用户名: 密码: 验证码:
具有多重氢键形成位点的功能化聚硅氧烷的制备、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚硅氧烷具有许多优良的性能,如出色的链柔性、低玻璃化转变温度、疏水性、生物惰性以及优良的热稳定性。利用聚硅氧烷作为载体,通过分子间的非共价键作用如多重氢键、稀土-配体作用等构筑超分子,既可以保留聚硅氧烷的力学性能,又可以获得非共价键作用的可逆性、刺激响应性等特点,同时超分子的结构、形貌不同亦赋予超分子多样化的用途。这已经成为当前高分子化学以及生物材料等多个领域的研究热点。稀土离子在发光材料的制备中具有突出的应用价值,与功能化聚硅氧烷的结合颇具潜力;有机硅生物材料的使用日渐广泛,基于功能化聚硅氧烷的药物缓释载体的研究也日益受到关注。
     本文通过阳离子催化聚合制备了α,ω-氢封端聚硅氧烷,并将其作为反应原料,通过与烯丙基丙二酰二苯胺的硅氢加成反应得到了丙二酰二苯胺封端的功能化聚硅氧烷。SEM图像显示,由于不同维度分子间的多重氢键作用,丙二酰二苯胺封端聚硅氧烷材料呈层状堆积。丙二酰二苯胺封端的聚硅氧烷与多种稀土离子通过稀土-配体配位作用形成的超分子,具有颜色各异的发光性能。通过多种稀土离子的协同使用,得到了白光发射的光致发光材料。文中通过对多种测试手段得到的结果进行分析,明确了聚硅氧烷链在基于功能化聚硅氧烷构筑的发光材料中的作用与贡献。
     本文通过阴离子催化聚合制备了乙烯基封端甲基乙烯基聚硅氧烷,并将其作为反应原料,通过与乙酰半胱氨酸的巯烯加成反应得到了乙酰半胱氨酸功能化的聚硅氧烷,采用红外、核磁等分析手段表征了聚合物的结构。在不同pH值的环境中测试了乙酰半胱氨酸功能化聚硅氧烷作为药物缓释载体的药物释放行为,结果显示功能化聚硅氧烷具有较为明显的药物缓释能力,且对于环境酸碱度的变化有明显的响应。乙酰半胱氨酸功能化聚硅氧烷与稀土离子形成的超分子体系同样具有明显的发光性能,但其发光行为与丙二酰二苯胺功能化聚硅氧烷体系有所差异。
Polysiloxane has various excellent properties, such as high flexibility of its main chain, low glass transition temperature, hydrophobicity, physiological inertness and outstanding thermal stability. Polysiloxane-based supramolecules, assembled through non-covalent intermolecular actions such as multiple hydrogen bonds and lanthanide-ligand interactions, keep the mechanical performance of polysiloxane and obtain reversibility and stimulative responsibility from the non-covalent interactions at the same time. The structural and morphological diversities of the supramolecules also bring them applications in different fields. So supramolecular assembly has been a research hotspot in many research fields including polymer chemistry and biomaterials. Functional polysiloxanes complex with lanthanide ions are potential materials for luminescent devices because of the prominent performance showed by the rare earth ions. Polysiloxane-based biomaterials are growingly used in clinic treatment, so more interests are focused on controlled drug release systems based on functional polysiloxane.
     a, ω-N, N'-diphenylmalonamide terminated polysiloxane (PMP) was prepared through hydrosilylation of2-allyl-N1, N3-diphenylmalonamide (MA) and a, ω-hydride terminated polysiloxane (HP), which was obtained through cationic polymerization. PMP showed stacked layer morphology in its SEM images, resulting from intermolecular non-covalent actions in different dimensionality. Colorful photoluminescent emissions were detected from the supramolecules assembled by PMP and various rare earth ions through lanthanide-ligand interactions. White light emitting material was obtained by coordinating two different ions at a certain ratio into PMP. The role of Si-O-Si chain in the luminescent materials based on functional polysiloxane and its contribution to their luminescent performance were determined using various measurements.
     Cysteine-functionalized polysiloxane (PCMS) was prepared through thiol-ene click reaction of cysteine and a, ω-vinyl terminated polymethylvinylsiloxane, which was obtained through anion polymerization. Measurements such as FT-IR and NMR were employed to detect the structure of PCMS. The drug release performance of the release system based on PCMS in environments with different pH values was measured. PCMS has distinct drug release control ability with stimulative responsibility to the change of pH value in the circumstance. The supramolecules assembled by PCMS and lanthanide ions showed also obvious luminescent emissions, but the colors of these emissions are different with those emitted by the systems based on PMP.
引文
[1]Friedel, C.; Crafts, J. M. Ueber einige neue organische verbindungen des siliciums und das atomgewicht dieses elementes. Justus Liebigs Annalen der Chemie.1863, 127(1):28-32.
    [2]Luo, Y. R. Handbook of bond dissociation energies in organic compounds. CRC Press:Florida,2002.
    [3]Wilson, A. M.; Zank, G.; Eguchi, K.; Xing, W.; Yates, B.; Dahn, J. R. Polysiloxane pyrolysis. Chemistry of Materials.1997,9(7):1601-1606.
    [4]Hooper, R.; Lyons, L. J.; Mapes, M. K.; Schumacher, D.; Moline, D. A.; West, R. Highly conductive siloxane polymers. Macromolecules.2001,34(4):931-936.
    [5]冯圣玉;张洁;李美江;朱庆增.有机硅高分子及其应用.化学工业出版社:北京,2010.
    [6]Ladenburg, A. Ueber die einwirkung von zinkathyl auf kieselsauremethylather. Berichte der Deutschen Chemischen Gesellschaft.1872,5(2):1081-1082.
    [7]Dilthey, W.; Eduardoff, F. Ueber die darstellung von phenylsiliciumverbindungen. Berichte der Deutschen Chemischen Gesellschaft.1904,37(1):1139-1142.
    [8]Rochow, E. G. The direct synthesis of organosilicon compounds. Journal of the American Chemical Society.1945,67(6):963-965.
    [9]Gill, I.; Ballesteros, A. Encapsulation of biologicals within silicate, siloxane, and hybrid sol-gel polymers:an efficient and generic approach. Journal of the American Chemical Society.1998,120(34):8587-8598.
    [10]Park, J. H.; Bae, Y. H. Hydrogels based on poly(ethylene oxide) and poly (tetramethylene oxide) or poly(dimethyl siloxane):synthesis, characterization, in vitro protein adsorption and platelet adhesion. Biomaterials.2002,23(8):1797-1808.
    [11]Abe, Y.; Gunji, T. Oligo-and polysiloxanes. Progress in Polymer Science.2004, 29(3):149-182.
    [12]Saxena, A.; Rajaraman, S.; Leatherman, M. Synthesis of narrowly dispersed bis-hydride-capped polydimethylsiloxane using difunctional anionic initiator based on 1,3-iiisopropenylbenzene. Macromolecules.2007,40(3):752-755.
    [13]Vuci kovici, M. V.; Antici, V. V.; Govedarica, M. N.; Djonlagici, J. Synthesis and characterization of copolymers based on poly(butylene terephthalate) and ethylene oxide-poly(dimethylsiloxane)-ethylene oxide. Journal of Applied Polymer Science. 2010,115(6):3205-3216.
    [14]Grubb, W. T.; Osthoff, R. C. Kinetics of the polymerization of a cyclic dimethylsiloxane. Journal of the American Chemical Society.1955,77(6):1405-1411.
    [15]Adams, F. P.; Carmichael, J. B.; Zeman, R. J. Kinetics of nonequilibrium methylsiloxane polymerization and rearrangement. Journal of Polymer Science Part A: Polymer Chemistry.1967,5(4):741-759.
    [16]Patnode, W.; Wilcock, D. F. Methylpolysiloxanes. Journal of the American Chemical Society.1946,68(3):358-363.
    [17]Lee, C. L.; Johannson, O. K. Polymerization of cyclosiloxanes. I. Kinetic studies on living polymer-octamethylcyclotetrasiloxane systems. Journal of Polymer Science Part A:Polymer Chemistry.1966,4(12):3013-3026.
    [18]Breed, L.; Elliott, R.; Haggerty, J. W.; Baiocchi, F. Notes-some alkoxyorganosilanes. The Journal of Organic Chemistry.1961,26(4):1303-1305.
    [19]Piccoli, W. A.; Haberland, G. G.; Merker, R. L. Highly strained cyclic paraffin-siloxanes. Journal of the American Chemical Society.1960,82(8): 1883-1885.
    [20]Brown, J. F.; Vogt, L. H.; Katchman, A.; Eustance, J. W.; Kiser, K. M.; Krantz, K. W. Double chain polymers of phenylsilsesquioxane. Journal of the American Chemical Society.1960,82(23):6194-6195.
    [21]杜作栋;陈剑华;贝小来;周重光.有机硅化学.高等教育出版社:北京,1990.
    [22]Skoda-Foldes, R.; Kollar, L.; Heil, B. Homogeneous catalytic hydrosilylation of the C=C double bond with platinum catalysts. Journal of Organometallic Chemistry. 1989,366(1-2):275-279.
    [23]Cramer, N. B.; Reddy, S. K.; O'Brien, A. K.; Bowman, C. N. Thiol-ene photopolymerization mechanism and rate limiting step changes for various vinyl functional group chemistries. Macromolecules.2003,36(21):7964-7969.
    [24]Yang, T.; Malkoch, M.; Hult, A. Sequential interpenetrating poly(ethylene glycol) hydrogels prepared by UV-initiated thiol-ene coupling chemistry. Journal of Polymer Science Part A:Polymer Chemistry.2013,51(2):363-371.
    [25]Shih, H.; Fraser, A. K.; Lin, C. C. Interfacial thiol-ene photoclick reactions for forming multilayer hydrogels. ACS Applied Materials & Interfaces.2013,5(5): 1673-1680.
    [26]Cole, M. A.; Bowman, C. N. Evaluation of thiol-ene click chemistry in functionalized polysiloxanes. Journal of Polymer Science Part A:Polymer Chemistry. 2013,51(8):1749-1757.
    [27]Chen, M. L.; Zhang, J.; Zhang, Z.; Yuan, B. F.; Yu, Q. W.; Feng, Y. Q. Facile preparation of organic-silica hybrid monolith for capillary hydrophilic liquid chromatography based on "thiol-ene" click chemistry. Journal of Chromatography A. 2013,1284:118-125.
    [28]Cakmakci, E.; Mulazim, Y.; Kahraman, M. V. UV-curable fluorine-containing hybrid coatings via thiol-ene "click" reaction and an in situ sol-gel method. Polymer Bulletin.2012,70(3):1037-1048.
    [29]Chalasinski, G.; Szczesniak, M. M. Origins of structure and energetics of van der Waals clusters from ab initio calculations. Chemical Reviews.1994,94(7): 1723-1765.
    [30]Constable, E. C.; Ward, M. D.; Tocher, D. A. Spontaneous assembly of a double-helical binuclear complex of 2,2':6',2":6",2"':6"",2"":6"",2""-sexipyridine. Journal of the American Chemical Society.1990,112(3):1256-1258.
    [31]Bernal, J. D.; Megaw, H. D. The function of hydrogen in intermolecular forces. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences.1935,151(873):384-420.
    [32]Wurthner, F.; Thalacker, C.; Diele, S.; Tschierske, C. Fluorescent J-type aggregates and thermotropic columnar mesophases of perylene bisimide dyes. Chemistry-A European Journal.2001,7(10):2245-2253.
    [33]Kohl, C.; Weil, T.; Qu, J.; Mullen, K. Towards highly fluorescent and water-soluble perylene dyes. Chemistry-A European Journal.2004,10(21): 5297-5310.
    [34]Schouwink, P.; Schafer, A. H.; Seidel, C.; Fuchs, H. The influence of molecular aggregation on the device properties of organic light emitting diodes. Thin Solid Films. 2000,372(1-2):163168。
    [35]Syamakumari, A.; P.H.J.Schenning, A.; Meijer, E. W. Synthesis, optical properties, and aggregation behavior of a triad system based on perylene and oligo(p-phenylene vinylene) units. Chemistry-A European Journal.2002,8(15): 3353-3361.
    [36]Djurdjevic, S.; Leigh, D. A.; McNab, H.; Parsons, S.; Teobaldi, G.; Zerbetto, F. Extremely strong and readily accessible AAA-DDD triple hydrogen bond complexes. Journal of the American Chemical Society.2006,129(3):476-477.
    [37]Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J.; Hirschberg, J. H.; Lange, R. F.; Lowe, J. K.; Meijer, E. W. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science.1997, 278(5343):1601-4.
    [38]Crosby, G.; Whan, R.; Alire, R. Intramolecular energy transfer in rare earth chelates. Role of the triplet state. The Journal of Chemical Physics.1961,34(3): 743-748.
    [39]Li, Y. X.; Yan, P. F.; Hou, G. F.; Li, H. F.; Chen, P.; Li, G. M. Luminescence of unique 1D tube-like lactate lanthanide coordination polymers. Journal of Organometallic Chemistry.2013,723,176-180.
    [40]Kim, H.; Young Chang, J. White light emission from a mixed organogel of lanthanide(III)-containing organogelators. RSC Advances.2013,3(6):1774.
    [41]Samanta, S. K.; Ghorai, S. K.; Ghosh, S. Efficient "antenna effect" in the complex of (+) catechin and Tb(Ⅲ) lodged inside the nano-cavity of β-cyclodextrin. Journal of Photochemistry and Photobiology A:Chemistry.2013,252:145-151.
    [42]Fomina, I. G.; Dobrokhotova, Z. V.; Kazak, V. O.; Aleksandrov, G. G.; Lysenko, K. A.; Puntus, L. N.; Gerasimova, V. I.; Bogomyakov, A. S.; Novotortsev, V. M.; Eremenko, I. L. Synthesis, structure, thermal stability, and magnetic and luminescence properties of dinuclear lanthanide(Ⅲ) pivalates with chelating N-donor ligands. European Journal of Inorganic Chemistry.2012,2012(22):3595-3610.
    [43]Pietraszkiewicz, M.; Mal, S.; Pietraszkiewicz, O. Novel, highly photoluminescent Eu(III) and Tb(III) tetrazolate-2-pyridine-l-oxide complexes. Optical Materials.2012, 34(9):1507-1512.
    [44]Zhang, W. Q.; Yu, J. C.; Cui, Y. J.; Rao, X. T.; Yang, Y.; Qian, G. D. Assembly and tunable luminescence of lanthanide-organic frameworks constructed from 4-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylate ligand. Journal of Alloys and Compounds.2013,551:616-620.
    [45]Balashova, T. V.; Pushkarev, A. P.; Ilichev, V. A.; Lopatin, M. A.; Katkova, M. A.; Baranov, E. V.; Fukin, G. K.; Bochkarev, M. N. Lanthanide phenolates with heterocyclic substituents. Synthesis, structure and luminescent properties. Polyhedron. 2013,50(1):112-120.
    [46]Fang, X. X.; Zhao, G. Y.; Xiao, Y. M.; Xu, J. W.; Yang, W. A Europium-based luminescent chemosensor for Zn2+with quinoxaline as the antenna. Tetrehedron Letters.2013,54(8):806-810.
    [47]Song, T.; Rao, X. T.; Cui, Y. J.; Yang, Y.; Qian, G. D. Synthesis and luminescent properties of color-tunable lanthanide complexes with 5-(pyridin-4-yl)isophthalic acid. Journal of Alloys and Compounds.2013,555:22-27.
    [48]Wartenberg, N.; Raccurt, O.; Bourgeat-Lami, E.; Imbert, D.; Mazzanti, M. Multicolour optical coding from a series of luminescent lanthanide complexes with a unique antenna. Chemistry-A European Journal.2013,19(10):3477-3482.
    [49]Wirpsza, L.; Krasnoperov, L.; Mustaev, A. New quinolone-based thiol-reactive lanthanide luminescent probes. Journal of Photochemistry and Photobiology A: Chemistry.2013,253:30-37.
    [50]Mirochnik, A. G.; Petrochenkova, N. V. Enhancement of luminescence during photolysis of Eu3+and Tb3+complexes with acrylic acid-based macromolecular ligands. Journal of Luminescence.2013,134:906-909.
    [51]Borisov, S. M.; Klimant, I. New luminescent oxygen-sensing and temperature-sensing materials based on gadolinium(III) and europium(III) complexes embedded in an acridone-polystyrene conjugate. Analytical and Bioanalytical Chemistry.2012,404(10):2797-2806.
    [52]Bryson, J. M.; Reineke, J. W.; Reineke, T. M. Macromolecular imaging agents containing lanthanides:can conceptual promise lead to clinical potential? Macromolecules.2012,45(22):8939-8952.
    [53]Balamurugan, A.; Reddy, M. L. P.; Jayakannan, M. π-Conjugated polymer-Eu3+ complexes:versatile luminescent molecular probes for temperature sensing. Journal of Materials Chemistry A.2013,1(6):2256.
    [54]Xu, Q. S.; Tang, J. G.; Wang, Y.; Liu, J. X.; Wang, X. Z.; Huang, Z.; Huang, L. J.; Wang, Y. X.; Shen, W. F.; Belfiore, L. Eu3+-induced aggregates of diblock copolymers and their photoluminescent property. Journal of Colloid and Interface Science.2013, 394:630-638.
    [55]Xu, J.; Jia, L.; Ma, Y.F.; Liu, X.; Tian, H.; Liu, W. S.; Tang, Y. Novel lanthanide hybrid functional materials for high performance luminescence application:the relationship between structures and photophysical behaviors. Materials Chemistry and Physics.2012,136(1):112-119.
    [56]Liu, L.; Lu, H. F.; Wang, H.; Bei, Y. L.; Feng, S. Y Luminescent organo-polysiloxanes containing complexed lanthanide ions. Applied Organometallic Chemistry.2009,23(11):429-433.
    [57]Xu, S. J.; Ren, W. T.; Zhang, Y.; Zhang, Y. X. Study on the preparation of Eu(Pht)3Phen/SBA-15 hybrids and photoluminescence properties of silicone rubber composites with the hybrids. Journal of Applied Polymer Science.2013,128(4): 2375-2384.
    [58]Yue, Y. Z.; Liang, Y.; Wang, H.; Feng, L. L.; Feng, S. Y.; Lu, H. F. Photophysical properties of sol-gel derived luminescent silicone hybrids synthesized via facile amino-ene reaction. Photochemistry and Photobiology.2013,89(1):5-13.
    [59]Guo, X.; Canet, J. L.; Boyer, D.; Adumeau, P.; Mahiou, R. Luminescent thin films and nanoparticles of europium doped hybrids based on organosilyl β-diketonate. Journal of Sol-Gel Science and Technology.2012,64(2):404-410.
    [60]Li, Y.; Guo, M.; Yan, B. Photoluminescent Eu3+/Tb3+hybrids from the copolymerization of organically modified silane. Colloid and Polymer Science.2012, 290(17):1765-1775.
    [61]Wang, X. C.; Lu, H. F.; Wang, H.; Feng, S. Y. Synthesis and photophysical properties of rare earth-containing luminescent silicone resin from cooperative molecular design and assembly. Journal of Non-Crystalline Solids.2010,356(31-32): 1581-1586.
    [62]Lai, Q. L.; Lu, H. F.; Wang, D. X.; Wang, H.; Feng, S. Y.; Zhang, J. Color-tunable luminescent materials based on functional polysiloxane and lanthanide ions. Macromolecular Chemistry and Physics.2011,212(14):1435-1442.
    [63]Cai, J. L.; Li, R. Y.; Zhao, C. J.; Tie, S. L.; Wan, X.; Shen, J. Y. White light emission and energy transfer in Dy3+/Eu3+co-doped aluminoborate glass. Optical Materials.2012,34(7):1112-1115.
    [64]Di, W. H.; Ren, X. G.; Zhao, H. F.; Shirahata, N.; Sakka, Y; Qin, W. P. Single-phased luminescent mesoporous nanoparticles for simultaneous cell imaging and anticancer drug delivery. Biomaterials.2011,32(29):7226-7233.
    [65]Hanaoka, K.; Kikuchi, K.; Kobayashi, S.; Nagano, T. Time-resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system. Journal of the American Chemical Society.2007,129(44): 13502-13509.
    [66]Hou, J. S.; Yin, X.; Fang, Y. Z.; Huang, F. Q.; Jiang, W. Z. Emission-tunable phosphors Ca9MgM'(PO4)7:Eu2+, Mn2+(M'=Li, Na, K) for white light-emitting diodes. Journal of Luminescence.2012,132(5):1307-1310.
    [67]Ajlouni, A. M.; Taha, Z. A.; Al Momani, W.; Hijazi, A. K.; Ebqa'ai, M. Synthesis, characterization, biological activities, and luminescent properties of lanthanide complexes with N, N'-bis(2-hydroxy-l-naphthylidene)-1,6-hexadiimine. Inorganica Chimica Acta.2012,388:120-126.
    [68]Li, S. M.; Zheng, X. J.; Yuan, D. Q.; Ablet, A.; Jin, L. P. In situ formed white-light-emitting lanthanide-zinc-organic frameworks. Inorganic Chemistry.2012, 51(3):1201-1203.
    [69]Shavaleev, N. M.; Bell, Z. e. R.; Ward, M. D. A simple, general synthesis of mixed d-f complexes containing both {Re(CO)3Cl(diimine)} and lanthanide-tris(β-diketonate) luminophores linked by bis-diimine bridging ligands. Journal of the Chemical Society, Dalton Transactions.2002,21:3925-3927.
    [70]Shunmugam, R.; Tew, G. N. Polymers that Contain ligated metals in their side chain:building a foundation for functional materials in opto-electronic applications with an emphasis on lanthanide ions. Macromolecular Rapid Communications.2008, 29(16):1355-1362.
    [71]Bunzli, J. C. G.; Comby, S.; Chauvin, A. S.; Vandevyver, C. D. B. New opportunities for lanthanide luminescence. Journal of Rare Earths.2007,25(3): 257-274.
    [72]Hauser, C. P.; Thielemann, D. T.; Adlung, M.; Wickleder, C.; Roesky, P. W.; Weiss, C. K.; Landfester, K. Luminescent polymeric dispersions and films based on oligonuclear lanthanide clusters. Macromolecular Chemistry and Physics.2011, 212(3):286-296.
    [73]Qiao, X. F.; Yan, B. Covalently bonded assembly of lanthanide/silicon-oxygen network/polyethylene glycol hybrid materials through functionalized 2-thenoyltrifluoroacetone linkage. Journal of Physical Chemistry B.2009,113(35): 11865-11875.
    [74]Hao, X.; Jeffery, J. L.; Le, T. P. T.; McFarland, G.; Johnson, G.; Mulder, R. J.; Garrett, Q.; Manns, F.; Nankivil, D.; Arrieta, E.; Ho, A.; Parel, J. M.; Hughes, T. C. High refractive index polysiloxane as injectable, in situ curable accommodating intraocular lens. Biomaterials.2012,33(23):5659-5671.
    [75]Noll, W. Chemistry and technology of silicones. Academic Press:London,1968.
    [76]Siqueira, E. J.; Yoshida, I. V. P.; Pardini, L. C.; Schiavon, M. A. Preparation and characterization of ceramic composites derived from rice husk ash and polysiloxane. Ceramics International.2009,35(1):213-220.
    [77]Sun, X.; Wu, C.; Xing, J. Ionic liquid-bonded polysiloxane as stationary phase for capillary gas chromatography. Journal of Separation Science.2010,33(20): 3159-3167.
    [78]Shen, Z. R.; Li, Y. L.; Liu, J. B.; Chen, M. X.; Hou, F,; Wang, L. Q. Transparent luminescent bulk nanocomposites of polysiloxane embedded with CdS nanocrystallines by a direct dispersion process. Nanoscale.2012,4(5):1652-1657.
    [79]Lu, H. F.; Liu, L.; Feng, S. Y. A new way to construct luminescent functionalized polysiloxane based on ternary lanthanide complexes of 1,10-phenanthroline. Journal of Applied Polymer Science.2012,123(3):1884-1888.
    [80]Lu, H. F.; Wang, X. C.; Wang, H.; Feng, S. Y. Molecular design and photophysical properties of acylamido side functionalized polysiloxanes with lanthanide ions as luminescent centers. Journal of Photochemistry and Photobiology A:Chemistry.2010,215(1):48-53.
    [81]Lu, H. F.; Wang, H.; Feng, S. Y. A new way to construct luminescent functionalized silicon hybrid material derived from methyldichlorosilane. Journal of Photochemistry and Photobiology A:Chemistry.2010,210(1):48-53.
    [82]A.Ashby, B. Platinum complex catalysts.1983.
    [83]Foster, D. C.; Kremers, H. E. Europium determination in rare earth mixtures. Analytical Chemistry.1953,25(12):1921-1922.
    [84]Wang, J. Y..; Gao, Y. Z.; Wang, T. Synthesis and fluroescence characteristic of Eu-Tb complexes with trimesic acid. Spectroscopy and Spectral Analysis.2008, 28(12):2912-2915.
    [85]Pretsch, E.; Buhlmann, P.; Badertscher, M., Structure Determination of Organic Compounds - Tables of Spectral Data. Springer-Verlag:Berlin,2009.
    [86]Moeller, T.; Brantley, J. C. Spectrophotometric estimation of certain rare earth elements. Analytical Chemistry.1950,22(3):433-441.
    [87]Bortoluzzi, M.; Paolucci, G.; Gatto, M.; Roppa, S.; Enrichi, F.; Ciorba, S.; Richards, B. S. Preparation of photoluminescent PMMA doped with tris(pyrazol-1-yl)borate lanthanide complexes. Journal of Luminescence.2012,132(9): 2378-2384.
    [88]Wang, F.; Kaafarani, B. R.; Neckers, D. C. Synthesis of silicon-containing unsaturated polymers by hydrosilylation reactions photophysical studies. Macromolecules.2003,36(22):8225-8230.
    [89]Zhang, M.; Li, M.; Li, F.; Cheng, Y.; Zhang, J.; Yi, T.; Huang, C. A novel Y-type, two-photon active fluorophore:synthesis and application in ratiometric fluorescent sensor for fluoride anion. Dyes and Pigments.2008,77(2):408-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700