用户名: 密码: 验证码:
氧化铝增强Al-Si基复合材料的组织结构和疲劳行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用挤压铸造法制备了高Cu、Ni、Mg含量的Al-Si共晶合金和氧化铝增强Al-Si基复合材料,通过拉伸试验、疲劳试验、金相观察、扫描和透射电子显微分析等手段研究了材料的微观组织、拉伸变形行为、疲劳行为及断口特征,阐明了微观结构和增强体对力学性能和疲劳寿命的影响规律,揭示了拉伸断裂和疲劳失效微观机制。
     拉伸试验结果表明,10vol.%、17vol.%和25vol.%纤维含量的氧化铝增强Al-Si基复合材料,室温抗拉强度随纤维含量的增加而下降,纤维含量从17vol.%增加到25vol.%,抗拉强度下降明显。但当拉伸温度高于275°C时,随着纤维含量增加,抗拉强度升高,纤维含量从10vol.%增加到17vol.%,抗拉强度升高明显。17vol.%氧化铝纤维+5vol.%氧化铝颗粒混合增强Al-Si基复合材料中氧化铝颗粒粘附在纤维表面,增大了纤维拔出阻力,进一步提高了抗拉强度。室温拉伸时,Al-Si共晶合金裂纹主要沿Al/Si界面扩展,断口上形成较大刻面,并造成阻碍裂纹扩展的金属间化合物破碎;Al-Si基复合材料中裂纹不仅沿Al/Si界面扩展,而且也沿Al/Intermetallic界面扩展,断口上形成较小的刻面。在200°C至350°C之间拉伸时,Al-Si共晶合金呈现微孔聚集型断裂,断口上形成较大韧窝;Al-Si基复合材料断口上存在大量韧窝,但韧窝尺寸相对较小。
     疲劳试验结果表明,高Cu、Ni、Mg含量的Al-Si共晶合金,室温疲劳循环时表现出独特的双阶段硬化现象。第一阶段循环硬化发生在1~20周,在200周以后出现第二阶段循环硬化;100°C和200°C时,先出现循环硬化,随后表现为轻微的循环软化;当温度高于275°C时,只呈现出循环软化。适量的纤维含量显著提高了氧化铝纤维增强复合材料的疲劳寿命。10vol.%、17vol.%和25vol.%三种纤维含量的复合材料中,17vol.%含量的疲劳寿命最长。17vol.%氧化铝纤维+5vol.%氧化铝颗粒混合增强Al-Si基复合材料,则进一步延长了疲劳寿命。氧化铝纤维增强Al-Si基复合材料室温疲劳循环时,在1~10周内出现循环硬化现象,随后是循环软化;在200°C和350°C主要表现为循环软化。
     微观结构分析发现,高Cu、Ni、Mg含量的Al-Si共晶合金中形成多种金属间化合物,主要有Al_7Cu_4Ni、Al_5Cu_2Mg_8Si_6、Al_3CuNi、Mg_2Si、Al_2Cu等,呈现出不规则的板状、块状、条状等形貌特征。Al-Si共晶合金室温疲劳循环时双阶段循环硬化与塑形变形过程中位错增殖以及显微组织中存在金属间化合物有关。大量形状各异的金属间化合物和片层状共晶硅分隔了铝合金基体,难于形成导致软化的滑移带。第一阶段循环硬化起源于位错与析出物之间的交互作用,而位错与位错之间的交互作用导致出现第二阶段循环硬化。
     断口分析发现,当温度低于200°C时,Al-Si共晶合金疲劳裂纹萌生于靠近试样表面的粗大初晶硅处、或者聚集的金属间化合物处;温度高于275°C时,疲劳裂纹主要萌生于靠近试样表面的粗大初晶硅处。在室温至350°C温度范围内,氧化铝纤维增强Al-Si基复合材料的疲劳裂纹萌生于接近试样表面的粗大纤维或者纤维聚集处。当温度低于200°C时,Al-Si共晶合金疲劳裂纹主要沿着Al/Si界面扩展,断口上形成较大的刻面;Al-Si基复合材料疲劳裂纹主要沿着Al/Intermetallic界面扩展,断口上刻面较小。当温度高于275°C时,Al-Si共晶合金及其复合材料在疲劳试验过程中Al/Si界面和Al/Intermetallic界面出现脱粘,进而发生微孔聚集,在断口上形成大量韧窝,Al-Si合金断口上韧窝尺寸明显大于Al-Si基复合材料断口上韧窝。
This paper studied the microstructures, tensile strain, fatigue and fractography ofAl-Si matrix alloy strengthened by high-content alloy elements, such as Cu, Ni, Mg, etc.,and its composites which are produced by squeeze casting with the measurement oftensile test, fatigue test, optical microscope, scanning and transmission electronmicroscope. The mechanical properties, fatigue and fracture mechanisms of thesematerials are evaluated and analyzed as well in this paper.
     It can be concluded from the tensile test results that the tensile strength at roomtemperature of the Al2O3f/Al-Si composites decreases as the increasing fiber volumefraction (10vol.%,17vol.%and25vol.%), which changes evidently from17vol.%to25vol.%. While it is totally different if the temperature is more than275°C. The tensilestrength at the temperature over275°C increases evidently from10vol.%to17vol.%.The Ai-Si composite hybrid with17vol.%Al2O3fiber and5vol.%particulates, in whichthe particulates adhere to the surface of fibers, increases the resistance force when thefibers are pulled out from the matrix and enhances the tensile strength. At roomtemperature, the crack in the Al-Si alloy propagates along the boundary between the Siplate and the Al matrix in the eutectic and breaks up the blocking intermetallics, whichexhibits brittle fracture characteristics. The crack in the composite propagates along theAl/Si or Al/Intermetallic boundary due to the constraint effect from the fibers, whichresults in a large number of small facets in the fracture surface. At the temperature from200°C to350°C, the crack in the Al-Si matrix alloy propagates along the gatheringmicropores, which exhibits ductile fracture with dimples. The composite shows similarductile fracture characteristics with dimples which have smaller size than the Al-Si alloy.
     The low cycle fatigue tests show that the Al-Si matrix alloy peculiarly exhibitstwo-stage cyclic hardening at room temperature. The first cyclic hardening stage happensat1~20cycles, while the second one after the200th cycle. At100°C and200°C, thematerial shows cyclic hardening behavior at the beginning of low cycle fatigue test andafterwards presents slight cyclic softening behavior. When the temperature is over275°C,the alloy shows only cyclic softening. The Al2O3f/Al-Si composites reinforced with10vol.%,17vol.%and25vol.%fibers all have better fatigue properties than the Al-Si alloy.The composite with17vol.%fibers has best fatigue property among the three ones.Based on this composite (17vol.%fiber), Al2O3particulates (5vol.%) are added byadhering to the fibers, which results in an excellent fatigue property for the compositesimultaneously reinforced with Al2O3fibers and particulates. During the low cycle fatigue testing, all the composites show slight cyclic hardening at the first10cycles andthen presents cyclic softening behavior at room temperature. At the temperature range of200°C~350°C, the composites show obvious cyclic softening behavior.
     The microstructural analysis reveals that the eutectic Al-Si alloy strengthened withhigh-content Cu, Ni and Mg has a lot of intermetallics, such as Al_7Cu_4Ni、Al_5Cu_2Mg_8Si_6、Al_3CuNi、Mg_2Si、Al_2Cu with various morphologies. The plentiful intermetallics togetherwith plate-like eutectic Si separate the Al alloy matrix, which leads to disappearance ofslip bands due to inhomogeneous deformation during fatigue cycling. The first hardeningstage initiates from the interaction between the dislocations and the precipitates. And thesecond one is related to the interaction among the dislocations.
     The fracture analysis shows that the fatigue crack initiates close the surface of largeprimary silicon particles or intermetallic agglomerates in the Al-Si matrix alloy duringlow cycle fatigue test(the temperature is less than200°C). When the temperature ishigher than275°C, the bulky primary Si particles are the mainly crack source. For thecomposites, cracks frequently begin at a huge fiber or a fiber agglomerate. While thetemperature under200°C, the crack in the Al-Si matrix alloy propagates mainly along theAl/Si boundary with many facets formed at the fracture surface, and the crack in thecomposites propagates mainly along the Al/Intermetallic boundaries with smaller facets.When the temperature is higher than275°C, debonding of Al/Si or Al/Intermetallicboundaries as well as breaking of fibers result in appearance of micropores and dimplesat the fracture surface. And the dimple size of Al-Si alloy is bigger than that of thecomposites.
引文
[1] V.L. Niranjani, K.C.H. Kumar, V. Subramanya. Development of high strengthAl-Mg-Si AA6061alloy through cold rolling and ageing[J]. Materials Science andEngineering A.2009,515(1-2):169-174.
    [2] R. Ramesh, R. Bhattacharya, G. Williams. Effect of ageing on the mechanicalbehaviour of a novel automotive grade Al-Mg-Si alloy[J]. Materials Science andEngineering A.2012,541:128-134.
    [3] C.H. Caceres, J.H. Sokolowski, P. Gallo. Effect of ageing and Mg content on thequality index of two model Al-Cu-Si-Mg alloys[J]. Materials Science andEngineering A.1999,271(1-2):53–61.
    [4] S.K. Panigrahi, R. Jayaganthan. Development of ultrafine grained Al-Mg-Si alloywith enhanced strength and ductility[J]. Journal of Alloys and Compounds.2009,470(1-2):285-288.
    [5] I.G. Siddhalingeshwar, M.A. Herbert, M. Chakraborty, et al. Effect of mushy staterolling on age-hardening and tensile behavior of Al-4.5Cu alloy and in situAl-4.5Cu-5TiB2composite[J]. Materials Science and Engineering A.2011,528(3):1787-1798.
    [6] Z.X. Wang, Y.A. Zhang, B.H. Zhu, et al. Tensile and high-cycle fatigue propertiesof spray formed Al10.8Zn2.9Mg1.9Cu alloy after two-stage aging treatment[J].Transactions of Nonferrous Metals Society of China.2006,16(4):808-812.
    [7] W.M. Edwards, R.C. Thomson, S.J. Barnes, et al. Development of near-eutectic Al–Si casting alloys for piston applications[J]. Materials Science Forum.2002,396(4):625-630.
    [8] L.F. Mondolfo. Aluminum alloys: structure and properties[M], London,Butterworths,1976.
    [9]赵品,高聿伟,刘万生等.过共晶Al-Si合金活塞材料的研究[J].物理测试,1996,14:4-6.
    [10] N.A. Belov, D. Eskin, A. Aksenov. Multicomponent phase diagrams: applicationsfor commercial aluminum alloys[M]. Oxford: Elsevier,2005.
    [11]张国定,赵昌正.金属基复合材料[M].上海交通大学出版社,1996.
    [12] S.L. Wang, B.L. Shen, S.J. Gao. Creep behavior of mullite short fiber reinforcedZL109alloy composites at high temperature[J]. Journal of Materials Science andTechnology.2001,17(4):429-432.
    [13] I. Koutiri, D. Bellett, F. Morel, et al. A probabilistic model for the high cycle fatiguebehaviour of cast aluminium alloys subject to complex loads[J]. InternationalJournal of Fatigue.2012, in press.
    [14] W.W. Bose-Filho, E.R. de Freitas, V.F. da Silva, et al. Al–Si cast alloys underisothermal and thermomechanical fatigue conditions[J]. International Journal ofFatigue.2007,29(9-11):1846-1854.
    [15] S. Tabibian,E. Charkaluk, A. Constantinescu, et al. Behavior, damage and fatiguelife assessment of lost foam casting aluminum alloys under thermo-mechanicalfatigue conditions[J]. Procedia Engineering.2010,2(1):1145-1154.
    [16] J.H. Fan, D.L. McDowell, M.F. Horstemeyer, et al. Cyclic plasticity at pores andinclusions in cast Al–Si alloys[J]. Engineering Fracture Mechanics.2003,70(10):1281-1302.
    [17] T. Beck, D. Lohe, J. Luft, et al. Damage mechanisms of cast Al–Si–Mg alloysunder superimposed thermal–mechanical fatigue and high-cycle fatigue loading[J].Materials Science and Engineering A.2007,468-470(SI):184-192.
    [18] M.H. Lee, J.J. Kim, K.H. Kim, et al. Effects of HIPing on high-cycle fatigueproperties of investment cast A356aluminum alloys[J]. Materials Science andEngineering A.2003, A340(1-2):123-129.
    [19] X. Zhu, A. Shyam, J.W. Jones, et al. Effects of microstructure and temperature onfatigue behavior of E319-T7cast aluminum alloy in very long life cycles[J].International Journal of Fatigue.2006,28(11):1566-1571.
    [20] D. Casellas, R. Perez, J.M. Prado. Fatigue variability in Al–Si cast alloys[J].Materials Science and Engineering A.2005,398(1-2):171-179.
    [21] H.R. Ammar, A.M. Samuel, F.H. Samuel. Porosity and the fatigue behavior ofhypoeutectic and hypereutectic aluminum–silicon casting alloys[J]. InternationalJournal of Fatigue.2008,30(6):1024-1035.
    [22] C. Tekmen, I. Ozdemir, U. Cocen, et al. The mechanical response of Al-Si-Mg/SiCpcomposite: influence of porosity[J]. Materials Science and Engineering A.2003,360(1-2):365-371.
    [23] C. Kaynak, S. Boylu. Effects of SiC particulates on the fatigue behaviour of anAl-alloy matrix composite[J]. Materials and Design.2006,27(9):776-782.
    [24] S.J. Zhua, T. Iizukab. Fatigue behavior of Al18B4O33whisker-framework reinforcedAl matrix composites at high temperatures[J]. Composites Science and Technology.2003,63(2):265-271.
    [25] S.B. Kim, D.A. Koss, D.A. Gerard. High cycle fatigue of squeeze cast Al/SiCwcomposites[J]. Materials Science and Engineering A.2000,277(1-2):123-133.
    [26] A.A. Iqbal, Y. Arai, W. Araki. Effect of hybrid reinforcement on crack initiation andearly propagation mechanisms in cast metal matrix composites during low cyclefatigue[J]. Materials and Design.2013,45:241-252.
    [27] C.S. Li, F. Ellyin, S. Koh, et al. Influence of porosity on fatigue resistance of castSiC particulate-reinforced Al–Si alloy composite[J]. Materials Science andEngineering A.2000,276(1-2):218-225.
    [28] W. Li, Z.H. Chen, D. Chen, et al. Low-cycle fatigue behavior of SiCp/Al–Sicomposites produced by spray deposition[J]. Materials Science and Engineering A.2010,527(29-30):7631-7637.
    [29]潘复生,张丁非.铝合金及应用[M].化学工业出版社.2006.
    [30] G. Cole, A. Sherman. Light weight materials for automotive applications[J].Materials Characterization.1995,35:3-9.
    [31] Vadim S. Zolotorevsky, Nikolai A. Belov, Michael V. Glazoff. Casting aluminumalloys[M]. Elsevier Ltd,2007.
    [32] K. Lee, Y. N. Kwon, S. Lee. Correlation of microstructure with mechanicalproperties and fracture toughness of A356aluminum alloys fabricated bylow-pressure-casting, rheo-casting, and casting-forging processes[J]. EngineeringFracture Mechanics.2008,75(14):4200-4216.
    [33] A.R. Emami, S. Begum, D.L. Chen, et al. Cyclic deformation behavior of a castaluminum alloy[J]. Materials Science and Engineering A.2009,516(1-2):31-41.
    [34] C.D. Lee. Damping properties on age hardening of Al–7Si–0.3Mg alloy during T6treatment[J]. Materials Science and Engineering A.2005,394(1-2):112-116.
    [35] G. Garcia-Garcia, J. Espinoza-Cuadra, H. Mancha-Molinar. Copper content andcooling rate effects over second phase particles behavior in industrialaluminum-silicon alloy319[J]. Materials and Design.2007,28(2):428-433.
    [36] S.G. Shabestari, H. Moemeni. Effect of copper and solidification conditions on themicrostructure and mechanical properties of Al–Si–Mg alloys[J]. Journal ofMaterials Processing Technology.2004,153(SI):193-198
    [37] Z. Li, A.M. Samuel, F.H. Samuel, et al. Factors affecting dissolution of Al2Cuphase in319alloys[J]. AFS Transactions.2003,2:241-254.
    [38] G. Rajaram, S. Kumaran, T.S. Rao. Effect of graphite and transition elements (Cu,Ni) on high temperature tensile behavior of Al-Si alloys[J]. Materials Chemistryand Physics.2011,128(1-2):62-69.
    [39] C.D. Lee. Variability in the tensile properties of squeeze-cast Al-Si-Cu-Mg alloy[J].Materials Science and Engineering A.2008,488(1-2):296-302.
    [40] F. Wang, J.S. Zhang, B.Q. Xiong, et al. Effect of Fe and Mn additions onmicrostructure and mechanical properties of spray-deposited Al–20Si–3Cu–1Mgalloy[J]. Materials Characterization.2009,60(5):384-388.
    [41] L. Ceschinia, I. Boromeia, A. Morria, et al. Microstructure, tensile and fatigueproperties of the Al-10%Si-2%Cu alloy with different Fe and Mn content cast undercontrolled conditions[J]. Journal of Materials Processing Technology.2009,209(15-16):5669-5679.
    [42] A. Couture. Iron in aluminum casting alloys—a literature survey[J]. InternationalJournal of Cast Metals Research.1981,6(4):9-17.
    [43] C.M. Dinnis, J.A. Taylor, A.K. Dahle. As-cast morphology of iron-intermetallics inAl-Si foundry alloys[J]. Scripta Materialia.2005,53(8):955-958.
    [44] S.G. Shabestari. The effect of iron and manganese on the formation of intermetalliccompounds in aluminum-silicon alloys[J]. Materials Science and Engineering A.2004,383(2):289-298.
    [45] S. Seifeddine, S. Johansson, IL Svensson. The influence of cooling rate andmanganese content on the beta Al5FeSi phase formation and mechanical propertiesof Al-Si based alloys[J]. Materials Science and Engineering A.2008,490(1-2):385-390
    [46] A.M.A. Mohamed, A.M. Samuel, F.H. Samuela, et al. Influence of additives on themicrostructure and tensile properties of near-eutectic Al-10.8%Si cast alloy[J].Materials and Design.2009,30(10):3943-3957.
    [47] M.R. Myers, N.J. Hurd. The interaction of creep and fatigue in an aluminum-siliconalloy. In: Bensussan P, editor. High temperature fracture mechanisms andmechanics[C]. London: Mechanical Engineering Publications;1990:147-162.
    [48] J.E. Hatch. Aluminum: properties and physical metallurgy[M]. Metals Park. Ohio:Asm International;1984.
    [49] N.A. Belov, D.G. Eskin, N.N. Avxentieva. Constituent phase diagrams of theAl-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminiumpiston alloys[J]. Acta Materialia.2005,53(17):4709-4722.
    [50] E. Sjolander, S. Seifeddine. Artificial ageing of Al-Si-Cu-Mg casting alloys[J].Materials Science and Engineering A.2011,528(24):7402-7409.
    [51] K.Z. He, F.X. Yu, D.Z. Zhao,et al. Characterization of precipitates in ahot-deformed hypereutectic Al–Si alloy[J]. Journal of Alloys and Compounds.2012,539:74–81.
    [52] A.J. Moffat, B.G. Mellor, C.L. Chen, et al. Microstructural analysis of fatigueinitiation in Al-Si casting alloys[J]. Materials Science Forum.2006,519-521:1083-1088.
    [53] L.C. Chen, G. West, R.C. Thomson. Characterization of intermetallic phases inmulticomponent Al-Si casting alloys for engineering applications[J]. MaterialsScience Forum.2006,519-521:359-364.
    [54] C.L. Chen, A. Richter, R.C. Thomson. Investigation of mechanical properties ofintermetallic phases in multi-component Al-Si alloys using hot-stagenanoindentation[J]. Intermetallics.2010,18(4):499-508.
    [55] Y.G. Li, Y. Yang, Y.Y. Wu, et al. Quantitative comparison of three Ni-containingphases to the elevated-temperature properties of Al-Si piston alloys[J]. MaterialsScience and Engineering A.2010,527(26):7132-7137.
    [56] T. Kucukomeroglu. Effect of equal-channel angular extrusion on mechanical andwear properties of eutectic Al-12Si alloy[J]. Materials and Design.2010,31(2):782-789.
    [57] T.W. Clyne, P.J. Withers. An introduction to metal matrix composite[M].Cambridge: Cambrige University Press;1993.
    [58]刘静安,谢水生.铝合金材料的应用与技术开发[M].冶金工业出版社.2004.
    [59] T.S. Srivatsan, V.K. Vasudevant. Cyclic plastic strain response and fracturebehavior of2080aluminum alloy metal matrix composite[J]. International Journalof Fatigue.1998,20(3):187-202.
    [60] H.Z. Ding, H. Biermann, O. Hartmann. A low cycle fatigue model of a short-fibrereinforced6061aluminium alloy metal matrix composite[J]. Composites Scienceand Technology.2002,62(16):2189-2199.
    [61] Y.D. Huang, N. Hort, K.U. Kainer. Thermal behavior of short fiber reinforcedAlSi12CuMgNi piston alloys[J]. Composites: Part A.2004,35(2):249-263.
    [62] G. Neite, S. Mielke. Thermal expansion and dimensional stability of aluminumfibre reinforced aluminum alloys[J]. Materials Science and Engineering A.1991,148(1):85–92.
    [63] J. Goni, A. Munoz, J.L. Viviente, J.F. Liceaga. Fracture-analysis of the transitionzone between unreinforced alloy and composite[J]. Composites.1993,24(7):581–586.
    [64]操光辉.(Al2O3-xSiO2)ZL109复合材料界面结构及性能研究[D].东南大学博士学位论文.1999:16-18.
    [65] G. Requena, H.P. Degischer. Creep behavior of unreinforced and short fiberreinforced AlSi12CuMgNi piston alloy[J]. Materials Science and Engineering A.2006,420(1-2):265-275.
    [66] G.Z. Kang, C. Yang, J.X. Zhang. Tensile properties of randomly oriented shortδ-Al2O3fiber reinforced aluminum alloy composites. I. Microstructurecharacteristics, fracture mechanisms and strength prediction[J]. Composites Part A.2002,33(5):647-656.
    [67] C.M. Friend, S.D. Luxton, The effect of δ alumina fiber array on the age hardeningcharacteristic of an Al/Mg/Si alloy[J]. Journal of Materials Science,23(1988)3173-3180.
    [68] S.Q. Wu, H.Z. Wang, S.C. Tjong. Mechanical and wear behavior of an Al-Si alloymetal-matrix composite reinforced with aluminosilicate fiber[J]. Compos SciTechnol1996,56:1261-1270.
    [69] A.H. Feng, L. Geng, J. Zhang, C.K. Yao. Hot compressive deformation behavior ofa eutectic Al–Si alloy based composite reinforced with α-Si3N4whisker[J].Materials Chemistry and Physics82(2003)618-621.
    [70] R. Rodriguez-Castro, R.C. Wetherhold, M.H. Kelestemur. Microstructure andmechanical behavior of functionally graded Al A359/SiCpcomposite[J]. MaterialsScience and Engineering A323(2002)445-456.
    [71] G. Liu, Z.H. Zhang, J.K. Shang. Interfacial microstructure and fracture of Al2O3particulate reinforced Al-Cu composite[J]. Acta metallurgica.materialia.1994,42(1):271-282.
    [72] P. Lu, R.E. Loehman, K.G. Ewsuk, et al. Transmission electron microscopy study ofinterfacial microstructure formed by reacting Al-Mg alloy with mullite at hightemperature[J]. Acta Matrialia.1999,47(10):3099-3104.
    [73] P. Lu, T.B. Du, R.E. Loehman, et al. Interfacial microstructure formed by reactivemetal penetration of Al into mullite[J]. Journal of Materials Research.1999,14(9):3530-3537.
    [74] S. Ikeno. Aging behavior of Al2O3particle dispersed Al-Cu-Mg alloy compositematerials[J]. Light Metals.1991,41(11):752-758.
    [75] R.D. Schueller, A.K. Sachdev, F.E. Wawner. Identification of a cubic precipitateobserved in an Al-4.3Cu-2Mg/SiC cast composite[J]. Scripta Metallurgica etMaterialia.1992,27(5):6l7-622.
    [76] S.K. Hong, C.K. Won, D.H. Shin, et al. Interfacial microchemistry andmicrostructure of Al-Mg-Si alloy matrix composites reinforced with Al2O3particulates[J]. Scripta Materialia.1997,36(8):883-889.
    [77] H. Berek, O. Zywitzki, H.P. Degischer, et al. Interface reactions in an Al2O3particle-reinforced6061Al-alloy[J]. Zeitschrift fur Metalkunde.1994,85(2):131-133.
    [78] T. Das, S. Bandyopadhyay, S. Blairs. DSC and DMA studies of particulatereinforced metal matrix composites[J]. Journal of Materials Science.1994,29(21):5680-5688.
    [79] S. Ikeno. Age-precipitation in Al2O3particle/Al-Cu alloy and particle/Al-Cu-Mgcomposite materials[J]. Journal of Japan Institute of Light Metals.1996,46(1):9-14.
    [80] S. Ikeno. Effects of particle volume fraction on aging behavior of alumina particledispersed Al-Cu-Mg alloy composite materials[J]. Journal of Japan Institute ofLight Metals.1993,43(9):465-471.
    [81]杨国英,陈建华,任智森.颗粒增强铝基复合材料的研究进展[J].轻加工技术.1998,26(5):39-42.
    [82] K.H. Oh, K.S. Han, Short-fiber/particle hybrid reinforcement: Effects on fracturetoughness and fatigue crack growth of metal matrix composites[J]. CompositesScience and Technology67(2007)1719–1726.
    [83]张雪囡,耿林.混杂增强铝基复合材料的研究进展[J].宇航材料工艺.2004年第4期, pp:1-6.
    [84] S.W. Han, K. Katsumata, S. Kumai, et al. Effects of solidification structure andaging condition on cyclic stress-strain response in Al-7%Si-0.4%Mg cast alloys[J].Materials Science and Engineering A.2002,337(1-2):170-178.
    [85] D.F. Mo, G.Q. He, Z.F. Hu, et al. Crack initiation and propagation of cast A356aluminum alloy under multi-axial cyclic loadings[J]. International Journal ofFatigue.2008,30(10-11):1843-1850.
    [86] G. Nicoletto, R. Konecna, S. Fintova. Characterization of microshrinkage castingdefects of Al-Si alloys by X-ray computed tomography and metallography[J].International Journal of Fatigue.2012,41:39-46.
    [87] H.R. Ammar, A.M. Samuel, F.H. Samuel. Effect of casting imperfections on thefatigue life of319-F and A356-T6Al–Si casting alloys[J]. Materials Science andEngineering A.2008,473(1-2):65-75.
    [88] D.A. Lados. Fatigue crack propagation mechanisms of long and small cracks inAl-Si-Mg and Al-Mg cast alloys[J]. Materials Science Forum.2009,618-619:563-574
    [89] Q.G. Wang, D. Apelian, D.A. Lados. Fatigue behavior of A356-T6aluminum castalloys. Part I. effect of casting defects[J]. Journal of Light Metals.2001,1:73-84.
    [90] S.W. Han, S. Kumai, A. Sato. Effects of solidification structure on short fatiguecrack growth in Al–7%Si–0.4%Mg alloy castings[J]. Materials Science andEngineering A.2002,332(1-2):56–63.
    [91] J. Stolarz, O. Madelaine-Dupuich, T. Magnin. Microstructural factors of low cyclefatigue damage in two phase Al–Si alloys[J]. Materials Science and Engineering A.2001,299(1-2):275–286.
    [92] J. Stolarz, J. Foct. Specific features of two phase alloys response to cyclicdeformation[J]. Materials Science and Engineering A.2001,319(SI):501-505.
    [93] M.C. Mwanza, M.R. Joyce, K.K. Lee, et al. Microstructural characterisation offatigue crack initiation in Al-based plain bearing alloys[J]. International Journal ofFatigue.2003,25(9-11):1135–1145.
    [94] M.R. Joyce, C.M. Styles, P.A.S. Reed. Elevated temperature short crack fatiguebehaviour in near eutectic Al–Si alloys[J]. International Journal of Fatigue.2003,25(9-11):863–869.
    [95] M. Tiryakioglu. On fatigue life variability in cast Al-10%Si-Mg alloys[J]. MaterialsScience and Engineering A.2010,527(6):1560-1564.
    [96] H.R. Ammar, A.M. Samuel, F.H. Samuel. Effects of surface porosity on the fatiguestrength of AE425and PM390hypereutectic Al–Si casting alloys at medium andelevated temperatures[J]. Materials Science and Engineering A.2008,473(1-2):58-64.
    [97] C.M. Styles, P.A.S. Reed. Fatigue of an Al-Si gravity die casting alloy[J]. MaterialsScience Forum.2000,331-333:1457-1462.
    [98] T.O. Mbuya, I. Sinclair, A.J. Moffat, et al. Analysis of fatigue crack initiation andS-N response of model cast aluminium piston alloys[J]. Materials Science andEngineering A.2011,528(24):7331-7340.
    [99] H. Zhang. Three-dimensional visualization of the interaction between fatigue crackand micropores in an aluminum alloy using synchrotron X-ray microtomography[J].Metallurgical and Materials Transactions A.2007,38A(8):1774-1785.
    [100]P. Li. X-ray microtomographic characterisation of porosity and its influence onfatigue crack growth[J]. Advanced Engineering Materials.2006,8(6):476-479.
    [101]K.S. Chan, P. Jones, Q. Wang. Fatigue crack growth and fracture paths in sand castB319and A356aluminum alloys[J]. Materials Science and Engineering A.2003,341(1-2):18-34.
    [102]M.R. Joyce, C.M. Styles, P.A.S. Reed. Elevated temperature fatigue of Al-Sipiston alloys[J]. Materials Science Forum.2002,396-4:1261-1266.
    [103]A.J. Moffat, S.I. Barnes, B.G. Mellor, et al. The effect of silicon content on longcrack fatigue behaviour of aluminium-silicon piston alloys at elevatedtemperature[J]. International Journal of Fatigue.2005,27(10-12):1564-1570.
    [104]A.J. Moffat, B.G. Mellor, I. Sinclair, et al. The mechanisms of long fatigue crackgrowth behaviour in Al-Si casting alloys at room and elevated temperature[J].Materials Science Technology.2007,23(12):1396-1401.
    [105]T.O. Mbuya, I. Sinclair, A.J. Moffat, et al. Micromechanisms of fatigue crackgrowth in cast aluminium piston alloys[J]. International Journal of Fatigue.2012,42:227-237
    [106]F.T. Lee, J.F. Major, F.H. Samuel. Effect of silicon particles on the fatigue crackgrowth characteristics of Al-12wt.pct Si-0.35wt.pct Mg-(0-0.02) wt.pct Sr castingalloys[J]. Metallurgical and Materials Transactions A.1995,26A(6):1553-1570.
    [107]L. Lasa, J.M. Rodriguez-Ibabe. Toughness and fatigue behaviour of eutectic andhypereutectic Al–Si–Cu–Mg alloys produced through lost foam and squeezecasting[J]. Materials Science and Technology.2004,20(12):1599-1608.
    [108]K. Gall, N. Yang, M.F. Horstemeyer, et al. The debonding and fracture of Siparticles during the fatigue of a cast Al-Si alloy[J]. Metallurgical and MaterialsTransactions A.1999,30(12):3079-3088.
    [109]A.J. Padkin, M.F. Brereton, W.J. Plumbridge. Fatigue crack growth in two-phasealloys[J]. Materials Science and Technology.1987,3(3):217-223.
    [110]Y. Gall, N. Yang, M. Horstemeyer, et al. The influence of modified intermetallicsand Si particles on fatigue crack paths in a cast A356Al alloy[J]. Fatigue andFracture of Engineering Materials and Structure.2000,23(2):159-172
    [111]T.W. Clyne, M.G. Bader, G.R. Cappleman, P.A. Hubert, The use of a δ-aluminafiber for metal-matrix composites[J]. Journal of Materials Science,20(1985)85-96.
    [112]G.R. Cappleman, J.F. Watts, T.W. Clyne, The interface region in squeeze infiltratedcomposites containing δ-alumina fiber in an Aluminum matrix[J]. Journal ofMaterials Science,1985,20:2159-2168.
    [113]J.Q. Jiang, H.N. Liu, A.P. Ma, R.S. Tan, The structure and tensile properties ofAl/Si alloy hybrid reinforced with alumina/aluminosilicate short fiber[J]. Journal ofMaterials Science,1994,29:3767-3773.
    [114]C.M. Friend, The effect of matrix properties on reinforcement in short aluminafiber-aluminum metal matrix composites[J]. Journal of Materials Science,1987,22:3005-3010.
    [115]A.F. Whitehouse, T.W. Clyne, Effect of test conditions on cavitation and failureduring tensile loading of discontinuous metal matrix composites[J]. MaterialsScience and Technology,1994,10:468-474.
    [116]S.Q. Wu, H.Z. Wang, S.C. Tjong, Mechanical and wear behavior of an Al/Si alloymetal-matrix composite reinforced with aluminosilicate fiber[J]. CompositesScience and Technology,1996,56:1261-1270.
    [117]H. Akbulut, M. Durman, Temperature dependent strength analysis of short fiberreinforced Al–Si metal matrix composites[J], Materials Science and Engineering A1999,262:214–226.
    [118]Y. Ochi, K. Masaki, T. Matsumura, et al. Effects of volume fraction of aluminashort fibers on high cycle fatigue properties of Al and Mg alloy composites[J].Materials Science and Engineering A.2007,468:230-236.
    [119]W. Shen, D.N. Chu, L.H. Peng, et al. Experimental and theoretical studies forfatigue damage of short fiber reinforced metal[J]. Engineering Fracture Mechanics.1995,51(3):479-486.
    [120]A.Sata, R.Mehrabian. Mechanical properties of Al2O3fibre-reinforced Al-Sialloy[J]. Metallurgical Transactions.2006,713:443-450.
    [121]S.K. Koh, S.J. Oh, C. Li, F. Ellyin, Low-cycle fatigue life ofSiC-particulate-reinforced Al-Si cast alloy composites with tensile mean straineffects[J]. International Journal of Fatigue1999,21:1019–1032.
    [122]S.K. Koh, S.J. Oh, C. Li, et al. Low-cycle fatigue life of SiC particulate reinforcedAl-Si cast alloy composites with tensile mean strain effects[J]. International Journalof Fatigue.1999,21(10):1019-1032.
    [123]S.Q. Wu, Z.S. Wei, S.C. Tjong, The mechanical and thermal expansion behavior ofan Al-Si alloy composite reinforced with potassium titanate whisker[J]. CompositesScience and Technology2000,60:2873-2880.
    [124]C. Tekmen, I. Ozdemir, U. Cocen, K. Onel, The mechanical response of Al-Si-Mg/SiCp composite: influence of porosity[J]. Materials Science and Engineering, A2003,360:365-371.
    [125]P.K. Rohatgi, S. Alaraj, R.B. Thakkar, A. Daoud, Variation in fatigue properties ofcast A359-SiC composites under total strain controlled conditions: Effects ofporosity and inclusions[J]. Composites: Part A2007,38:1829-1841.
    [126]刘政,周彼得,彭德林等.氧化铝短纤维增强铝基复合材料界面的研究[J].复合材料学报.1991,8(4):1-4.
    [127]Y.L. Li, K.T. Ramesh, E.S.C. Chin. Comparison of the plastic deformation andfailure of A359/SiC and6061-T6/Al2O3metal matrix composites under dynamictension[J]. Materials Science and Engineering A.2004,371(1-2):359-370.
    [128]W. Li, Z.H. Chen, D. Chen, C. Fan, C.R. Wang. Thermal fatigue behavior ofAl-Si/SiCpcomposite synthesized by spray deposition[J]. Journal of Alloys andCompounds2010,504:S522-S526.
    [129]山东滨州渤海活塞股份有限公司技术中心资料.
    [130]U. Cocen, K. Onel. Ductility and strength of extruded SiCp/Al-alloy composites[J].Composites Science and Technology.2002,62:275-282.
    [131]徐秉业.塑性力学.高等教育出版社[M].1988年12月.
    [132]魏兆正.材料力学.大连理工大学出版社[M].1994年9月.
    [133]E. Tillova, E. Durinikova, M. Chalupova. Characterization of phases insecondary AlZn10Si8Mg cast alloy[J]. Materials Engineering.2011,18:1-7.
    [134]C.L. Xu, H.Y. Wang, Y.F. Yang, et al. Effect of Al–P–Ti–TiC–Nd2O3modifier onthe microstructure and mechanical properties of hypereutectic Al-20wt.%Sialloy[J]. Materials Science and Engineering A.2007,452:341-346.
    [135]L. Ceschini, I. Boromei, A. Morri, et al. Effect of Fe content and microstructuralfeatures on the tensile and fatigue properties of the Al-Si10-Cu2alloy[J]. Materialsand Design.2012,36:522-528.
    [136]T.S. Srivatsan. An investigation of the cyclic fatigue and fracture behavior ofaluminum alloy7055[J]. Materials and Design.2002,23(2):141-151.
    [137]G. Rajaram, S. Kumaran, T.S. Rao. High temperature tensile and wear behaviour ofaluminum silicon alloy[J]. Materials Science and Engineering A.2010,528(1):247-253.
    [138]C.D. Lee. Effect of damage evolution of Si particles on the variability of the tensileductility of squeeze-cast Al-10%Si-2%Cu-0.4%Mg alloy[J]. Materials Science andEngineering A.2010,527(13-14):3144-3150.
    [139]J.M. Song, T.S. Lui, I.H. Kao, et al. Effect of microstructural refinement on tensilebehavior of the AC9A aluminum alloy suffering thermal shock fatigue[J]. ScriptaMaterialia.2004,51(12):1159-1163.
    [140]Y.F. Bai, H.D. Zhao. Tensile properties and fracture behavior of partial squeezeadded slow shot die-cast A356aluminum alloy[J]. Materials and Design.2010,31(9):4237-4243.
    [141]T.S. Srivatsan, M. Al-Hajri, C. Smith, et al. The tensile response and fracturebehavior of2009aluminum alloy metal matrix composite[J]. Materials Science andEngineering A.2003,346(1-2):91-100.
    [142]T.S. Srivatsan, G. Guruprasad, Vasudevan K. Vijay. The quasi static deformationand fracture behavior of aluminum alloy7150[J]. Materials and Design.2008,29(4):742-751.
    [143]D.O. Ovono, I. Guillot, D. Massinon. Study on low-cycle fatigue behaviours of thealuminium cast alloys[J]. Journal of Alloys and Compounds.2008,452(2):425–431
    [144]N.E. Prasad, D. Vogt, T. Bidlingmaier, et al. High temperature, low cycle fatiguebehaviour of an aluminium alloy (Al–12Si–CuMgNi)[J]. Materials Science andEngineering A.2000,276(1-2):283-287.
    [145]A. Abel, R.K. Ham. The cyclic strain behavior of crystals of Al-4wt.%Cu-ii. Lowcycle fatigue[J]. Acta Metallurgica.1966,14:1495-1503.
    [146]S.M.R. Mousavi Abarghouie, S.M. Seyed Reihani. Aging behavior of a2024Alalloy-SiCp composite[J]. Materials and Design.2010,31(5):2368-2374.
    [147]D. Khireddine, R. Rahouadj, M. Clavel. The influence of δ′and s′precipitation onlow cycle fatigue behavior of an aluminium alloy[J]. Acta Metallurgica.1989,37(1):191-201.
    [148]T.S. Srivatsan, T. Hoff, A. Prakash. Cyclic stress response characteristics andfracture behavior of aluminium alloy2090[J]. Materials Science and Technology.1991,7:991-997.
    [149]T.S. Srivatsana, Meslet Al-Hajria, V.K. Vasudevan. Cyclic plastic strain responseand fracture behavior of2009aluminum alloy metal-matrix composite[J].International Journal of Fatigue.2005,27(4):357–371.
    [150]P. Juijerm, I. Altenberger. Effect of temperature on cyclic deformation behavior andresidual stress relaxation of deep rolled under-aged aluminium alloy AA6110[J].Materials Science and Engineering A.2007,452:475-482.
    [151]S. Suresh著,王中光译.材料的疲劳[M].国防工业出版社.1993年10月.
    [152]M.E. Mercer, S.L. Dickerson, J.C. Gibeling. Cyclic deformation ofdispersion-strengthened aluminum alloys[J]. Materials Science and Engineering A.1995, A203(1-2):46-58.
    [153]L.P. Borrego, L.M. Abreu, J.M. Costa, et al. Analysis of low cycle fatigue inAlMgSi aluminium alloys[J]. Engineering Failure Analysis.2004,11(SI5):715-725
    [154]D. Khireddine, R. Rahouadj. Cleavage of S′(Al2CuMg) needles in slip bands of acyclically strained aluminium alloy[J]. International Journal of Fatigue.2001,23(7):637–642.
    [155]T.S. Srivatsan. Cyclic strain resistance and fracture behavior of Al2O3particulatereinforced2014aluminium alloy metal-matrix composites[J]. International Journalof Fatigue.1995,17(3):183-199.
    [156]L. Ceschini, I. Boromei, G. Minak, et al. Microstructure, tensile and fatigueproperties of AA6061/20vol.%Al2O3pfriction stir welded joints[J]. Composites-Part A.2007,38(4):1200-1210.
    [157]L. Ceschini, G. Minak, A. Morri. Tensile and fatigue properties of theAA6061/20vol.%Al2O3pand AA7005/10vol.%Al2O3pcomposites[J]. CompositesScience and Technology.2006,66(SI2):333-342.
    [158]T.S. Srivatsan. Mechanisms governing cyclic deformation and failure duringelevated temperature fatigue of aluminum alloy7055[J]. International Journal ofFatigue.1999,21(6):557-569.
    [159]N.P. Hung, W. Zhou, E.T. Peh, et al. Fracture toughness and low cycle fatigue of6061/Al2O3pcomposites[J]. Composites Engineering.1995.5(5):509-517.
    [160]N.M. Han, X.M. Zhang, S.D. Liu, et al. Effect of solution treatment on the strengthand fracture toughness of aluminum alloy7050[J]. Journal of Alloys andCompounds.2011,509(10):4138-4145.
    [161]A. Asserin, J. Besson, A.F. Gourgues. Fracture of6056aluminum sheetmaterials: effect of specimen thickness and hardening behavior on strainlocalization and toughness[J]. Materials Science and Engineering A.2005,395(1-2):186-194.
    [162]J.H. Fan, D.L. McDowell, M.F. Horstemeyer, et al. Computational micromechanicsanalysis of cyclic crack-tip behavior for microstructurally small cracks indual-phase Al-Si alloys[J]. Engineering Fracture Mechanics.2001,68(15):1687-1706.
    [163]曾攀.有限元分析及应用[M].清华大学出版社.2004年6月.
    [164]A.L. Chen, Y. Arai, E. Tsuchida. An experimental study on effect of thermal cyclingon monotonic and cyclic response of cast aluminium alloy-SiC particulatecomposites[J]. Composites: Part B.2005,36:319-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700