tyrosine kinase: accentuating the positive and the negative. Immunity.2005;22:9-18
    6. Contri A, Brunati AM, Trentin L, Cabrelle A, Miorin M, Cesaro L, Pinna LA, Zambello R, Semenzato G, Donella-Deana A. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J Clin Invest.2005;115:369-378
    7. Cariappa A, Takematsu H, Liu H, Diaz S, Haider K, Boboila C, Kalloo G, Connole M, Shi HN, Varki N, Varki A, Pillai S. B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase. J Exp Med.2009;206:125-138
    8. Pillai S, Cariappa A, Pirnie SP. Esterases and autoimmunity:the sialic acid acetylesterase pathway and the regulation of peripheral B cell tolerance. Trends Immunol.2009; 30:488-493
    9. Doody GM, Justement LB, Delibrias CC, Matthews RJ, Lin J, Thomas ML, Fearon DT. A role in B cell activation for CD22 and the protein tyrosine phosphatase SHP. Science.1995;269:242-244
    10. Matutes E, Polliack A. Morphological and immunophenotypic features of chronic lymphocytic leukemia. Rev Clin Exp Hematol.2000;4:22-47
    11. Maley F, Trimble RB, Tarentino AL, Plummer TH, Jr. Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem.1989;180:195-204
    12. Wilson GL, Najfeld V, Kozlow E, Menniger J, Ward D, Kehrl JH. Genomic structure and chromosomal mapping of the human CD22 gene. J Immunol. 1993;150:5013-5024
    13. Stamenkovic I, Sgroi D, Aruffo A, Sy MS, Anderson T. The B lymphocyte adhesion molecule CD22 interacts with leukocyte common antigen CD45RO on T cells and alpha 2-6 sialyltransferase, CD75, on B cells. Cell.1991;66:1133-1144
    14. Tedder TF, Tuscano J, Sato S, Kehrl JH. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Annu Rev Immunol. 1997;15:481-504
    15. Payelle-Brogard B, Dumas G, Magnac C, Lalanne AI, Dighiero G, Vuillier F. Abnormal levels of the alpha chain of the CD22 adhesion molecule may account for low CD22 surface expression in chronic lymphocytic leukemia. Leukemia. 2006;20:877-878
    16. Gobessi S, Laurenti L, Longo PG, Carsetti L, Berno V, Sica S, Leone G, Efremov DG. Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia.2009;23:686-697
    17. Collins BE, Smith BA, Bengtson P, Paulson JC. Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nat Immunol. 2006;7:199-206
    18. Zeng J, Joo HM, Rajini B, Wrammert JP, Sangster MY, Onami TM. The generation of influenza-specific humoral responses is impaired in ST6Gal I-deficient mice. J Immunol.2009;182:4721-4727
    19. Hennet T, Chui D, Paulson JC, Marth JD. Immune regulation by the ST6Gal sialyltransferase. Proc Natl Acad Sci USA.1998;95:4504-4509
    20. Duan L, Reddi AL, Ghosh A, Dimri M, Band H. The Cbl family and other ubiquitin ligases:destructive forces in control of antigen receptor signaling. Immunity. 2004;21:7-17
    21. Mankai A, Eveillard JR, Buhe V, Le Ster K, Loisel S, Ghedira I, Youinou P, Berthou C, Bordron A. Is the c-Cbl proto-oncogene involved in chronic lymphocytic leukemia? Ann N Y Acad Sci.2007;1107:193-205
    22. Stevenson FK, Caligaris-Cappio F. Chronic lymphocytic leukemia:revelations from the B-cell receptor. Blood.2004;103:4389-4395
    23. Chiorazzi N, Allen SL, Ferrarini M. Clinical and laboratory parameters that define clinically relevant B-CLL subgroups. Curr Top Microbiol Immunol. 2005;294:109-133
    24. Aoki Y, Isselbacher KJ, Pillai S. Bruton tyrosine kinase is tyrosine phosphorylated and activated in pre-B lymphocytes and receptor-ligated B cells. Proc Natl Acad Sci U S A.1994;91:10606-10609
    25. Lam KP, Kuhn R, Rajewsky K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell. 1997;90:1073-1083
    26. Tze LE, Schram BR, Lam KP, Hogquist KA, Hippen KL, Liu J, Shinton SA, Otipoby KL, Rodine PR, Vegoe AL, Kraus M, Hardy RR, Schlissel MS, Rajewsky K, Behrens TW. Basal immunoglobulin signaling actively maintains developmental stage in immature B cells. PLoS Biol.2005;3:e82
    27. Guimaraes MJ, Bazan JF, Castagnola J, Diaz S, Copeland NG, Gilbert DJ, Jenkins NA, Varki A, Zlotnik A. Molecular cloning and characterization of lysosomal sialic acid O-acetylesterase. J Biol Chem.1996;271:13697-13705
    28. Swaminathan G, Tsygankov AY. The Cbl family proteins:ring leaders in regulation of cell signaling. J Cell Physiol.2006;209:21-43
    29. Schmidt MH, Dikic I, Bogler O. Src phosphorylation of Alix/AIP1 modulates its interaction with binding partners and antagonizes its activities. J Biol Chem. 2005;280:3414-3425
    30. Marois L, Vaillancourt M, Marois S, Proulx S, Pare G, Rollet-Labelle E, Naccache PH. The ubiquitin ligase c-Cbl down-regulates FcgammaRIIa activation in human neutrophils. J Immunol.2009; 182:2374-2384
    31. Huang F, Gu H. Negative regulation of lymphocyte development and function by the Cbl family of proteins. Immunol Rev.2008;224:229-238
    32. Jacob M, Todd L, Sampson MF, Pure E. Dual role of Cbl links critical events in BCR endocytosis. Int Immunol.2008;20:485-497
    [1]Llovet, J. M., Burroughs, A., and Bruix, J. (2003). Hepatocellular carcinoma. Lancet,362,1907-1917.
    [2]Llovet, J. M., and Beaugrand, M. (2003). Hepatocellular carcinoma:present status and future prospects. J Hepatol,38,136-149.
    [3]McGlynn, K. A., Tsao, L., Hsing, A. W., Devesa, S. S., and Fraumeni, J. F. J. (2001). International trends and patterns of primary liver cancer. Int J Cancer,94, 290-296.
    [4]Seow, T. K., Liang, R. C., Leow, C. K., and Chung, M. C. (2001). Hepatocellular carcinoma,From bedside to proteomics. Proteomics,1,1249-1263.
    [5]Thorgeirsson, S. S., and Grisham, J. W. (2002). Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet,31,339-346.
    [6]Leung, T. W., Part, Y. Z., Lau, W. Y, Ho, S. K., Yu, S. C., et al. (1999). Complete pathological remission is possible with systemic combination chemotherapy for inoperable hepatocellular carcinoma. Clin Cancer Res,5,1676-1681.
    [7]Poon, R. T., Fan, S. T., Lo, C. M., Liu, C. L., and Wong, J. (1999). Intrahepatic recurrence after curative resection of hepatocellular carcinoma, long term results of treatment and prognostic factors. Ann Surg,229,216-222.
    [8]Lowe, S. W., and Lin, A. W. (2000). Apoptosis in cancer. Carcinogenesis,21, 485-495.
    [9]Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature,407,770-776.
    [10]Ghobrial, I. M., Witzig, T. E., and Adjei, A. A. (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin,55,178-194.
    [11]Denicourt, C., and Dowdy, S. F. (2004). Targeting apoptotic pathway in cancer cells. Science,305,1411-1413.
    [12]Yim, E. K., Lee, K. H., Namkoong, S. E., Um, S. J., and Park, J. S. (2006). Proteomic analysis of ursolic acid-induced apoptosis in cervical carcinoma cell. Cancer lett,235,209-220.
    [13]Neo, J. C., Rose, P., Ong, C. N., and Chung, M. C. (2005). beta-Phenylethyl isothiocyanate mediated apoptosis, A proteomic investigation of early apoptotic protein changes. Proteomics,5,1075-1082.
    [14]Dong, H., Ying, T., Li, T., Cao, T., Wang, J., et al. (2006). Comparative Proteomic Analysis of Apoptosis Induced by Sodium Selenite in Human Acute Promyelocytic Leukemia NB4 Cells. Journal of Cellular Biochemistry,98, 1495-1506.
    [15]Monge, M., Vilaseca, M., Soto-Cerrato, V., Montaner, B., Giralt, E., and Perez-Tomas, R. (2007). Proteomic analysis of prodigiosin-induced apoptosis in a breast cancer mitoxantrone-resistant MCF-7 MR cell line. Invest New Drugs,25, 21-29.
    [16]Prince, P., and Mcmillan, T. J. (1990). Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radiation. Cancer Res,50, 1392-1396.
    [17]Yu, L. R., Zeng, R., Shao, X. X., Wang, N., Xu, Y. H., and Xia, Q. C. (2000). Identification of differentially expressed proteins between human hepatoma and normal liver cell lines by two-dimensional electrophoresis and liquid chromatography-ion trap mass spectrometry. Electrophoresis,21,3058-3068.
    [18]Ding, S. J., Li, Y., Shao, X. X., Zhou, H., Zeng, R., et al. (2004). Proteome analysis of hepatocellular carcinoma cell strains, MHCC97-H and MHCC97-L, with different metastasis potentials. Proteomics,4,982-994.
    [19]Yokoo, H., Kondo, T., Fujii, K., Yamada, T., Todo, S., and Hirohashi, S. (2004). Proteomic signature corresponding to alpha fetoprotein expression in liver Cancer cells. Hepatology,40,609-617.
    [20]Ding, S. J., Li, Y, Tan, Y. X., B., et al. (2004). From proteomic analysis to clinical significance, overexpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis. Mol Cell Proteomics,3,73-81.
    [21]Ramagli, L. S. (1999).2-D Proteome Analysis Protocols, Humana Press, Totowa, NJ, USA 99-103.
    [22]Liang, R. C., Neo, J. C., Lo, S. L., Tan, G. S., Seow, T. K., and Chung, M. C. (2002). Proteome database of hepatocellular carcinoma. J Chromatogr B Analyt Technol biomed Life Sci,771,202-228.
    [23]Neuhooff, V., Arold, N., Taube, D., and Ehrhardt, W. (1988). Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis,9,255-62.
    [24]Oertel, J., and Huhn, J. (2000). Immunocytochemical methods in haematology and oncology. J Cancer Res Clin Oncol,126,425-440.
    [25]Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., et al. (2001). The sequence of human genome. Science,291,1304-1351.
    [26]Strausberg, R. L., Feingold, E. A., Grouse, L. H., Derge, J. G, Klausner, R. D., et al. (2002). Generation and initial analysis of more than 15000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci,99,16899-16903.
    [27]Ambrosini, G, Adida, C., and Altieri, D. C. (1997). A noval anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med,3,917-921.
    [28]Vilana, R., Bruix, J., Bru, C., Ayuso, C., Sole, M., and Rodes, J. (1992). Tumor size determines the efficacy of percutaneous ethanol injection for the treatment of small hepatocellular carcinoma. Hepatology,16,353-357.
    [29]Shiina, S., Tagawa, K., Niwa, Y, Unuma, T., Komatsu, Y, et al. (1993). Percutaneous ethanol injection therapy for hepatocellular carcinoma, results in 136 patients. Am J Roentgenol,160,1023-1028.
    [30]Redvanly, R. D., Chezmar, J. L., Strauss, R. M., Galloway, J. R., Boyer, T. D., and Bernardino, M. E. (1993). Malignant hepatic tumors, safety of high-dose percutaneous ethanol ablation therapy. Radiology,188,283-285.
    [31]Castaneda, F., and Kinne, R. H. K. (2000). Cytotoxicity of milliolar concentrations of ethanol on tumor cell line compared to normal rat hepatocytes in vitro. J Cancer Res Clin Oncol,126,505-510.
    [32]Castaneda, F., and Kinne, R. H. K. (2001). Apoptosis induced in HepG2 cells by short exposure to millimolar concentrations of ethanol involves the Fas-receptor pathway. J Cancer Res Clin Oncol,127,418-424.
    [33]Nobuaki, N., Eichhorst, S. T., Muller, M., and Krammer, P. H. (2001). Ethanol-induced apoptosis in hepatoma cells proceeds via intracellular Ca+; elevation activation of TLCK-sensitive proteases, and cytochrome c release. Exp Cell Res,269,202-213.
    [34]Kurose, I., Higuchi, H., Miura, S., Saito, H., Watanabe, N., et al. (1997). Oxidative stress mediated apoptosis of hepatocytes exposed to acute ethanol intoxication. Hepatology,25,368-378.
    [35]Santamaria, E., Munoz, J., Fernandez-Irigoyen, J., Prieto, J., and Corrales, F. J. (2007). Toward the discovery of new biomarkers of hepatocellular carcinoma by proteomics. Liver Int,27,163-173.
    [36]Feng, J. T., Shang, S., and Beretta, L. (2006). Proteomics for the early detection and treatment of hepatocellular carcinoma. Oncogene,25,2810-2817.
    [37]Chignard, N., and Beretta, L. (2004). Proteomics for hepatocellular carcinoma marker discovery. Gastroenterology,127,120-125.
    [38]Guo, L., Eisenman, J. R., Mahomkar, R. M., Peschon, J. J., Paxton, R. J., et al. (2002). A proteomic approach for the identification of cell-surface proteins shed by metalloproteases. Mol cell proteomics,1,30-36.
    [39]Falini, B., and Mason, D. Y. (2002). Protein encoded by genes involved in chromosomal alterations in lymphoma and leukemia, clinical value their detection by immunocytochemistry. Blood,99,409-426.
    [40]Tanke, H. J., Dirks, R. W., and Raap, T. (2005). FISH and immunocytochemistry, towards visualising single target molecules in living cells. Curr Opin Biotechnol, 16,49-54.
    [41]Mizejewski, G. J. (2001). Alpha-fetoprotein structure and function, relevance to isoforms, epitopes, and conformational variants. Exp Biol Med,226,377-408.
    [42]Dudich, E., Semenkova, L., Gorbatova, E., Dudich, I., Khromykh, L., et al. (1998). Growth-regulative activity of human alpha-fetoprotein for different types of tumor and normal cells. Tumour Biol,19,30-40.
    [43]Li, M. S., Ma, Q. L., Chen, Q., Liu, X. H., Li, P. F., et al. (2005). Alpha-fetoprotein triggers hepatoma cells escaping from immune surveillance through altering the expression of Fas/FasL and tumor necrosis factor related apoptosis-inducing ligand and its receptor of lymphocytes and liver cancer cells. World J Gastroenterol,11,2564-2569.
    [44]Walczak, H., and Krammer, P. H. (2000). The CD95 [APO-1/Fas] and the TRAIL[APO-2L] Apoptosis systems. Exp Cell Res,256,58-66.
    [45]Altierti, D. C. (2003). Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene,22,8581-8589.
    [46]Duffy, M. J., O'Donovan, N., Brennan, D. J., Gallagher, W. M., and Ryan, B. M. (2007). Survivin, a promising tumor biomarker. Cancer lett,249,49-60.
    [47]Chious, S. K., Jones, M. K., and Tarnawski, A. S. (2003). Survivin-an anti-apoptosis protein, its biological roles and implications for cancer and beyond. Med Sci Monit,9,125-129.
    [48]Conway, E. M., Pollefeyt, S., Steiner-Mosonyi, M., Luo, W., Devriese, A., et al. (2002). Deficiency of survivin in transgenic mice exacerbates Fas-induced apoptosis via mitochondrial pathway. Gastroenterology,123,619-631.
    [49]Sah, N. K., Khan, Z., Khan, G. J., and Bisen, P. S. (2006). Structural, functional and therapeutic biology of survivin. Cancer Lett,244,166-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700