用户名: 密码: 验证码:
臭氧催化功能陶瓷分离膜的制备及其水处理性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷膜分离技术在水处理过程中的应用得到了越来越多的重视,然而其功能单一、浓缩液二次污染以及膜污染等问题制约了陶瓷膜分离技术的广泛应用。催化臭氧氧化技术可以有效分解和矿化水体中的有机污染物,但其应用过程中却面临催化剂流失严重以及回收困难的问题。通过将臭氧催化剂负载于陶瓷膜上,制备臭氧催化膜,有望实现催化臭氧氧化和陶瓷膜分离的多功能作用,从而在提高污染物去除率、缓解浓缩液二次污染以及减轻膜污染的方面起到一定作用,同时解决催化臭氧氧化技术中催化剂流失和回收的问题。
     本论文将催化臭氧化技术与陶瓷膜分离技术进行耦合,开发了两种具有不同结构的催化陶瓷超滤膜,用于催化臭氧氧化-陶瓷膜分离耦合工艺,同时进行了相关的中试试验研究。主要研究内容如下:
     采用溶胶凝胶法制备了催化层、分离层一体的Ce-Ti复合催化超滤膜,通过调控Ce-Ti溶胶的配比、粘度以及涂覆次数实现Ce-Ti复合催化超滤膜的可控制备。对模拟微污染地表水的处理结果表明,Ce-Ti复合催化膜在有机物去除方面具有催化臭氧氧化和陶瓷膜分离的耦合协同效应,对于四环素和腐植酸浓度分别为5mg/L和10mg/L的模拟地表水,在臭氧剂量为2.5mg/L时,四环素和腐植酸的去除率分别可以达到80%和72%,比单独臭氧氧化过程和膜分离过程的简单加和分别提高了36%和17%,其主要机理在于Ce-Ti催化剂增强了反应过程中羟基自由基的产生,从而促进了水体中有机物的分解。
     采用真空浸渍法制备了介孔Ti-Mn催化剂修饰的多级孔结构催化膜。Ti-Mn催化层的孔结构、催化剂负载量以及比表面积分别通过造孔剂的添加量、溶胶粘度以及溶胶颗粒尺寸等因素进行调节。对多级孔结构催化膜的结构进行分析,结果表明多级孔结构催化陶瓷超滤膜的膜面孔结构是由Ti02纳米棒组装的骨架结构和Ti-Mn催化剂的二级介孔结构共同组成的,而且由于压力的驱动,Ti-Mn溶胶充分渗入了支撑层的内部孔道,从而使膜的支撑层也负载了Ti-Mn催化剂,提高了催化剂的负载量。对模拟染料废水的处理结果表明,以多级孔结构催化膜为分离单元的臭氧-膜耦合工艺对于废水的脱色和污染物去除均有良好的效果,在中性条件下,对于入水CODcr为195.3mg/L的模拟染料废水,其色度和CODcr的去除率分别达到100%和74.3%,同时在连续运行过程中,其通量比相同运行条件下未负载催化剂陶瓷膜的通量有明显提高,说明多级孔结构催化膜为分离单元的臭氧-膜耦合工艺具有一定的抗污染性能。通过对比分析可以看出在以多级孔结构催化膜为主体单元的臭氧-膜耦合工艺中,实现了催化臭氧氧化和陶瓷膜分离过程的有效耦合,在去除有机污染物、缓解膜污染等方面产生了良好的协同效果。
     同时,设计和制造了日处理量为50t的臭氧-膜耦合中试试验装置,并以Ce-Ti复合催化陶瓷超滤膜以及多孔Ti-Mn催化剂修饰的陶瓷微滤膜为主要单元,针对大连市凌水水库微污染地表水进行了的中试研究。结果表明,Ce-Ti复合催化膜与臭氧耦合工艺可以提高水体中UV254和CODMn的去除率,同时对于水体中的细菌有良好的杀灭效果,出水浊度也远低于饮用水标准;此外,膜面污染现象也有一定缓解,膜通量稳定,反洗效果良好。对于多孔Ti-Mn催化剂修饰的陶瓷微滤膜与臭氧耦合工艺,对比分析催化剂负载前后的实验结果,发现催化剂负载后,催化臭氧氧化作用明显增强,显著提高了水中UV254和CODMn的去除率,促进了有机污染物的分解,同时出水总菌数和浊度都得到了有效的控制;此外,运行过程的膜通量也有明显提高,并延长了膜的反洗间隔时间,起到了改善膜面污染的作用。
     综上所述,本研究中所制备的两种不同结构的催化陶瓷超滤膜具有良好的臭氧催化能力,应用于臭氧-膜耦合工艺不仅可以提高污染物的去除效率,同时起到消毒灭菌的效果,而且可以有效改善膜面污染,是具有良好应用前景的催化陶瓷膜产品。
Ceramic membrane has attracted plenty of attention for application in watertreatment since its producing cost was greatly reduced in the past decades. But there were still many problems that hindered the further development and application of ceramic membranes, among which post-treatment of retentate and membrane fouling were the most important problems which were mainly ascribed to the incapability of membrane separation process in degradation of organic pollutants. Catalytic ozonation was effective in degradation and mineralization of organic pollutants, but the problems in catalyst running-off and recycling have hindered the wide application of this technology. However, the combination of catalytic ozonation with ceramic membrane separation probably resulted in synergetic effects on enhancing the removal of organic pollutants and reducing the membrane fouling, and simultaneously, avoiding the catalyst running-off.
     In this work, two kinds of catalytic ceramic membranes were developed and used as key devices in the combined membrane-ozone system. And the main results were as below:
     Ce-Ti composite ceramic membrane was fabricated with sol-gel method. In the preparation process, the membrane thickness was controlled by adjusting the viscosity of the Ce-Ti mixed sol. The obtained Ce-Ti composite membrane was a typical asymmetric structured membrane, and the Ce-Ti composite layer was not only a separation layer, but also a catalytic layer. Treatment of tetracycline contaminated surface water showed the combined membrane-ozone system with Ce-Ti composite membrane as a key device displayed synergetic effect in the removal of tetracycline and HA. In the continuous mold reaction, when the initial concentration of tetracycline and HA were5mg/L and10mg/L, and the ozone dose was2.5mg/L, the removal rate of tetracycline and HA were about80%and72%, respectively, which were36%and17%higher than the sum of removal rate in single ozonation and membrane separation. The catalytic ozonation process occurred on the surface of Ce-Ti catalytic layer was proved to be the most important reason. The generation of hydroxyl redicals by decomposition of ozone on the surface of Ce-Ti composite catalyst dramatically increased the decomposition of organic pollutants.
     For further improving the catalytic capability of ceramic membrane and increasing the catalyst loading capacity and effective surface area, hierarchical porous catalytic ceramic membrane (HPCM) was designed and fabricated. The membrane layer was composed by TiO2nanorods assembled macroorous bone structure and mesoporous Ti-Mn catalytic substructure. The membranes were prepared by vaccum dip-coating method with TiC>2nanorods assembled ceramic membrane as supports. The pore structure and catalyst loading capacity were controlled by the viscosity and the particale size of the sol. The results of treatment of Red-3BS contained simulated dye water showed that the usage of HPCM in the combined ozone-membrane system could significantly increase the color and CODcr removal. For the influent with CODcr of195.3mg/L, the removal of color and CODcr were100%and74.3%, respectively, and the permeate flux was higher than that of support membrane at the same condition. The ozonation and catalytic ozonation were found to be the most important reasons for the increase in membrane-fouling reduction and pollutants degradation. Besides, the specific structure of hierarchical porous catalytic membrane also played important role in the combined ozonation-membrane filtration system.
     On the basis of Ce-Ti composite ultrafiltration membrane and porous Ti-Mn catalyst modified microfiltration membrane, the pilot-scale experiments were designed and performed with micropolluted surface water in Lingshui resevior as a target. The results shown that with Ce-Ti composite ultrafiltration membrane, the membrane fouling was substantially reduced, and the removal of UV254and CODMn were also increased to about80%. For porous Ti-Mn catalyst modified microfiltration membrane in the combined ozonation-membrane filtration system, the membrane fouling was reduced and the back-washing time interval was increased from4h for support to8h for catalytic membrane. Besides, the removal of UV254and CODMn was also increased.
     In summary, the two types of ceramic membrane with catalytic ozonation capability developed in this work were effective in the process of combined ozone and membrane and resulted in enhancement of the removal rate of organic pollutants and reduction of membrane fouling. We foresee that the process integrated ultrafiltartion and catalytic ozonation using the as-prepared novel membranes with catalytic capability as a key device may open an innovative way for enhanced water purification.
引文
[1]2011年中国环境状况公报[EB].环境保护部,(2012,06,06).
    [2]de Lange R.S.A., Keizer K., Burggraaf A.J. Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes [J]. Journal of Membrane Science,1995,104:81-100.
    [3]Van Gestel T., Sebold D., Meulenberg W. A., et al. Manufacturing of new nano-structured ceramic-metallic composite microporous membranes consisting of ZrO2, A12O3, TiO2 and stainless steel [J]. Solid State Ionics,2008,179:1360-1366.
    [4]Gogate R., Pandit A. A review of imperative technologies for wastewater treatment II:hybrid methods [J]. Advances in Environmental Research,2004,8:553-597.
    [5]Jin X., Peldszus S., Huck P. Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes [J]. Water Research,2012,46:6519-6530.
    [6]Prieto-Rodriguez L., Oller I., Klamerth N., et al. Application of solar AOPs and ozonation for elimination of micropollutants in municipal wastewater treatment plant effluents [J]. Water Research,2013,47:1521-1528.
    [7]Nawrocki J., Kasprzyk-Hordern B. The efficiency and mechanisms of catalytic ozonation [J]. Applied Catalysis B:Environmental,2010,99:27-42.
    [8]Spasova I., Nikolov P., Mehandjiev D. Ozone Decomposition over alumina-supported copper, manganese and copper-manganese catalysts [J]. Ozone:Science and Engineering,2007,29:41-45.
    [9]Moussavi G., Khavanin A., Alizadeh R. The investigation of catalytic ozonation and integrated catalytic ozonation/biological processes for the removal of phenol from saline wastewaters [J]. Journal of Hazardous Materials,2009,171:175-181.
    [10]Legube B., Karpel Vel Leitner N. Catalytic ozonation:a promising advanced oxidation technology for water treatment [J]. Catalysis Today,1999,53:61-72.
    [11]Kim J., Davies S. H., Baumann M. J., et al. Effect of ozone dosage and hydrodynamic conditions on the permeate flux in a hybrid ozonation-ceramic ultrafiltration system treating natural waters [J]. Journal of Membrane Science,2008,311:165-172.
    [12]Karnik B. S., Davies S. H., Chen K., et al. Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes [J]. Water Research,2005,39:728-734.
    [13]Karnik B. S., Davies S. H., Bauman N. J., et al. Fabrication of catalytic membranes for the treatment of drinking water using combined ozonation and ultrafiltration [J]. Environtal Science Technology,2005,39:7656-7661.
    [14]Zhu H., Wen X., Huang X. Membrane organic fouling and the effect of pre-ozonation in microfiltration of secondary effluent organic matter [J]. Journal of Membrane Science,2010,352: 213-221.
    [15]Benitez F. J., Acero J. L., Leal A. I., et al. Ozone and membrane filtration based strategies for the treatment of cork processing wastewaters [J]. Journal of Hazardous Materials,2008,152: 373-380.
    [16]徐南平.无机膜研究进展[J].化工进展.1995,1:45-48.
    [17]Leenaars A. F. M., Burggraaf A. J. The preparation and characterization of alumina membranes with ultrafine pores [J]. Journal of Colloid and Interface Science,1985,105:27-40.
    [18]Hsieh, H. P. Inorganic Membranes for Separation and Reaction [M]. Amsterdam, the Netherlands: Elsevier Science B.V.,1996:23-86.
    [19]黄培,徐南平,时钧.粒子烧结法制备氧化铝微滤膜[J].水处理技术,1996,22:129-133.
    [20]Julbe A., Guizard C., Larbor A., et al. The sol-gel approach to prepare candidate microporous inorganic membranes for membranes reactors [J]. Journal of Membrane Science,1993,7: 137-153.
    [21]Schnabel R., Vaulont W. High-pressure techniques with porous glass membranes [J].1977,24: 249-272.
    [22]Koji K., Zhang S. G., Keisuke O., et al. Permeation of methanol vapor through silica membranes prepared by the CVD method with the aid of evacuation [J]. Journal of Membrane Science,1999, 160:31-39.
    [23]Hoar T.P., Mott N.F. A mechanism for the formation of porous anodic oxide films on aluminium [J]. Journal of Physics and Chemistry of Solids,1959,9:97-99.
    [24]漆虹.多孔陶瓷支撑体的制备研究[D].南京:南京工业大学,2000.
    [25]Burggraaf A.J., Cot L. Fundamentals of Inorganic Membrane Science and Technology [M].1st ed. Amsterdam, the Netherlands: Elsevier Science B.V.,1996:130.
    [26]Uhlhorn R. J. R., Veld M., Keizer K., et al. High permselectivities of microporous silica-modifi ed gamma-alumina membranes [J]. Journal of Materials Science Letters,1989,8:1135-1138.
    [27]Larbot A., Julbe A., Guizard C., et al. Silica membranes by the sol-gel process [J]. Journal of Membrane Science,1989,44:289-303.
    [28]Klein L. C., Gallagher D. Pore structures of sol-gel silica membranes [J]. Journal of Membrane Science,1988,39:213-220.
    [29]Anderson M. A., Gieselmann M. J., Xu Q. Titania and alumina ceramic membranes [J]. Journal of Membrane Science,1988,39:243-258.
    [30]Moosemiller M. D., Hill C. G., Anderson, M. A. Physicochemical properties of supported gamma-Al2O3 and TiO2 ceramic membranes [J]. Separation Science and Technology,1989,24: 641-657.
    [31]Villarroel L. R., Elmaleh S., Ghaffor N. Cross-flow ultrafiltration of hydrocarbon emulsions [J]. 1995,102:55-64.
    [32]Yasntoshi S., Takashi S. Treatment of oil-containing wastwater. Jpn Kokyo Koho,05245427 [P].1992.
    [33]Wang P., Xu N., Shi J. A pilot study of the treatment of waste rolling emulsion using zirconia microfiltration membranes [J]. Journal of Membrane Science,2000,173:159-166.
    [34]Liang L., Feng X., Peurrung L. Temperature-sensitive membranes prepared by UV photopolymerization of N-isopropylacrylamide on a surface of porous hydrophilic polypropylene membranes [J].1999,162:235-246.
    [35]Lahiere R.J., Goodboy K.P. Ceramic membrane treatment of petrochemical wastewater [J]. Enviromental Progress,1993,12:86-97.
    [36]Soma C., Rumeau M., Sergent C. Use of mineral membranes in the treatment of textile effluents. Proc 1st Intl Conf on Inorganic Membr [C]. Montpellier,1989:523-526.
    [37]Townsend R.B., Neytzell-de Wilde F.G., Buckley C.A., et al. Dynamic membrane treatment of industrial effluents:A situation report on the application of the technique in the wool scouring and textile dyeing industries [J]. Dynamic Membrane Application,1989:1-14.
    [38]Merin U., Daufin G. Separation processes using inorganic mem-branes in the food industry. In: Proclst Intl Conf Inorganic Membranes [C].Montpellier,1990:271-281.
    [39]Malmberg R., Holm S. Producing low-bacteria milk by microfiltration [M].3. Lund, Sweden: Food focus. Alfa-Laval Food Eng.,1987:16.
    [40]王志高.用于初乳除菌的陶瓷膜过程研究[D].南京:南京工业大学,2002.
    [41]Cheryan M. Membranes in food processing. Effective industrial membrane processes:Benefits and opportunities [M]. Elsevier Applied Science,1991:157.
    [42]de la Fuente B. T., Lecorou C. Characterization of new ultrafiltration membranes [C]. University of Montpellier, Montpellier,1988.
    [43]Alvarez V., Andres L. J., Hem F. A. Microfiltration of apple juice using inorganic membranes: Process optimization and juice stability [J]. The Canadian Journal of Chemical Engineering,1996, 74:156-162.
    [44]Thomas R. L., Gaddis J. L., Westfall P. H. Optimization of apple juice production by single pass metallic membrane ultrafiltration [J]. Journal of Food Science,1987,52:1263-1266.
    [45]王焕章,徐赵辉,邢卫红等.陶瓷膜在谷氨酸发酵液除菌过程中的应用[J].食品与发酵工业,2011,27:42.
    [46]刘飞,高斌,邢卫红等.陶瓷膜在甘氨酸精制中的应用研究[C],第七届全国非均相分离会议论文集,南京,2002:212.
    [47]Tsuda M., Ohta K., Nara K. Ultrafiltration of fermentation broth containing nucleosides to separate inosine and guanosine from the broth:U.S.,4374981 [P].1983,02,22.
    [48]曾坚贤.工业化陶瓷膜的表征及在肌苷生产中的应用[D].南京:南京工业大学,2001.
    [49]Adikane H.V., Singh R.K., Nene S.N. Recovery of penicillin G from fermentation broth by microfiltration [J]. Journal of Membrane Science,1999,162:119-123.
    [50]Ding W., Ellestad G.A., Abbanat D. Antibiotic 42D005 α and β:U.S.,5338729[P].1994,08,16.
    [51]童金钟,邢卫红,徐南平等.陶瓷微滤膜处理钛白粉水洗液的过程强化研[J].高校化学工程学报,1999,13(5):421-427.
    [52]Deschamps A., Walther C., Bergez P. Application of inorganic membranes in refining processes of petroleum residues. Proc 1st Intl Conf on Inorganic Membr [C]. Montpellier.1989:237.
    [53]Micheals A.S. New separation technique for CPI [J]. Chemical Engineering Progress,1968,64: 31.
    [54]Bailey P.S. The reactions of ozone with organic compounds [J]. Chemical Review,1958.58: 925-1010.
    [55]Kuczkowski R.L. Ozone and carbonyl oxides.1,3-Dipolar Cycloaddition Chemistry [M]. New York:John Wiley and Sons,1984:197-277.
    [56]Staehelin S., Hoigne J. Decomposition of ozone in water the presence of organic solutes acting as promoters and inhibitors of radical chain reactions [J]. Environment Science Technology,1985, 19:1206-1212.
    [57]Tomiyasu H., Fukutomi H., Gordon G. Kinetics and mechanisms of ozone decomposition in basic aqueous solution [J]. Inorganic Chemistry,1985,24:2962-2966.
    [58]Hewes C.G., Davinson R.R. Renovation of waste water by ozonation [J], Water AIChE Symposium Series,1972,69:71.
    [59]Abdo M.S.E., Shaban H., Bader M.S.H. Decolorization by ozone of direct dyes in presence of some catalysts [J]. Journal of Environmental Science and Health,1988,23:697.
    [60]Gracia R., Aragues J.L., Ovelleiro J.L., Study of the catalytic ozonation of humic substances in water and their ozonation by-products [J]. Ozone Science Engineering,1996,18:195.
    [61]Ma J., Graham N.J.D. Degradation of atrazine by manganese-catalysed ozonation: Influence of humic substances [J]. Water Research,1999,33:785-793.
    [62]Andreozzi R., Insola A., Caprio V., et al. The kinetics of Mn(II)-catalysed ozonation of oxalic acid in aqueous solution [J]. Water Research,1992,26:917.
    [63]Sauleda R.,Brillas E. Mineralization of aniline and 4-chlorophenol in acidic solution by ozonation catalyzed with Fe2+ and UVA light [J].Applied Catalysis B:Environmental,2001,29:135-145.
    [64]Logager T., Holeman J., Sehested K., et al. Oxidation of ferrous ions by ozone in acidic acid solutions [J]. Inorganic Chemistry,1992,31,3523-3529.
    [65]Pines D.S., Reckhow D.A. Effect of dissolved cobalt(II) on the ozonation of oxalic acid [J]. Environmental Science & Technology,2002,36:4046-4051.
    [66]Beltran J. F., Rivas J. F., Montero-de-Espinosa R. Ozone-enhanced oxidation of oxalic acid in water with cobalt catalysts.1. Homogeneous catalytic ozonation [J]. Industrial & Engineering Chemistry Research,2003,42:3210-3217.
    [67]Pli Y., Ernst M., Schrotter J-C.H. Effect of phosphate buffer upon CuO/Al2O3 and Cu(II) catalyzed ozonation of oxalic acid solution [J]. Ozone Science and Engineering,2003,25: 393-397.
    [68]Sanchez-Polo M., Rivera-Utrilla J. Ozonation of 1,3,6-naphthalenetrisulfonic acid in presence of heavy metals [P]. Journal of Chemical Technology and Biotechnology,2004,79:902-909.
    [69]Ma J., Graham N.J.D. Preliminary Investigation of manganese-catalyzed ozonation for the destruction of atrazine [P]. Ozone Science and Engineering,1997,19:227-240.
    [70]Cooper C., Burch R. An investigation of catalytic ozonation for the oxidation of halocarbons in drinking water preparation [J]. Water Research,1999,33:3695-3700.
    [71]Kasprzyk-Hordern B., Raczyk-Stanisawiak U., Swietlik J., et al. Catalytic ozonation of natural organic matter on alumina [J]. Applied Catalysis B:Environmenta,2006,162:345-358.
    [72]Ernst M., Lurot F., Schotter J.C.H., Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide [J]. Applied Catalysis B:Environmental,2004,47:15-25.
    [73]Yunrui Z., Wanpeng Z., Fudong L., Jianbing W., et al. Catalytic activity of Ru/Al2O3 for ozonation of dimethyl phthalate in aqueous solution [J]. Chemosphere,2007,66:145-150.
    [74]Ni C., Chen J., Heterogeneous catalytic ozonation of 2-chlorophenol aqueous solution with alumina as a catalyst [J]. Water Science and Technology,2001,43:213-220.
    [75]Rosal R., Rodrigez A., Gonzalo M.S., et al. Catalytic ozonation of naproxen and carbamazepine on titanium dioxide [J]. Applied Catalysis B:Environmental,2008,84:48-57.
    [76]Rosal R., Gonzalo M.S., Rodrigez A., et al. Ozonation of clofibric acid catalyzed by titanium dioxide [J]. Journal of Hazardous Materials,2009,169:411-418.
    [77]Rosal R., Gonzalo M.S., Boltes K., et al. Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid [J]. Journal of Hazardous Materials,2009,172:1061-1068.
    [78]Zhang T., Lu J., Ma J., et al. Fluorescence spectroscopic characterization of DOM fractions isolated from a filtered river water after ozonation and catalytic ozonation [J]. Chemosphere, 2008,71:911-921.
    [79]Park J.S., Choi H., Ahn K.H., The reaction mechanism of catalytic oxidation with hydrogen peroxide and ozone in aqueous solution [J]. Water Science and Technology,2003,47:179-184.
    [80]Park J.S., Choi H., Ahn K.H., et al. Removal mechanism of natural organic matter and organic acid by ozone in the presence of goethite [J]. Ozone Science and Engineering,2004,26:141-151.
    [81]Park J.S., Choi H., Cho J. Kinetic decomposition of ozone and para-chlorobenzoic acid during catalytic ozonation [J]. Water Research,2004,38:2285-2292.
    [82]Zhang T., Lu J., Ma J., et al. Comparative study of ozonation and synthetic goethite-catalyzed ozonation of individual NOM fractions isolated and fractionated from a filtered river water [J]. Water Research,2008,42:1563-1570.
    [83]Trapido M., Veressinina Y., Munter R., et al. Catalytic ozonation of m-dinitrobenzene [J]. Ozone Science and Engineering,2005,27:359-363.
    [84]Andreozzi R., Insola A., Caprio V., et al. The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution [J]. Applied Catalysis A:General,1996, 138:75-81.
    [85]Muruganandham M., Wu J.J., Synthesis, characterization and catalytic activity of easily recyclable zinc oxide nanobundles [J]. Applied Catalysis B:Environmental,2008,80:32-41.
    [86]Gracia R., Cortes S., Sarasa J., et al. Heterogeneous catalytic ozonation with supported titanium dioxide in model and natural waters [J]. Ozone Science and Engineering,2000.22:461-471.
    [87]Gracia R., Cortes S., Sarasa J., et al. Catalytic ozonation with supported titanium dioxidethe stability of catalyst in water [J]. Ozone Science and Engineering,2000,22:185-193.
    [88]Gracia R., Cortes S., Sarasa J., et al. TiO2-catalysed ozonation of raw Ebro river water [J]. Water Research.2000.34:1525-1532.
    [89]Volk C., Roche P., Joret J. C., et al. Comparison of the effect of ozone, ozone-hydrogen peroxide system and catalytic ozone on the biodegradable organic matter of a fulvic acid solution [J]. Water Research,1997,31,650-656.
    [90]Beltran F.J., Rivas F.J., Montero-de-Espinosa R. A TiO2/Al2O3 catalyst to improve the ozonation of oxalic acid in water [J]. Applied Catalysis B:Environmental,2004,47:101-109.
    [91]Beltran F.J., Rivas F.J., Montero-de-Espinosa R. Iron type catalysts for the ozonation of oxalic acid in water [J]. Water Research,2005,39:3553-3564.
    [92]Ma J., Sui M.H., Chen Z.L., et al. Degradation of refractory organic pollutants by catalytic ozonation-activated carbon and Mn-loaded activated carbon as catalysts [J]. Ozone Science and Engineering,2004,26:3-10.
    [93]Alvarez P.M., Beltran F.J., Pocostales J.P., et al. Preparation and structural characterization of CO/Al2O3 catalysts for the ozonation of pyruvic acid [J]. Applied Catalysis B:Environmental, 2007,72:322-330.
    [94]Chen L., Qi F., Xu B.,et al. The efficiency and mechanism of y-alumina catalytic ozonation of 2-methylisoborneol in drinking water [J]. Water Science and Technology:Water Supply,2006, 6:43-51.
    [95]Qi F., Xu B., Chen Z., et al. Influence of aluminum oxides surface properties on catalyzed ozonation of 2,4,6-trichloroanisole [J]. Separation and Purification Technology,2009,66: 405-410.
    [96]Dong Y., Yang H., He K., et al. β-MnO2 nanowires:A novel ozonation catalyst for water treatment [J]. Applied Catalysis B:Environmental,2009,85:155-161.
    [97]Alsheyab M.A., Mufloz A.H. Comparative study of ozone and MnO2/O3 effects on the elimination of TOC and COD of raw water at the Valmayor station [J]. Desalination,2007, 207:179-183.
    [98]Faria P.C.C., Monteiro D.C.M.,Orfao J.J.M., et al. Cerium, manganese and cobalt oxides as catalysts for the ozonation of selected organic compounds [J]. Chemosphere,2009,74:818-824.
    [99]Qu J., Li H., Liu H., et al. Ozonation of alachlor catalyzed by Cu/Al2O3 in water [J]. Catalysis Today,2004,90:291-296.
    [100]Udrea I., Bradu C. Ozonation of substituted phenols in aqueous solutions over CuO-Al2O3 catalyst [J]. Ozone Science and Engineering,2003,25:335-343.
    [101]Xu Z., Chen Z., Joll C., et al. Catalytic efficiency and stability of cobalt hydroxide for decomposition of ozone and p-chloronitrobenzene in water [J]. Catalysis Communications,2009, 10:1221-1225.
    [102]Zhang J., Lee K.H., Cui L., et al. Degradation of methylene blue in aqueous solution by ozone-based processes [J]. Journal of Industrial and Engineering Chemistry,2009,15:185-189.
    [103]Avramescu S.M., Bradu C., Udrea I., et al. Degradation of oxalic acid from aqueous solutions by ozonation in presence of Ni/Al2O3 catalysts [J]. Catalysis Communications,2008,9:2386-2391.
    [104]Qin W., Li X., Qi J. Experimental and theoretical investigation of the catalytic ozonation on the surface of NiO-CuO nanoparticles [J]. Langmuir,2009,25:8001-8011.
    [105]Zeng Y., Liu Z., Qin Z., Decolorization of molasses fermentation wastewater by SnO2-catalyzed ozonation [J]. Journal of Hazardous Materials,2009,162:682-687.
    [106]Yang L., Hu C., Lunnie Y., et al. Catalytic ozonation of selected Pharmaceuticals over mesoporous alumina-supported manganese oxide [J]. Environmental Science & Technology, 2009,43:2525-2529.
    [107]Moussavi G., Mahmoudi M. Degradation and biodegradability improvement of the reactive red 198 azo dye using catalytic ozonation with MgO nanocrystals [J]. Chemical Engineering Journal, 2009,152:1-7.
    [108]Hu C., Xing S., Qu J., et al. Catalytic ozonation of herbicide 2,4-D over cobalt oxide supported on mesoporous zirconia [J]. Journal of Physical Chemistry C,2008,112:5978-5983.
    [109]Sui M., Sheng L., Lu K., et al. FeOOH catalytic ozonation of oxalic acid and the effect of phosphate binding on its catalytic activity [J]. Applied Catalysis B:Environmental,2010, 96:94-110.
    [110]Martins R.C., Quinta-Ferreira R.M. Catalytic ozonation of phenolic acids over a Mn-Ce-O catalyst [J]. Applied Catalysis B:Environmental,2009,90:268-277.
    [111]Lin J., Nakajima T., Jomoto T., et al. Effective catalysts for wet oxidation of formic acid by oxygen and ozone [J]. Ozone Science and Engineering,2000,22:241-247.
    [112]Karpel vel Leitner N., Delouane B., Legube B., et al. Effects of catalysts during ozonation of salicylic acid, peptides and humic substances in aqueous solution [J]. Ozone Science and Engineering,1999,21:261-276.
    [113]Ping T., Hua L., Qing Z., et al. Catalytic ozonation of sulfosalicylic acid [J]. Ozone Science and Engineering,2002,24:117-122.
    [114]Karpel Vel Leitner N., Delanoe F., AcedB. o, et al. Reactivity of various Ru/CeO2 catalysts during ozonation of succinic acid aqueous solutions [J]. New Journal of Chemistry,2000,24: 229-233.
    [115]Delanoe F., Acedo B., Karpel Vel Leitner N., et al. Relationship between the structure of Ru/CeO2 catalysts and their activity in the catalytic ozonation of succinic acid aqueous solutions [J]. Applied Catalysis B:Environmental,2001,29:315-325.
    [116]Fu H., Karpel Vel Leitner N., Legube B. Catalytic ozonation of chlorinated carboxylic acids with Ru/CeO2-TiO2 catalyst in the aqueous system [J]. New Journal of Chemistry,2002, 26:1662-1666.
    [117]Karpel Vel Leitner N., Fu H. pH effects on catalytic ozonation of carboxylic acids with metal on metal oxides catalysts [J]. Topics in Catalysis,2005,33:249-256.
    [118]Carbajo M., Rivas F.J., Beltran F.J., et al. Effects of different catalysts on the ozonation of pyruvic acid in water [J]. Ozone Science and Engineering,2006,28:229-235.
    [119]Zhao L., Ma J., Sun Z. Oxidation products and pathway of ceramic honeycomb-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution [J]. Applied Catalysis B: Environmental,2008,79:244-253.
    [120]Zhao L., Ma J., Sun Z., et al. Experimental study on oxidative decomposition of nitrobenzene in aqueous solution by honeycomb ceramic-catalyzed ozonation [J]. Frontiers of Environmental Science & Engineering in China,2008,2:44-50.
    [121]Zhao L., Ma J., Sun Z., et al. Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution [J]. Environmental Science & Technology,2008,42:4002-4007.
    [122]Zhao L., Ma J., Sun Z., et al. Influencing mechanism of temperature on the degradation of nitrobenzene in aqueous solution by ceramic honeycomb catalytic ozonation [J]. Journal of Hazardous Materials,2009,167:1119-1125.
    [123]Zhao L., Ma J., Sun Z., et al. Preliminary kinetic study on the degradation of nitrobenzene by modified ceramic honeycomb-catalytic ozonation in aqueous solution [J]. Journal of Hazardous Materials,2009,161:988-994.
    [124]Zhao L., Ma J., Sun Z., et al. Mechanism of heterogeneous catalytic ozonation of nitrobenzene in aqueous solution with modified ceramic honeycomb [J]. Applied Catalysis B:Environmental, 2009,89:326-334.
    [125]Hou Y., Ma J., Sun Z.,et al. Degradation of benzophenone in aqueous solution by Mn-Fe-K modified ceramic honeycomb-catalyzed ozonation [J]. Journal of Environmental Sciences (China),2006,18:1065-1072.
    [126]Zhao L., Sun Z., Ma J., et al. Enhancement mechanism of heterogeneous catalytic ozonation by cordierite-supported copper for the degradation of nitrobenzene in aqueous solution [J]. Environmental Science & Technology,2009,43:2047-2053.
    [127]Zhao L., Ma J., Sun Z., et al. Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese [J]. Applied Catalysis B:Environmental, 2008,83:256-264.
    [128]Zhao L., Sun Z., Ma J. Novel relationship between hydroxyl radical initiation and durface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution [J]. Environmental Science & Technology,2009,43:4157-4163.
    [129]Sotelo J.L., Ovejero G., Martinez F., et al. Catalytic wet peroxide oxidation of phenolic solutions over a LaTil-xCuxO3 perovskite catalyst [J]. Applied Catalysis B:Environmental, 2004,47:281-294.
    [130]Rivas F.J., Carbajo M., Beltran F.J., et al. Perovskite catalytic ozonation of pyruvic acid in water: Operating conditions influence and kinetics [J]. Applied Catalysis B:Environmental,2006, 62:93-103.
    [131]Carbajo M., Beltran F.J., Medina F., et al. Catalytic ozonation of phenolic compounds: The case of gallic acid [J]. Applied Catalysis B:Environmental,2006,67:177-186.
    [132]Carbajo M., Beltran F.J., Gimeno O., et al. Ozonation of phenolic wastewaters in the presence of a perovskite type catalyst [J]. Applied Catalysis B:Environmental,2007,74:203-210.
    [133]Sano N., Yamamoto T., Yamamoto D., et al. Degradation of aqueous phenol by simultaneous use of ozone with silica-gel and zeolite [J]. Chemical Engineering and Processing,2007, 46:513-519.
    [134]Dong Y., Yang H., He K., et al. Catalytic activity and stability of Y zeolite for phenol degradation in the presence of ozone [J]. Applied Catalysis B:Environmental,2008,82:163-168.
    [135]He K., Dong Y., Li Z., et al. Catalytic ozonation of phenol in water with natural brucite and magnesia [J]. Journal of Hazardous Materials,2008,159:587-592.
    [136]Qi F., Xu B., Chen Z., et al. Ozonation catalyzed by the raw bauxite for the degradation of 2,4, 6-trichloroanisole in drinking water [J]. Journal of Hazardous Materials,2009,168:246-252.
    [137]Tong S., Liu W., Leng W., et al. Characteristics of MnO2 catalytic ozonationof sulfosalicylic acid and propionic acid in water [J]. Chemosphere,2003,50:1359-1364.
    [138]Muruganandham M., Wu J.J., Granular α-FeOOH-A stable and efficient catalyst for the decomposition of dissolved ozone in water [J]. Catalysis Communications,2007,8:668-672.
    [139]Zhang T., Ma J. Catalytic ozonation of trace nitrobenzene in water with synthetic goethite [J]. Journal of Molecular Catalysis A:Chemical,2008,279:82-89.
    [140]Sui M., Sheng L., Lu K., et al. FeOOH catalytic ozonation of oxalic acid and the effect of phosphate binding on its catalytic activity [J]. Applied Catalysis B:Environmental,2010. 96:94-100.
    [141]Lv A., Hu C., Nie Y., et al. Catalytic ozonation of toxic pollutants over magnetic cobalt and manganese co-dopea-Fe2O3 [J]. Applied Catalysis B:Environmental 100 (2010) 62-67.
    [142]Lv A., Hu C., Nie Y., et al. Catalytic ozonation of toxic pollutants over magnetic cobalt-doped Fe3O4 suspensions [J]. Applied Catalysis B:Environmental,2012,117:246-252.
    [143]Beltran F.J., Rivas F.J., Montero-de-Espinosa R. Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor [J]. Applied Catalysis B:Environ-mental,2002,39:221-231.
    [144]Yang Y., Ma J., Qin Q., et al. Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation [J]. Journal of Molecular Catalysis A:Chemical,2007,267:41-48.
    [145]Kim B.-S., Fujita H., Sakai Y., et al. Catalytic ozonation of an organophosphorus pesticide using microporous silicate and its effect on total toxicity reduction [J]. Water Science and Technology, 2002,46:35-41.
    [146]McKay G., McAleavey G. Ozonation and carbon adsorption in a three-phase fluidised bed for colour removal from peat water [J]. Chemical Engineering Research & Design,1988, 66:531-536.
    [147]Zaror C.A. Enhanced oxidation of toxic effluents using simultaneous ozonation and activated carbon treatment [J]. Journal of Chemical Technology and Biotechnology,1997,70:21-28.
    [148]Jans U., Hoigne J. Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH-radicals [J]. Ozone:Science and Engineering,1998,20:67-90.
    [149]Beltran F.J., Garcia-Araya J.H., Giraldez I. Gallic acid water ozonation using activated carbon [J]. Applied Catalysis B:Environmental,2006,63:249-259.
    [150]Faria P.C.C., Orfao J.J.M., Pereira M.F.M. Activated carbon catalytic ozonation of oxamic and oxalic acids [J]. Applied Catalysis B:Environmental,2008,79:237-243.
    [151]Liu Z., Ma J., Cui Y., et al. Effect of ozonation pretreatment on the surface properties and catalytic activity of multi-walled carbon nanotube [J]. Applied Catalysis B:Environmental,2009, 92:301-306.
    [152]Hyung H., Lee S., Yoon J., Effect of preozonation on flux and water quality in ozonation-ultrafiltration hybrid system for water treatment [J]. Ozone Science and Engineering, 2000,22:637-652.
    [153]Lehman S.G., Liu L. Application of ceramic membranes with pre-ozonation for treatment of secondary wastewater effluent [J]. water research,2009,43:2020-2028
    [154]Janknecht P., Wilderer P.A., Picard C., et al. Ozone-water contacting by ceramic membranes [J]. Separation and Purification Technology,2001,25:341-346.
    [155]Heng S., Yeung K.L., Djafer M., et al. A novel membrane reactor for ozone water treatment [J]. Journal of Membrane Science,2007,289:67-75.
    [156]Corneal L.M., Baumann M.J., Masten S.J., et al. Mn oxide coated catalytic membranes for hybrid ozonation-membrane filtration:Membrane microstructural characterization [J]. Journal of Membrane Science,2011,369:182-187.
    [157]Abdelmelek S. B., Greaves J, Ishida P. K., et al. Removal of pharmaceutical and personal care products from reverse osmosis retentate using advanced oxidation processes [J]. Environmental Science Technoogy,2011,45:3665-3671.
    [158]徐南平,邢卫红,赵宜江.无机膜分离技术与应用[M].北京:化学工业出版社,2003.
    [159]Luo M., Chen J., Chen L., et al. Structure and redox properties of CexTi1-xO2 solid solution [J]. Chemical Materials,2000,13:197.
    [160]Nakamura R., Okamoto A., Osawa H., et al. Design of all-inorganic molecular-based photocatalysts sensitive to visible light:Ti (Ⅳ)-O-Ce (Ⅲ) bimetallic assemblies on mesoporous silica [J]. Journal of the American Chemical Society,2007,129:9596-9597.
    [161]Wu Z., Zhu H., Qin Z., et al. Preferential oxidation of CO in H2-rich stream over CuO/Ce1-xTixO2 catalyst [J]. Applied Catalysis B:Environmental,2010,98:204-212.
    [162]Li H., Wu C., Li Y., et al. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas [J]. Environmental Science Technology,2011,45:7394-7400.
    [163]Calvo J.I., Bottino A., Capannelli G., et al. Comparison of liquid-liquid displacement porosimetry and scanning electron microscopy image analysis to characterize ultrafiltration track-etched membranes [J]. Journal of Membrane Science,2004,239:189-197.
    [164]Yoldas B.E., Alumina sol preparation from alkoxides [J]. Ameical Ceramic Sociaty Bull,1975, 54:286-289.
    [165]Brunauer S., Deming L. S., Deming W. S., et al. On a Theory of the van der Waals adsorption of gases [J]. Journal of the American Chemical Society,1940,62:1723-1732.
    [166]Watanabe S., Ma X., Song C. Characterization of structural and surface properties of nanocrystalline TiO2-CeO2 mixed oxides by XRD, XPS, TPR, and TPD [J]. Journal of Physical Chemistry C,2009,113:14249-14257.
    [167]Gao X., Jiang Y., Zhong Y., et al. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3 [J]. Journal of Hazardous Materials,2010,174:734-739.
    [168]Sinha A.K., Suzuki K. Preparation and characterization of novel mesoporous ceria-titania [J]. Journal of Physical Chemistry B,2005,109:1708-1714.
    [169]Aimar P., Meireles M., Sanchez V. A contribution to the translation of retention curves into pore size distributions for sieving membranes [J]. Journal of membrane science,1990,35:321-338.
    [170]Naydenov A., Stoyanova R., Mehandjiev D. Ozone decomposition and CO oxidation on CeO2 [J]. Journal of Molecular Catalysis A,1995,98:9-14.
    [171]Lopez-Orozco S., Inayat A., Schwab A., et al. Zeolitic materials with hierarchical porous structures [J]. Advanced Materials,2011,23:2602-2615.
    [172]Yu J., Su Y., Cheng B. Template-free fabrication and enhanced photocatalytic activity of hierarchical macro-/mesoporous titania[J]. Advanced Functional Materials,2007,17:1984-1990.
    [173]Song C., Du J., Zhao J., et al. Hierarchical porous core-Shell carbon nanoparticles [J]. Chemical Materials,2009,21:1524-1530.
    [174]Yacou C., Ayral A., Giroir-Fendler A., et al. Catalytic membrane materials with a hierarchical porosity and their performance in total oxidation of propene [J]. Catalyst Today,2010, 156:216-222.
    [175]Bosc F., Lacroix-Desmazes P., Ayral A. TiO2 anatase-based membranes with hierarchical porosity and photocatalytic properties [J]. Journal of Colloid Interface Science,2006, 304:545-548.
    [176]Drisko G.L., Zelcer A.. Luca V., et al. One-pot synthesis of structured ceramic monoliths with adjustable porosity [J]. Chemical Materials,2010,22:4379-4385.
    [177]Mandlmeier B., Szeifert J. M., Fattakhova-Rohlfing D., et al. Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal [J]. Journal of the American Chemical Society,2011,133:17274-17282.
    [178]Standard methods for the examination of water and wastewater [M].18th ed. Washington, DC: American Public Health Association; 2005.
    [179]de Boer J.H. The structure and properties of porous materials [M]. Butterworths, London,1958.
    [180]IUPAC, Reporting physisorption data for gas/solid systems [M]. Pure Applied Chemicals,1957, 87:603.
    [181]Zuo Z., Huang W., Han P., et al. A DFT study on the interaction of Co with an anatase TiO2 (001)-(1×4) surface [J]. Journal of Natural Gas Chemistry,2009,18:78-82.
    [182]Yu Q., Pan H., Zhao M., et al. Influence of calcination temperature on the performance of Pd-Mn/SiO2-Al2O3 catalysts for ozone decomposition [J]. Journal of hazardous materials,2009, 172:631-634.
    [183]Zhang F., Yediler A., Liang X. Decomposition pathways and reaction intermediate formation of the purified, hydrolyzed azo reactive dye C.I. Reactive Red 120 during ozonation [J]. Chemosphere,2007,67:712-717.
    [184]Xi Y., Reed C., Lee Y., et al. Acetone oxidation using ozone on manganese oxide catalysts [J]. Journal of Physical Chemistry B,2005,109:17587-17596.
    [185]国家环保总局.水和废水监测分析方法(四版)(M).北京:中国环境科学出版社,2012.
    [186]Aimar P., Meireles M., Sanchez V. A contribution to the translation of retention curves into pore size distributions for sieving membranes [J], Joural of Membrane Science,1990,35:321-338.
    [187]He T., Frank M., Mulder M.H.V., et al. Preparation and characterization of nanofiltration membranes by coating polyethersulfone hollow fibbers with sulfonated poly(ether-ether-ketone) (SPEEK), Joural of Membrane Science,2008,307:62-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700